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Buoyancy and stability

“Buoy” mostly pronounced
“booe”, probably of Germanic
origin. A tethered floating object
used to mark a location in the
sea.

Fishes, whales, submarines, balloons and airships all owe their ability to float to buoyancy, the
lifting power of water and air. The understanding of the physics of buoyancy goes back as far
as antiquity and probably sprung from the interest in ships and shipbuilding in classic Greece.
The basic principle is due to Archimedes. His famous Law states that the buoyancy force on a
body is equal and oppositely directed to the weight of the fluid that the body displaces. Before
his time it was thought that the shape of a body determined whether it would sink or float.

Archimedes of Syracuse (287–
212 BC). Greek mathematician,
physicist and engineer. Dis-
covered the formulae for area
and volume of cylinders and
spheres, and invented rudimen-
tary infinitesimal calculus. For-
mulated the Law of the Lever,
and wrote two volumes on hydro-
statics titled On Floating Bodies,
containing his Law of Buoyancy.
Killed by a Roman soldier.

The shape of a floating body and its mass distribution do, however, determine whether it
will float stably or capsize. Stability of floating bodies is of vital importance to shipbuilding
— and to anyone who has ever tried to stand up in a small rowboat. Newtonian mechanics
not only allows us to derive Archimedes’ Law for the equilibrium of floating bodies, but also
to characterize the deviations from equilibrium and calculate the restoring forces. Even if a
body floating in or on water is in hydrostatic equilibrium, it will not be in complete mechanical
balance in every orientation, because the center of mass of the body and the center of mass of
the displaced water, also called the center of buoyancy, do not in general coincide.

The mismatch between the centers of mass and buoyancy for a floating body creates a
moment of force, which tends to rotate the body towards a stable equilibrium. For submerged
bodies, submarines, fishes and balloons, the stable equilibrium will always have the center of
gravity situated directly below the center of buoyancy. But for bodies floating stably on the
surface, ships, ducks, and dumplings, the center of gravity is mostly found directly above the
center of buoyancy. It is remarkable that such a configuration can be stable. The explanation
is that when the surface ship is tilted away from equilibrium, the center of buoyancy moves
instantly to reflect the new volume of displaced water. Provided the center of gravity does not
lie too far above the center of buoyancy, this change in the displaced water creates a moment
of force that counteracts the tilt.

3.1 Archimedes’ principle
Mechanical equilibrium takes a slightly different form than global hydrostatic equilibrium
(2.18) on page 27 when a body of another material is immersed in a fluid. If its material is
incompressible, the body retains its shape and displaces an amount of fluid with exactly the
same volume. If the body is compressible, like a rubber ball, the volume of displaced fluid
will be smaller. The body may even take in fluid, like a sponge or the piece of bread you dunk
into your coffee, but we shall disregard this possibility in the following.
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42 PHYSICS OF CONTINUOUS MATTER

A body which is partially immersed with a piece inside and another outside the fluid may
formally be viewed as a body that is fully immersed in a fluid with properties that vary from
place to place. This also covers the case where part of the body is in vacuum which may be
thought of as a fluid with vanishing density and pressure.

Weight and buoyancy
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Gravity pulls on a body over
its entire volume while pressure
only acts on the surface.

Let the actual, perhaps compressed, volume of the immersed body be V with surface S . In
the field of gravity an unrestrained body with mass density �body is subject to two forces: its
weight

FG D

Z
V

�body g dV; (3.1)

and the buoyancy due to pressure acting on its surface,

FB D �

I
S

p dS : (3.2)

If the total force F D FG C FB does not vanish, an unrestrained body will accelerate in
the direction of F according to Newton’s Second Law. Therefore, in mechanical equilibrium
weight and buoyancy must precisely cancel each other at all times to guarantee that the body
will remain in place.
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DISPLACEMENT

A body partially submerged in
a liquid. The displacement is
the amount of water that has
been displaced by the body be-
low the waterline. In equilibrium
the weight of the displaced fluid
equals the weight of the body.

Assuming that the body does not itself contribute to the field of gravity, the local balance
of forces in the fluid, expressed by eq. (2.22) on page 28, will be the same as before the body
was placed in the fluid. In particular the pressure in the fluid cannot depend on whether the
volume V contains material that is different from the fluid itself. The pressure acting on the
surface of the immersed body must for this reason be identical to the pressure on a body of
fluid of the same shape, but then the global equilibrium condition (2.18) on page 27 for any
volume of fluid tells us that Ffluid

G CFB D 0, or

FB D �Ffluid
G D �

Z
V

�fluid g dV: (3.3)

This theorem is indeed Archimedes’ principle:

� the force of buoyancy is equal and opposite to the weight of the displaced fluid.

The total force on the body may now be written

F D FG CFB D

Z
V

.�body � �fluid/g dV; (3.4)

explicitly confirming that when the body is made from the same fluid as its surroundings—
so that �body D �fluid—the resultant force vanishes automatically. In general, however, the
distributions of mass in the body and in the displaced fluid will be different.

Karl Friedrich Hieronymus
Freiherr von Münchhausen
(1720–1797). German soldier,
hunter, nobleman, and delightful
story-teller. In one of his stories,
he lifts himself out of a deep lake
by pulling at his bootstraps.

Münchhausen effect: Archimedes’ principle is valid even if the gravitational field varies
across the body, but fails if the body is so large that its own gravitational field cannot be neglected,
such as would be the case if an Earth-sized body fell into Jupiter’s atmosphere. The additional
gravitational compression of the fluid near the surface of the body generally increases the fluid
density and thus the buoyancy force. In semblance with Baron von Münchhausen’s adventure, the
body in effect lifts itself by its bootstraps (see problems 3.6 and 3.7).
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3. BUOYANCY AND STABILITY 43

Constant field of gravity

In a constant gravitational field, g.x/ D g0, everything simplifies. The weight of the body
and the buoyancy force become instead,

FG DMbody g0; FB D �Mfluid g0: (3.5)

Since the total force is the sum of these contributions, one might say that buoyancy acts as if
the displacement were filled with fluid of negative mass �Mfluid. In effect the buoyancy force
acts as a kind of antigravity.

The total force on an unrestrained object is now,

F D FG CFB D .Mbody �Mfluid/g0: (3.6)

If the body mass is smaller than the mass of the displaced fluid, the total force is directed
upwards, and the body will begin to rise, and conversely if the force is directed downwards it
will sink. Alternatively, if the body is kept in place, the restraints must deliver a force �F to
prevent the object from moving.

In constant gravity, a body can only hover motionlessly inside a fluid (or on its surface) if
its mass equals the mass of the displaced fluid,

Mbody DMfluid: (3.7)

A fish achieves this balance by adjusting the amount of water it displaces (Mfluid) through
contraction and expansion of its body by means of an internal air-filled bladder. A submarine,
in contrast, adjusts its mass (Mbody) by pumping water in and out of ballast tanks.

Bermuda Triangle Mystery: It has been proposed that the mysterious disappearance of
ships near Bermuda could be due to a sudden release of methane from the vast deposits of methane
hydrates known to exist on the continental shelves. What effectively could happen is the same as
when you shake a bottle of soda. Suddenly the water is filled with tiny gas bubbles with a density
near that of air. This lowers the average density of the frothing water to maybe only a fraction of
normal water, such that the mass of the ship’s displacement falls well below the normal value. The
ship is no more in buoyant equilibrium and drops like a stone, until it reaches normal density water
or hits the bottom where it will usually remain forever because it becomes filled with water on the
way down. Even if this sounds like a physically plausible explanation for the sudden disappearance
of surface vessels, there is no consensus that this is what really happened in the Bermuda Triangle,
nor in fact whether there is a mystery at all [4].

The physical phenomenon is real enough. It is, for example, well known to white water sailors
that “holes” can form in which highly aerated water decreases the buoyancy, even to the point
where it cannot carry any craft. You can yourself do an experiment in your kitchen using a half-
filled soda bottle with a piece of wood floating on the surface. When you tap the bottle hard, carbon
dioxide bubbles are released, and the “ship” sinks. In this case the “ship” will however quickly
reappear on the surface.

Example 3.1 [Gulf stream surface height]: The warm Gulf stream originates in the Gulf
of Mexico and crosses the Atlantic to Europe after having followed the North American coast to
Newfoundland. It has a width of about 100 km and a depth of about 1000 m. Its temperature is
about 10ı C above the surrounding ocean, of course warmest close to its origin. Since the density
of sea water decreases by about 0.015% per degree, the buoyancy force on the upper 100 m of
warmer water will lift the water surface by about 1:5 cm per degree or 15 cm for a difference of 10
degrees, which agrees with the scale of seasonal variations [KSH99]. The absolute height over the
surrounding water surface is about one meter.
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44 PHYSICS OF CONTINUOUS MATTER

3.2 The gentle art of ballooning
Joseph Michel Montgolfier
(1740–1810). Experimented
(together with his younger
brother Jacques Étienne (1745–
1799)) with hot-air balloons. On
November 21, 1783, the first hu-
man flew in such a balloon for a
distance of 9 km at a height of
100 m above Paris. Only one of
the brothers ever flew, and then
only once!

Jacques Alexandre César
Charles (1746–1823). French
physicist. The first to use hydro-
gen balloons for manned flight,
and made on December 1, 1783,
an ascent to about 3 km. Discov-
ered Charles’ law, a forerunner
of the ideal gas law, stating that
the ratio of volume to absolute
temperature (V=T ) is constant
for a given pressure.

The first balloon flights are credited to the Montgolfier brothers who on November 21, 1783
flew an untethered manned hot-air balloon, and to Jacques Charles who on December 1 that
same year flew a manned hydrogen gas balloon (see fig. 3.1). In the beginning there was an
intense rivalry between the advocates of Montgolfier and Charles type balloons, respectively
called la Montgolfière and la Charlière, which presented different advantages and dangers
to the courageous fliers. Hot air balloons were easier to make although prone to catch fire,
while hydrogen balloons had greater lifting power but could suddenly explode. By 1800 the
hydrogen balloon had won the day, culminating in the huge (and dangerous) hydrogen airships
of the 1930s. Helium balloons are much safer, but also much more expensive to fill. In the
last half of the twentieth century hot-air balloons again came into vogue, especially for sports,
because of the availability of modern strong lightweight materials (nylon) and fuel (propane).

The balloon equation
LetM denote the mass of the balloon at height z above the ground. This includes the gondola,
the balloon skin, the payload (passengers), but not the gas (be it hot air, hydrogen or helium).
The mass of the balloon can diminish if the balloon captain decides to throw out stuff from
the gondola to increase its maximal height, also called the ceiling, and often sand bags are
carried as ballast for this purpose. The condition (3.7) for the balloon to float stably at height
z above the ground now takes the form,

M C �0V D �V; (3.8)

where �0 the density of the gas, � is the density of the displaced air, and V the volume of the
gas at height z. On the right we have left out the tiny buoyancy �VM due to the volume VM

of the material of the balloon itself. If the left-hand side of this equation is smaller or larger
than the right-hand side, the balloon will rise or fall.

Hot-air balloons
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A hot-air balloon has higher tem-
perature T 0 > T and lower den-
sity �0 < � but essentially the
same pressure as the surrounding
atmosphere because it is open be-
low.

A hot-air balloon is open at the bottom so that the inside pressure is always the same as
the atmospheric pressure outside. The air in the balloon is warmer (T 0 > T ) than the outside
temperature and the density is correspondingly lower (�0 < �). Using the ideal gas law (2.27)
and the equality of the inside and outside pressures we obtain �0T 0 D �T , so that the inside
density is �0 D �T=T 0. Up to a height of about 10 km one can use the expressions (2.50) and
(2.51) for the homentropic temperature and density of the atmosphere.

Example 3.2 [La Montgolfière]: The first Montgolfier balloon used for human flight on
November 21 1783, was about 15 meter in diameter with an oval shape and had a constant volume
V � 1700 m3. It carried two persons, rose to a ceiling of z � 1000 m and flew about 9 kilometers
in 25 minutes. The machine is reported to have weighed 1600 lbs � 725 kg, and adding the two
passengers and their stuff the total mass to lift must have been aboutM � 900 kg. The November
air being fairly cold and dense, we guess that �0 D 1:2 kg m�3, which yields a displaced air mass
at the ceiling �V D 2039 kg. Comparing with (3.8) we conclude that the mass �0V of the hot
air must have been about the same as the mass M of the balloon. More precisely, we find from
(3.8) , �0=� D T=T 0 D 1 �M=�V D 0:56. In late November, the temperature a thousand meters
above Paris could well have been T D 0ı C D 273 K, such that the average hot air temperature
must have been T 0 D T=.1 �M=�V / � 489K D 216ı C. This is uncomfortably close to the
ignition temperature of paper (451 Fahrenheit = 233 Celsius). The balloon’s material did actually
get scorched by the burning straw used to heat the air in flight, but the fire was quickly extinguished
with water brought along for this eventuality.
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3. BUOYANCY AND STABILITY 45

Figure 3.1. Contemporary pictures of the first flights of the Montgolfier hot air balloon (left) and the
Charles hydrogen balloon (right). The first ascents were witnessed by huge crowds. Benjamin Franklin,
scientist and one of the founding fathers of the US, was present at the first Montgolfier ascent and was
deeply interested in the future possibilities of this invention, but did not live to see the first American
hot air balloon flight in 1793.

Gas balloons

A modern large hydrogen or helium balloon typically begins its ascent being only partially
filled, assuming an inverted tear-drop shape. During the ascent the gas expands because of
the fall in ambient air pressure, and eventually the balloon becomes nearly spherical and
stops expanding (or bursts) because the “skin” of the balloon cannot stretch further. To avoid
bursting the balloon can be fitted with a safety valve. Since the density of the displaced air
falls with height, the balloon will eventually reach a ceiling where it would hover permanently
if it did not lose gas. In the end no balloon stays aloft forever1.

Example 3.3 [La Charlière]: The hydrogen balloon used by Charles for the ascent on De-
cember 1, 1783, carried two passengers to a height of 600 m. The balloon was made from rub-
berized silk and nearly spherical with a diameter of 27 ft, giving it a nearly constant volume of
V D 292 m3. It was open at the bottom to make the pressure the same inside and outside. Tak-
ing also the temperatures to be the same inside and outside, it follows from the ideal gas law that
the ratio of densities equals the ratio of molar masses, �0=� D Mhydrogen=Mair � 1=15, inde-
pendently of height. Assuming a density, � D 1:2 kg m�3 at the ceiling, we obtain from (3.8)
M D .���0/V D 327 kg. Assuming furthermore a thickness of 1:5mm and a density 0:4 g cm�3,
the skin mass becomes 127 kg, leaving only 200 kg for the gondola, and passengers. At the end
of the first flight, a small accident happened. One passenger jumped out, forgetting to replace his
weight with ballast, and the balloon rapidly shot up to about 3000 meters. In problem 3.15 it is
shown that this corresponds well with the passenger weighing 76 kilograms, thereby confirming
the rough estimates above.

1Curiously, no animals seem to have developed balloons for floating in the atmosphere, although both the physics
and chemistry of gas ballooning appears to be within reach of biological evolution.
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46 PHYSICS OF CONTINUOUS MATTER

3.3 Stability of floating bodies

Although a body may be in buoyant equilibrium, such that the total force composed of gravity
and buoyancy vanishes, F D FG C FB D 0, it may still not be in complete mechanical
equilibrium. The total moment of all the forces acting on the body must also vanish; other-
wise an unrestrained body will necessarily start to rotate. In this section we shall discuss the
mechanical stability of floating bodies, whether they float on the surface, like ships and ducks,
or float completely submerged, like submarines and fish. To find the stable configurations of
a floating body, we shall first derive a useful corollary to Archimedes’ Principle concerning
the moment of force due to buoyancy.

Moments of gravity and buoyancy

The total moment is like the total force a sum of two terms,

M DMG CMB ; (3.9)

with one contribution from gravity,

MG D

Z
V

x � �bodyg dV; (3.10)

and the other from pressure, the moment of buoyancy,

MB D

I
S

x � .�p dS /: (3.11)

If the total force vanishes, F D 0, the total moment will be independent of the origin of the
coordinate system, as may be easily shown.

Assuming again that the presence of the body does not change the local hydrostatic bal-
ance in the fluid, the moment of buoyancy will be independent of the nature of the material
inside V . If the actual body is replaced by an identical volume of the ambient fluid, this fluid
volume must be in total mechanical equilibrium, such that both the total force as well as the
total moment acting on it have to vanish. Using that Mfluid

G CMB D 0, we get

MB D �Mfluid
G D �

Z
V

x � �fluidg dV; (3.12)

and we have in other words shown that

� the moment of buoyancy is equal and opposite to the moment of the weight of the dis-
placed fluid.

This result is a natural corollary to Archimedes’ principle, and of great help in calculating
the buoyancy moment. A formal proof of this theorem, starting from the local equation of
hydrostatic equilibrium, is found in problem 3.8.

Constant gravity and mechanical equilibrium

In the remainder of this chapter we assume that gravity is constant, g.x/ D g0, and that the
body is in buoyant equilibrium so that it displaces exactly its own mass of fluid, Mfluid D

Mbody D M . The density distributions in the body and the displaced fluid will in general be
different, �body.x/ ¤ �fluid.x/ for nearly all points.
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3. BUOYANCY AND STABILITY 47

The moment of gravity (3.10) may be expressed in terms of the center of mass xG of the
body, here called the center of gravity,

MG D xG �Mg0; xG D
1

M

Z
x�body dV: (3.13)

Similarly the moment of buoyancy (3.12) may be written,

MB D �xB �Mg0; xB D
1

M

Z
x�fluid dV; (3.14)

where xB is the moment of gravity of the displaced fluid, also called the center of buoyancy.
Although each of these moments depends on the choice of origin of the coordinate system,
the total moment,

M D .xG � xB/ �Mg0; (3.15)

will be independent. This is also evident from the appearance of the difference of the two
center positions. A shift of the origin of the coordinate system will affect the centers of
gravity and buoyancy in the same way and therefore cancel out. r
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Fully submerged body in buoyant
equilibrium with non-vanishing
total moment (which here sticks
out of the paper). The moment
will for a fully submerged body
always tend to rotate it (here anti-
clockwise) such that the center of
gravity is brought below the cen-
ter of buoyancy.

As long as the total moment is non-vanishing, the unrestrained body is not in complete
mechanical equilibrium, but will start to rotate towards an orientation with vanishing moment.
Except for the trivial case where the centers of gravity and buoyancy coincide, the above
equation tells us that the total moment can only vanish if the centers lie on the same vertical
line, xG � xB / g0. Evidently, there are two possible orientations satisfying this condition:
one where the center of gravity lies below the center of buoyancy, and another where the
center of gravity is above. At least one of these must be stable, for otherwise the body would
never come to rest.

Fully submerged body
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A fully submerged rigid body (a
submarine) in stable equilibrium
must have the center of gravity
situated directly below the center
of buoyancy. If G is moved to
G0, for example by rotating the
body, a restoring moment is cre-
ated which sticks out of the plane
of the paper, as shown in the up-
per figure.

In a fully submerged rigid body, for example a submarine, both centers are always in the same
place relative to the body, barring possible shifts in the cargo. If the center of gravity does
not lie directly below the center of buoyancy, but is displaced horizontally, for example by
rotating the body, the direction of the moment will always tend to turn the body so that the
center of gravity is lowered with respect to the center of buoyancy. The only stable equilib-
rium orientation of the body is where the center of gravity lies vertically below the center of
buoyancy. Any small perturbation away from this orientation will soon be corrected and the
body brought back to the equilibrium orientation, assuming of course that dissipative forces
(friction) can seep off the energy of the perturbation, for otherwise it will oscillate. A similar
argument shows that the other equilibrium orientation with the center of gravity above the
center of buoyancy is unstable and will flip the body over, if perturbed the tiniest amount.

Now we understand better why the gondola hangs below an airship or balloon. If the
gondola were on top, its higher average density would raise the center of gravity above the
center of buoyancy and thereby destabilize the craft. Similarly, a fish goes belly-up when it
dies, because it loses muscular control of the swim bladder which enlarges into the belly and
reverses the positions of the centers of gravity and buoyancy. It generally also loses buoyant
equilibrium and floats to the surface, and stays there until it becomes completely waterlogged
and sinks to the bottom. Interestingly, a submarine always has a conning tower on top to serve
as a bridge when sailing on the surface, but its weight will be offset by the weight of heavy
machinery at the bottom, so that the boat remains fully stable when submerged. Surfacing,
the center of buoyancy of the submarine is obviously lowered, but as we shall see below this
needs not destabilize the boat even if it comes to lie below the center of gravity.
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Body floating on the surface
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A floating body may have a sta-
ble equilibrium with the center of
gravity directly below the center
of buoyancy.

At the surface of a liquid, a body such as a ship or an iceberg will according to Archimedes’
principle always arrange itself so that the mass of displaced liquid exactly equals the mass
of the body. Here we assume that there is vacuum or a very light fluid such as air above the
liquid. The center of gravity is always in the same place relative to the body if the cargo is
fixed (see however fig. 3.2), but the center of buoyancy depends now on the orientation of the
body, because the volume of displaced fluid changes place and shape, while keeping its mass
constant, when the body orientation changes.

Stability can – as always – only occur when the two centers lie on the same vertical line,
but there may be more than one stable orientation. A sphere made of homogeneous wood
floating on water is stable in all orientations. None of them are in fact truly stable, because
it takes no force to move from one to the other (disregarding friction). This is however a
marginal case.
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A floating body generally has a
stable equilibrium with the center
of gravity directly above the cen-
ter of buoyancy.

A floating body may, like a submerged body, possess a stable orientation with the center
of gravity directly below the center of buoyancy. A heavy keel is, for example, used to lower
the center of gravity of a sailing ship so much that this orientation becomes the only stable
equilibrium. In that case it becomes virtually impossible to capsize the ship, even in a very
strong wind.

The stable orientation for most floating objects, such as ships, will in general have the
center of gravity situated directly above the center of buoyancy. This happens always when
an object of constant mass density floats on top of a liquid of constant mass density, for
example an iceberg on water. The part of the iceberg that lies below the waterline must have
its center of buoyancy in the same place as its center of gravity. The part of the iceberg lying
above the water cannot influence the center of buoyancy whereas it always will shift the center
of gravity upwards.

How can that situation ever be stable? Will the moment of force not be of the wrong
sign if the ship is perturbed? Why don’t ducks and tall ships capsize spontaneously? The
qualitative answer is that when the body is rotated away from such an equilibrium orientation,
the volume of displaced water will change place and shape in such a way as to shift the center
of buoyancy back to the other side of the center of gravity, reversing thereby the direction of
the moment of force to restore the equilibrium. We shall now make this argument quantitative.

3.4 Ship stability
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Ship in an equilibrium orienta-
tion with aligned centers of grav-
ity (G) and buoyancy (B). The
metacenter (M ) lies in this case
above the center of gravity, so
that the ship is stable against
small perturbations. The horizon-
tal line at z D 0 indicates the
surface of the water. In buoy-
ant equilibrium, the ship always
displaces the volume V , indepen-
dently of its orientation.

Sitting comfortably in a small rowboat, it is fairly obvious that the center of gravity lies above
the center of buoyancy, and that the situation is stable with respect to small movements of
the body. But many a fisherman has learned that suddenly standing up may compromise the
stability and throw him out among the fishes. There is, as we shall see, a strict limit to how
high the center of gravity may be above the center of buoyancy. If this limit is violated, the
boat becomes unstable and capsizes. As a practical aid to the captain, the limit is indicated
by the position of the so-called metacenter, a fictive point usually placed on the vertical line
through the equilibrium positions of the centers of buoyancy and gravity (the ‘mast’). The
stability condition then requires the center of gravity to lie below the metacenter (see the
margin figure).

Initially, we shall assume that the ship is in complete mechanical equilibrium with vanish-
ing total force and vanishing total moment of force. The aim is now to calculate the moment
of force that arises when the ship is brought slightly out of equilibrium. If the moment tends
to turn the ship back into equilibrium, the initial orientation is stable, otherwise it is unstable.
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Figure 3.2. The Flying Enterprise (1952). A body can float stably in many orientations, depending on
the position of its center of gravity. In this case the list to port was caused by a shift in the cargo which
moved the center of gravity to the port side. The ship and its lonely captain Carlsen became famous
because he stayed on board during the storm that eventually sent it to the bottom. Photograph courtesy
Politiken, Denmark, reproduced with permission.

Center of roll
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The area A of the ship in the wa-
terline may be of quite arbitrary
shape.

Most ships are mirror symmetric in a plane, but we shall be more general and consider a
“ship” of arbitrary shape. In a flat earth coordinate system with vertical z-axis the waterline
is naturally taken to lie at z D 0. In the waterline the ship covers a horizontal region A of
arbitrary shape. The geometric center or area centroid of this region is defined by the average
of the position,

.x0; y0/ D
1

A

Z
A

.x; y/ dA; (3.16)

where dA D dx dy is the area element. Without loss of generality we may always place the
coordinate system such that x0 D y0 D 0. In a ship that is mirror symmetric in a vertical
plane the area center will also lie in this plane.
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Tilt around the x-axis. The
change in displacement consists
in moving the water from the
wedge to the right into the wedge
to the left.

To discover the physical significance of the centroid of the waterline area, the ship is tilted
(or “heeled” as it would be in maritime language) through a tiny positive angle ˛ around the
x-axis, such that the equilibrium waterline area A comes to lie in the plane z D ˛y. The net
change�V in the volume of the displaced water is to lowest order in ˛ given by the difference
in volumes of the two wedge-shaped regions between new and the old waterline. Since the
displaced water is removed from the wedge at y > 0 and added to the wedge for y < 0, the
volume change becomes

�V D �

Z
A

z dA D �˛

Z
A

y dA D 0: (3.17)

In the last step we have used that the origin of the coordinate system coincides with the
centroid of the waterline area (i.e. y0 D 0). There will be corrections to this result of order ˛2

due to the actual shape of the hull just above and below the waterline, but they are disregarded
here. To leading order the two wedges have the same volume.
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Figure 3.3. The Queen Mary 2 set sail on its maiden voyage on January 2, 2004. It was at that time the
world’s largest ocean liner with a length of 345 m, a height of 72 m from keel to funnel, and a width of
41 m. Having a draft of only 10 m, its superstructure rises an impressive 62 m over the waterline. The
low average density of the superstructure, including 2620 passengers and 1253 crew, combined with the
high average density of the 117 megawatt engines and other heavy facilities close to the bottom of the
ship nevertheless allow the stability condition (3.28) to be fulfilled. Photograph by Daniel Carneiro.

Since the direction of the x-axis is quite arbitrary, the conclusion is that the ship may be
heeled around any line going through the centroid of the waterline area without any first order
change in volume of displaced water. This guarantees that the ship will remain in buoyant
equilibrium after the tilt. The centroid of the waterline area may thus be called the ship’s
center of roll.

The metacenter
Taking water to have constant density, the center of buoyancy is simply the geometric average
of the position over the displacement volume V (below the waterline),

.xB ; yB ; zB/ D
1

V

Z
V

.x; y; z/ dV: (3.18)

In equilibrium the horizontal positions of the centers of buoyancy and gravity must be equal
xB D xG and yB D yG . The vertical position zB of the center of buoyancy will normally be
different from the vertical position of the center of gravity zG , which depends on the actual
mass distribution of the ship, determined by its structure and load.

bb
r rr

GG0

B B0B00

˛

The tilt rotates the center of grav-
ity from G to G0, and the center of
buoyancy from B to B0. In addi-
tion, the change in displaced wa-
ter shifts the center of buoyancy
back to B00. In stable equilibrium
this point must for ˛ > 0 lie to
the left of the new center of grav-
ity G0.

The tilt around the x-axis changes the positions of the centers of gravity and buoyancy.
The center of gravity xG D .xG ; yG ; zG/ is supposed to be fixed with respect to the ship (see
however fig. 3.2) and is to first order in ˛ shifted horizontally by a simple rotation through
the infinitesimal angle ˛,

ıyG D �˛zG : (3.19)

There will also be a vertical shift, ızG D ˛yG , but that is of no importance to the stability
because gravity is vertical so that the shift creates no moment.
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The center of buoyancy is also shifted by the tilt, at first by the same rule as the center of
gravity but because the displacement also changes there will be another contribution �yB to
the total shift, so that we may write

ıyB D �˛zB C�yB : (3.20)

As discussed above, the change in the shape of the displacement amounts to moving the water
from the wedge at the right (y > 0) to the wedge at the left (y < 0). The ensuing change in
the horizontal position of the center of buoyancy may according to (3.18) be calculated by
averaging the position change y � yB over the volume of the two wedges,

�yB D �
1

V

Z
A

.y � yB/ z dA D �
˛

V

Z
A

y2 dA D �˛
I

V

where

I D

Z
A

y2 dA ; (3.21)

is the second order moment of the waterline area A around the x-axis. The movement of dis-
placed water will also create a shift in the x-direction,�xB D �˛J=V where J D

R
A
xy dA,

which does not destabilize the ship.
The total horizontal shift in the center of buoyancy may thus be written

ıyB D �˛

�
zB C

I

V

�
: (3.22)

This shows that the complicated shift in the position of the center of buoyancy can be written
as a simple rotation of a point M that is fixed with respect to the ship with z-coordinate,

zM D zB C
I

V
: (3.23)

This point, called the metacenter, is usually placed on the straight line that goes through the
centers of gravity and buoyancy, such that xM D xG D xB and yM D yG D yB . The
calculation shows that when the ship is heeled through a small angle, the center of buoyancy
will always move so that it stays vertically below the metacenter.

The metacenter is a purely geometric quantity (for a liquid with constant density), de-
pending only on the displacement volume V , the center of buoyancy xB , and the second
order moment of the shape of the ship in the waterline. The simplest waterline shapes are,

Rectangular waterline area: If the ship has a rectangular waterline area with sides 2a and
2b, the roll center coincides with the center of the rectangle, and the second moment around
the x-axis becomes,

I D

Z a

�a

dx

Z b

�b

dy y2
D
4

3
ab3: (3.24)

If a > b this is the smallest moment around any tilt axis because ab3 < a3b (see page 55).

Elliptic waterline area: If the ship has an elliptical waterline area with axes 2a and 2b, the
roll center coincides with the center of the ellipse, and the second moment around the x-axis
becomes,

I D

Z a

�a

dx

Z b
p

1�x2=a2

�b
p

1�x2=a2

y2 dy D
4

3
ab3

Z 1

0

.1 � t2/
3=2

dt D
�

4
ab3: (3.25)

Notice that this is a about half of the value for the rectangle.
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Stability condition
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The metacenter M lies always di-
rectly above the actual center of
buoyancy B00. Top: The ship
is stable because the metacenter
lies above the center of gravity.
Bottom: The ship is unstable be-
cause the metacenter lies below
the center of gravity.

The tilt generates a restoring moment around the x-axis, which may be calculated from (3.15) ,

Mx D �.yG � yB/Mg0: (3.26)

Since we have yG D yB in the original mechanical equilibrium, the difference in coordinates
after the tilt may be written, yG � yB D ıyG � ıyB where ıyG and ıyB are the small
horizontal shifts of order ˛ in the centers of gravity and buoyancy, calculated above. The shift
�xB D �˛J=V will create a momentMy D ��xBMg0 which tends to pitch the ship along
x but does not affect its stability.

In terms of the height of the metacenter zM the restoring moment becomes

Mx D ˛.zG � zM /Mg0: (3.27)

For the ship to be stable, the restoring moment must counteract the tilt and thus have opposite
sign of the tilt angle ˛. Consequently, the stability condition becomes

zG < zM : (3.28)

Evidently, the ship is only stable when the center of gravity lies below the metacenter. For an
alternative derivation of the stability condition, see problem 3.14.

Example 3.4 [Elliptical rowboat]: An elliptical rowboat with vertical sides has major axis
2a D 2 m and minor axis 2b D 1 m. The smallest moment of the elliptical area is I D
.�=4/ab3 � 0:1 m4. If your mass is 75 kg and the boat’s is 50 kg, the displacement will be
V D 0:125 m3, and the draft d � V=4ab D 6:25 cm, ignoring the usually curved shape of the
boat’s hull. The coordinate of the center of buoyancy becomes zB D �3:1 cm and the metacenter
zM D 75 cm. Getting up from your seat may indeed raise the center of gravity so much that it gets
close to the metacenter and the boat begins to roll violently. Depending on your weight and mass
distribution the boat may even become unstable and turn over.

Metacentric height and righting arm

The orientation of the coordinate system with respect to the ship’s hull was not specified in the
analysis which is therefore valid for a tilt around any direction. For a ship to be fully stable,
the stability condition must be fulfilled for all possible tilt axes. Since the displacement V is
the same for all choices of tilt axis, the second moment of the area on the right hand side of
(3.23) should be chosen to be the smallest one. Often it is quite obvious which moment is
the smallest. Many modern ships are extremely long with the same cross section along most
of their length and with mirror symmetry through a vertical plane. For such ships the smallest
moment is clearly obtained with the tilt axis parallel to the longitudinal axis of the ship.

The restoring moment (3.27) is proportional to the vertical distance, zM � zG , between
the metacenter and the center of gravity, also called the metacentric height. The closer the
center of gravity comes to the metacenter, the smaller will the restoring moment be, and the
longer will the period of rolling oscillations be. The actual roll period depends also on the true
moment of inertia of the ship around the tilt axis (see problem 3.11). Whereas the metacenter
is a purely geometric quantity which depends only on the ship’s actual draft, the center of
gravity depends on the way the ship is actually loaded. A good captain should always know
the positions of the center of gravity and the metacenter of his ship before he sails, or else he
may capsize when casting off.
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• GM, metacentric height, is the distance from G
to M; it is measured in feet. Z is the point at
which a line, through G, parallel to the waterline,
intersects the vertical line through B.

• GZ, the distance from G to Z, is the ship’s righting
arm; it is measured in feet. For small angles of
heel, GZ may be expressed by the equation

• GZ = GM sin θ

• W is the weight (displacement) of the ship; it is
measured in long tons.

• K is a point at the bottom of the keel, at the
midship section, from which all vertical
measurements are made.

• KB is the vertical distance from K to the center of
buoyancy when the ship is upright. KB is
measured in feet.

• KG is the vertical distance from K to the ship’s
center of gravity when the ship is upright. KG is
measured in feet.

• KM is the vertical distance from K to the
metacenter when the ship is upright. KM is
measured in feet.

The RIGHTING MOMENT of a ship is W times
GZ, that is, the displacement times the righting arm.

Righting moments are measured in foot-tons. Since
the righting arm (GZ) is equal to GM times sin θ, for
small values of θ, you can say that the righting
moment is equal to W times GM times sin θ. Because
of the relationship between righting arms and righting
moments, it is obvious that stability may be expressed
either in terms of GZ or in righting moments.
However, you must be very careful not to confuse
righting arms with righting moments; they are NOT
identical.

STABILITY CURVES

When a series of values for GZ (the ship’s righting
arm) at successive angles of heel are plotted on a graph,
the result is a STABILITY CURVE. The stability
curve, as shown in figure 12-24, is called the CURVE
OF STATIC STABILITY. The word static indicates
that it is not necessary for the ship to be in motion for
the curve to apply. If the ship is momentarily stopped at
any angle during its roll, the value of GZ given by the
curve will still apply.

NOTE

The stabi l i ty curve is calcula ted
graphically by design engineers for values
indicated by angles of heel above 7°.
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Figure 12-24. Curve of static stability.
Figure 3.4. Stability curve for large angles of heel. The metacenter is only useful for tiny heel angles
where all changes are linear in the angle. For larger angles one uses instead the ‘righting arm’ which
is the distance between the center of gravity and the vertical line through the actual center of buoyancy.
Instability sets in when the righting arm reaches zero, in the above plot for about 72ı heel. Courtesy
John Pike, Global Security.

The metacenter is only useful for tiny heel angles where all changes are linear in the angle.
For larger angles one uses instead the righting arm which is the horizontal distance jyG � yB j

between the center of gravity and the vertical line through the actual center of buoyancy. The
restoring moment is the product of the righting arm and the weight of the ship, and instability
sets in when the righting arm reaches zero for some non-vanishing angle of heel (see figure
3.4).

Case: Floating block

rG
rB

2b

2c

d

Floating block with height h,
draft d , width 2b, and length 2a
into the paper.

The simplest non-trivial case in which we may apply the stability criterion is that of a rect-
angular block of dimensions 2a, 2b and 2c in the three coordinate directions. Without loss
of generality we may assume that a > b. The center of the waterline area coincides with the
roll center and the origin of the coordinate system with the waterline at z D 0. The block is
assumed to be made from a uniform material with constant density �1 and floats in a liquid of
constant density �0.

In hydrostatic equilibrium we must have M D 4abd�0 D 8abc�1, or

�1

�0

D
d

2c
: (3.29)

The position of the center of gravity is zG D c � d and the center of buoyancy zB D �d=2.
Using (3.24) and V D 4abd , the position of the metacenter is

zM D �
d

2
C
b2

3d
: (3.30)

Rearranging the stability condition, zM > zG , it may be written as�
d

c
� 1

�2

> 1 �
2b2

3c2
: (3.31)

When the block dimensions obey a > b and b=c >
p
3=2 D 1:2247 : : :, the right-hand side

becomes negative and the inequality is always fulfilled. On the other hand, if b=c <
p
3=2
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there is a range of draft values around d D c (corresponding to �1=�0 D 1=2),

1 �

s
1 �

2

3

�
b

c

�2

<
d

c
< 1C

s
1 �

2

3

�
b

c

�2

; (3.32)

for which the block is unstable. If the draft lies in this interval the block will keel over and
come to rest in another orientation.r -
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Stability diagram for the floating
block.

For a cubic block we have a D b D c, there is always a range around density �1=�0 D 1=2

which cannot be stable. It takes quite a bit of labor to determine which other orientation has
smallest metacentric height (see problem 3.13).

Case: Ship with liquid cargo
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Tilted ship with an open con-
tainer filled with liquid.

Many ships carry liquid cargos, oil or water, or nearly liquid cargoes such as grain. When
the tanks are not completely filled this kind of cargo may strongly influence the stability of
the ship. The main effect of an open liquid surface inside the ship is the movement of real
liquid which shifts the center of mass in the same direction as the movement of displaced
water shifts the center of buoyancy. This competition between the two centers may directly
lead to instability because the movement of the real liquid inside the ship nearly cancels the
stabilizing movement of the displaced water. On top that the fairly slow sloshing of the real
liquid compared to the instantaneous movement of the displaced water can lead to dangerous
oscillations which may also capsize the ship.

For the case of a single open tank the calculation of the restoring moment must now
include the liquid cargo. Disregarding sloshing, a similar analysis as before shows that there
will be a horizontal change in the center of gravity from the movement of a wedge of real
liquid of density �1,

�yG D �˛
�1I1

M
D �˛

�1

�0

I1

V
(3.33)

where I1 is the second moment of the open liquid surface. The metacenter position now
becomes

zM D zB C
I

V
�
�1

�0

I1

V
: (3.34)

The effect of the moving liquid is to lower the metacentric height (or shorten the righting arm)
with possible destabilization as a result. The unavoidable inertial sloshing of the liquid may
further compromise the stability. The destabilizing effect of a liquid cargo is often counter-
acted by dividing the hold into a number of smaller compartments by means of bulkheads
along the ship’s principal roll axis.

Car ferry instability: In heavy weather or due to accidents, a car ferry may inadvertently get
a layer of water on the car deck. Since the car deck of a roll-on-roll-off ferry normally spans the
whole ferry, we have �1 D �0 and I1 � I , implying that zM � zB < zG , nearly independent
of the thickness h of the layer of water (as long as h is not too small). The inequality zM < zG

spells rapid disaster, as several accidents with car ferries have shown. Waterproof longitudinal
bulkheads on the car deck would stabilize the ferry, but are usually avoided because they would
hamper efficient loading and unloading of the cars.
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* Principal roll axes
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Tilt axis n forming an angle �
with the x-axis.

It has already been pointed out that the metacenter for absolute stability is determined by
the smallest second moment of the waterline area. To determine that we instead tilt the ship
around an axis, n D .cos�; sin�; 0/, forming an angle � with the x-axis. Since this configu-
ration is obtained by a simple rotation through � around the z-axis, the transverse coordinate
to be used in calculating the second moment becomes Qy D y cos��x sin� (see eq. (B.29b)),
and we find the moment,

QI D

Z
A

Qy2 dA D Iyy cos2 � C Ixx sin2 � � 2Ixy sin� cos�; (3.35)

where Ixx , Iyy and Ixy are the elements of the symmetric matrix,

IIIIIIIII D

�
Ixx Ixy

Iyx Iyy

�
D

Z
A

�
x2 xy

xy y2

�
dA; (3.36)

which is actually a two-dimensional tensor.
The extrema of QI .�/ are easily found by differentiation with respect to �. They are,

�1 D
1

2
arctan

2Ixy

Ixx � Iyy

; �2 D �1 C
�

2
; (3.37)

with the respective area moments I1 D QI .�1/ and I2 D QI .�2/. The two angles determine
orthogonal principal directions, 1 and 2, in the ship’s waterline area. The principal direction
with the smallest second order moment around the area centroid has the lowest metacentric
height. If I1 is the smallest moment and the actual roll axis forms an angle � with the 1-axis,
we can calculate the moment I for any other axis of roll forming an angle � with the x-axis
from

I D I1 cos2 � C I2 sin2 �: (3.38)

Since I1 < I2, it follows trivially that if the ship is stable for a tilt around the first principal
axis, it will be stable for a tilt around any axis.

Problems
3.1 A stone weighs 1000 N in air and 600 N when submerged in water. Calculate the volume and
average density of the stone.

3.2 A hydrometer (an instrument used to measure the density of a liquid) with massM D 4 g consists
of a roughly spherical glass container and a long thin cylindrical stem of radius a D 2 mm. The sphere
is weighed down so that the apparatus will float stably with the stem pointing vertically upwards and
crossing the fluid surface at some point. How much deeper will it float in alcohol with mass density
�1 D 0:78 g cm�3 than in oil with mass density �2 D 0:82 g cm�3? You may disregard the tiny density
of air.

3.3 A cylindrical wooden stick (density �1 D 0:65 g cm�3) floats in water (density �0 D 1 g cm�3).
The stick is loaded down with a lead weight (density �2 D 11 g cm�3) at one end such that it floats in a
vertical position with a fraction f D 1=10 of its length out of the water. (a) What is the ratio (M1=M2)
between the masses of the wooden stick and the lead weight? (b) How large a fraction of the stick can
be out of the water in hydrostatic equilibrium (disregarding questions of stability)? �

�
�
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�
�
�
�
�B

B
B
B
B
B
B
B
B
B

h

˛˛ d

b

Triangular ship of length L (into
the paper) floating with its peak
vertically downwards.

3.4 A ship of length L has a longitudinally invariant cross section in the shape of an isosceles triangle
with half opening angle ˛ and height h (see the margin figure). It is made from homogeneous material
of density �1 and floats in a liquid of density �0 > �1. (a) Determine the stability condition on the
mass ratio �1=�0 when the ship floats vertically with the peak downwards. (b) Determine the stability
condition on the mass ratio when the ship floats vertically with the peak upwards. (c) What is the
smallest opening angle that permits simultaneous stability in both directions?
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3.5 A right rotation cone has half opening angle ˛ and height h. It is made from a homogeneous
material of density �1 and floats in a liquid of density �0 > �1. (a) Determine the stability condition
on the mass ratio �1=�0 when the cone floats vertically with the peak downwards. (b) Determine the
stability condition on the mass ratio when the cone floats vertically with the peak upwards. (c) What is
the smallest opening angle that permits simultaneous stability in both directions?

3.6 A barotropic compressible fluid is in hydrostatic equilibrium with pressure p.z/ and density �.z/
in a constant external gravitational field with potential ˆ D g0z. A finite body having a ‘small’ grav-
itational field �ˆ.x/ is submerged in the fluid. (a) Show that the change in hydrostatic pressure to
lowest order of approximation is �p.x/ D ��.z/�ˆ.x/. (b) Show that for a spherically symmetric
body of radius a and mass M , the extra surface pressure is �p D g1a�.z/ where g1 D GM=a2 is the
magnitude of surface gravity, and that the buoyancy force is increased.

3.7 Two identical homogenous spheres of massM and radius a are situated a distanceD � a apart in
a barotropic fluid. Due to their field of gravity, the fluid will be denser near the spheres. There is no other
gravitational field present, the fluid density is �0 and the pressure is p0 in the absence of the spheres.
One may assume that the pressure corrections due to the spheres are small everywhere in comparison
with p0. (a) Show that the spheres will repel each other and calculate the magnitude of the force to
leading order in a=D. (b) Compare with the gravitational attraction between the spheres. (c) Under
which conditions will the total force between the spheres vanish?

* 3.8 Prove without assuming constant gravity that the hydrostatic moment of buoyancy equals (minus)
the moment of gravity of the displaced fluid (corollary to Archimedes’ law).

* 3.9 Assuming constant gravity, show that for a body not in buoyant equilibrium (i.e. for which the
total force F does not vanish), there is always a well-defined point x0 such that the total moment of
gravitational plus buoyant forces is given by M D x0 �F .

* 3.10 Let IIIIIIIII be a symmetric (2� 2) matrix. Show that the extrema of the corresponding quadratic form
n � IIIIIIIII � n D Ixxn

2
x C 2Ixynxny C Iyyn

2
y where n2

x C n
2
y D 1 are determined by the eigenvectors of IIIIIIIII

satisfying IIIIIIIII � n D �n.

* 3.11 Show that in a stable orientation the angular frequency of small oscillations around around a
principal tilt axis of a ship is

! D

r
Mg0

J
.zM � zG/

where J is the moment of inertia of the ship around this axis.

* 3.12 A ship has a waterline area which is a regular polygon with n � 3 edges. Show that the area
moment tensor (3.36) has Ixx D Iyy and Ixy D 0.

* 3.13 A homogeneous cubic block has density equal to half that of the liquid it floats on. Determine
the stability properties of the cube when it floats (a) with a horizontal face below the center, (b) with a
horizontal edge below the center, and (c) with a corner vertically below the center. Hint: problem 3.12
is handy for the last case, which you should be warned is quite difficult.

3.14 (a) Show that the work (or potential energy) necessary to tilt a ship through an angle ˛ to second
order in ˛ is

W D �
1

2
˛2M0g0.zG � zB /C

1

2
�0g0

Z
A0

z2dA (3.39)

where z D ˛y, and (b) show that this leads to the stability condition (3.28) .

3.15 Estimate the rise of the Charlière when a passenger of 76 kilograms jumps out.
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