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PREFACE
In the fall of 1979, Benny Lautrup and I set out to write
the ultimate Quantum Chromodynamics review. The report was

going to consist of four parts, one for each line of

From Ghoulies and Ghosties
and Long-leggety Beasties
and Things that go bump in the Night
Good Lord, deliver us!
Ghoulies are body-snatchers and grave robbers; they are those

revel in that which is revolting.

Benny had previoﬁsly described ghosties in a very nice set
of QCD lectures’ which we were going to use as the first part.
Green functions resemble long-leggety beasties; they, and the
general formalism of field theory, were to be devéloped in the
second part. The things that go bump in the night are clearly
the many unpleasant surprises of field theory; divergences, to-
gether with the reqularization and computation techniques, were
to be covered in the third part. Finally} good Lord deliver us,
we were going to actually calculate a few basic QCD integrals.

Well, while I was lecturing about the long-leggety beastieé,
Benny deserted me for lattice, and the ultimate QCD review was
-never written. That these lectures appear at all is largely due
to tireless work by Ejnar Gyldenkerne and to the criticisms of
the QCD study group at the Niels Bohr Institute. In writing
these lectures I have profited much from discussions with Benny

Lautrup, to whom I direct my thanks.

TB. Lautrup, "Of ghoulies and ghosties - an introduction to QCD", Basko Polje
1976 lectures, available as Niels Bohr Institute preprint NBI-EE-76-14,




1.  INTRODUCTION

What aré longﬁieggety beasties? i \

Long-leggety beasties are to be seen in any field theory or
statistical mechanics textbook; they are Feynman diagrams, Green
functions, S—-matrix elements, correlation functions, and so on.
They represent sums of probabilities (statistical mechanics) or

probability amplitudes (guantum mechanics).

There are two ways of visualizing long-leggety beasties*.

In the first picture the transition probabilty (amplitude)
is the sum of all ways in which particles can propagate, dis-
integrate and recombine before reaching a detector. Each possi-
bility is represented by a Feynman diagram, and the penalty as-
sociated with each choice is given by a Feynman integral.

In the second picture the transition probability (amplitude)
is a sum over all "paths" which the system can take between the
initial and the final state. The penalty to be paid for a parti-
cular path is assessed by a Boltzmann factor (phase factor). A
process is dominated by the classical paths, and the fluctua-
tion (quantum) effects arise from the heavily penalized devia-
tions away from the beaten path.

The two pictures are equivalent. The second (path integrals)
is a "Fourier" transform of the first (generating functionals).
In some contexts, such as in perturbative calculations, genera-
ting functionals are the practical choice. In others, such as
in identifying the dominant classical configurations, or in ex-
ploiting symmetries of a theory, the path integral formulation
might be more suggestive.

In these notes we put the usual logic of field theory text-
books on its head; we start with the Feynman rules and end with
Lagrangians. We find it easier to understand field theory this
way: for many particle physicists, diagrams are an important
tool for developing field-theoretic intuition.

Our attitude will be eclectic. We shall start by building

up generating functionals using vertices and propagators as

.I.

R. Herrick has in his poem "On Julia's Legs" suggested a third way: "Fain
would I kiss my Julia's dainty leg, which is as white and hairless as an

egg".



simple building blocks. Then we shall rewrite the results in
terms of path integrals, and from then on use either formalism,
whichever may be more expedient. Each particular physical theory

brings in its own set of ailments (ultraviolet divergences, ill-
defined path integrals, etc.), but the general formalism

should be good enough to describe anything under the sun, from
statistical mechanics to lattice gauge theories to continuum
theories to gravity and cosmology. The general formalism is
straightforward and intuitive. The real work starts only with
specialization to a particular theory; the dominant classical
configurations have to be identified, divergent sums (integrals)
reqgularized, etc.

We will apply the general formalism to QCD. Chapter 6 is a
rehash of Benny Lautrup's "Ghoulies and Ghosties". This con-
struction yields QCD Feynman rules and bare Ward identities.
In chapter 7 we feed these into the general formalism to ob-
tain the Ward identities for full Green functions. At this
point our patience runs out, and the proof of renormalizabil-
ity of QCD and the evaluation of the running coupling constants,
scaling violations and hadron masses are left as exercises
for the reader.

I have included much graphic gore in these notes. The rea-
son is that I fear that the perturbation theory is here to
stay; it will not go away even if the gauge theories do. At
least, if I ever have to do a perturbative calculation again,
I will know where to look up the diagrams. The reader is ad-
vised to skip over lengthy perturbative expansions - most par-
ticle physicists reach tenure without doing anything more
strenuous than one-loop Feynman integrals. The exercises are
another matter - we have relegated much of the conceptually
dull but technically important material to the exercises. They
are of three kinds: trivial, undoable, and wrong.

There is nothing in these lectures that is not well-known
and has not been published many other places. The only excuse
for writing them up is that they seem to resemble no other field
theory text on the market. It cannot be precluded that that

might be considered a virtue.



A. Land of Quefithe

Once (and it was not yesterday) there lived a very young
mole and a very young crow who, having heard of the fabulous
land called Quefithe, decided to visit it. Before starting out,
they went to the wise owl and asked what Quefithe was like.

Owl's description of Quefithe was quite confusing. He said
that in Quefithe everything was both up and down. If you knew
where you were, there was no way of knowing where you were go-
ing, and conversely, if you knew where you were going, there
was no way of knowing where you were. The young mole and the
young crow did not understand much, so they went instead to
the 0ld eagle and asked him what Quefithe was like. The eagle
shook his white-feathered head, sized them up with his fierce
eyes, and said: "Action gives automatically invariant descrip-
tion of Quefithe. You must study the unitary representations
of the Lorentz group". The mole and the crow waited for more,
but the eagle remained silent, his gaze fixed on an unfathom-
able string in the sky.

Clearly, if they were ever going to learn anything about
Quefithe, they had to see it for themselves. And that is what
they did.

After a few years had passed, the mole came back. He said
that Quefithe consisted of lots of tunnels. One entered a hole
and wandered through a maze, tunnels splitting and rejoining,
until one found the next hole and got out. Quefithe sounded
like a place only a mole would like, and nobody wanted to hear
more about it.

Not much later the crow landed, flapping its wings and
crowing excitedly. Quefithe was amazing, it said. The most
beautiful landscape with high mountains, perilous passes and
deep valleys. The valley floors were teeming with little moles
who were scurrying down rutted paths. The crow sounded like he
had taken too many bubble baths, and many who heard him shook
their heads. The frogs kept on croaking "it is not rigorous,
it is not rigorous!" The eagle said: "It is frightful nonsense.
One must study the unitary representations of the Lorentz group'.
But there was something about crow's enthusiasm that was in-

fectious.



The most puzzling thing about it all was that the mole's
description of Quefithe sounded nothing like the crow's de-
scription. Some even doubted that the mole and the crow had
ever gotten to the mythical land. Only the fox, who was by
nature very curious, kept running back and forth between the
mole and the crow and asking questions, until he was sure that

he understood them both. Nowadays, anybody can get to Quefithe
- even shaills.

two hermaphroditic snails.

——



2.  GENERATING FUNCTIONALS

A. Propagators and vertices
A particle {(an elementary excitation of a theory) is speci-
fied by a list of attributes; its name, its state (spin up, in-

going, ... ), its spacetime location, etc, To develop the form-

alism of field theory, one does not need any specific pért of

this information, so we hide it in a single collective index:

i={q:a:0hllrxu: cess }

q particle type

a colour

a spin -

u Minkowski indices

X, spacetime coordinates {(2.1)

A particle is an interesting particle only if it can do
something. The simplest thing it can do is to change its posi-
tion, its spin or some other attribute. The probability {ampli-
tude) that this happens is described by the (bare) propagators:

. {2.2)

Beyond this, many things can happen; a particle can split in-
to two, or three, or many other particles. The probability {(am-

plitude) that this happens is described by (bare) vertices:

Yijk = {’L\}
%
Yise = 1k
]
Yijkem = : (2.3)

A particle can also be created (or removed from the system).

This is described by a source (or a sink):

J = —x . 4 (2.4)

1 1




The concept of a particle makes sense only if its persist-
ence probability (2.2) is appreciable, i.e. if (2.3), the prob-

ability of its disintegration, is relatively small. In that

case the interactions (2.§T'may be trég£gd as small cofrecEions,

and the perturbation theory applies. If the "particle" de-

scribed by attributes (2.1) has a negligible persistence proba-
bility, the theory should be reformulated in terms of ancther
set of "elementary excitations™ which are a better approxima-
tion to the physical spectrum of the theory (an easy thing to
say}.

How many identical particles (particles with all the same
labels) can coexist? We shall consider two extremes: infinity
(bosons) or at most cone (fermions). Other more perverse possi-
bilities cannot be excluded. Assumption of additivity of proba-
bilities/amplitudes then implies that the bosonic propagators
and vertices must be symmetric under interchange of indices
ij=Aji’Yijk=wﬁik=Yikj="" (The argument is similar to the
one we shall use for fermions in chapter 4). For the time be-

ing, we assume that the vertices (2.3) are symmetric.

B. Green functions

A typilical experiment consists of a setup of the initial
particle configuration, followed by a measurement of the final
configuration. The theoretical prediction is expressed in terms

of the Green functions. For example, if we are considering an

experiment in which particles i and j interact, and the outcome
is particles k, &, and m, we draw the corresponding Green func-

tions

(2.5)

(remember that labels i, j, ... stand for all variables and in-
dices which specify a particle.)
A Green function is a sum of the probabilities (amplitudes)




associated with all possible ways in which the final state can

be reached. This is represented by an infinite sum of Feynman
diagrams:

il
H
4+
-+
+
+

Each Feynman diagram corresponds to a sum (or an integral). For
example, diagram

represents the probability that 1) a particle whose type, loca-
tion, etc. is described by the collective index a reached any
state labeled b; 2) that b splits into any two particles labeled
c and d, and so forth. The intermediate states are summed over

the entire range of possible index values

. ( ) h o _
a B b cdz AabechcfAdeYenggh b

e f,g

Here the summation signs imply sums over discrete indices (such
as spin) and integrals over continuous indices (such as position).
In the future we shall drop the explicit summation signs, and

use instead Einstein's repeated index convention; if an index

appears twice in a term, it is summed (integrated) over.

Exercise 2.B.1 Continuous indices. For QCD the collective index i
stands for:

xH spacetime coordinates,
p=1,2,...,4 Minkowski indices,
3=1,2,...,N gluon colours.




If the propagator is denoted by Dﬁ%(xry) and the three-
gluon vertex by Yl%g(x,y,Z); write down the complete ex-—
pression for the above self-energy diagram.

C. Dyson-Schwinger equations

A Green function consists of an infinity of Feynman dia-
grams. For a theory to be manageable, it is essential that
these diagrams can be generated systematically, in order of
their relative importance.

Consider (for simplicity) a theory with only cubic and
guartic verticeST. Take a Green function and follow a particle
into the blob. Two things can happen; either the particle sur-

vives o

or it interacts at least once:

More precisely, entering the diagram via leg 1, we either reach
leg 2, or leg 3, ... , or hit a three-vertex, or a four-vertex,
etc. Adding up all the possibilities, we end up with the Dyson-

Schwinger equations:

(2.6)

+Remember that the different particle types are covered by a single collect-

ive index, so QCD is also this type.




Iteration of the Dyson-Schwinger (DS) equations yields all
Feynman diagrams contributing to a given process, ordered by
the number of vertices {the order in perturbation theory).

A few words about the diagrammatic notation; a diagrammatic
equation like (2.6} contains precisely the same information as

its algebraic transcription

iy..k0 - Pl xRSy et A8

* AirYrsthsj..k£.+AirYrstuGutsj..k£ :

Indices can always be omitted, An internal line implies a sum-
mation/integration over the corresponding indices, and for ex-
ternal lines the eguivalent points on each diagram represent.
the same index in all terms of a diagrammatic equation. The ad-
vantages of the diagrammatic notation are obvious to all those
who prefer the comic strip editions of "The greatest story ever
told" to the unwieldy, fully indexed version'. Two of the prin-
cipal benefits are that it eliminates "dummy indices" and that
it does not force Feynman integrals into one-dimensional format
(both being means whereby identical integrals c¢an be made to
look totally different).

D. Combinatoric factors

For a three-leg Green function the DS equations yield

(disconnected) + 2 r——<<: + {more vertices) o

It is rather unnatural that an expansion of a three-leg Green

function does not start with the bare three-vertex, but twice

~I-C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, N.Y., 1980}).
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the bare three-vertex. This is easily fixed-up by including

compensating combinatorial factors into DS eguations:

To illustrate how the DS equations generate the perturba-
tion expansion, we expand a two-leg Green function up to one

loop:

.

The one-loop tadpole is given by

+ (more loops) =1§ —O +(more loops)

{2.8)

r|—

Substituting the tadpole into the above, we finally obtain the

self-enerqgy expansion-up'to two vertices with all the correct

combinatoric factors:

= — + _;.0-0-0+ %o—Q-+ %i + %-—OO-O+ (more loops)

(2.9}

This expansion lcoks like the usual ¢* + ¢* theory, but it is
not only that: the combinatoric factors are correct for any
theory with cubic and guartic vertices, such as QCD with its

full particle content.




Exercise 2.D.1

_ 15"_

Feynman diagrams in the collective index notation look

like diagrams for scalar field theories. Nevertheless, they do

contain the perturbative expansion for theories with
particle content. As an example, consider a QED-type
with an "in" particle (electron), and "out" particle
and a scalar particle {photon). The collective index
ranges over an array of three sub-collective indices
in
s—p— positron

a,
i=|a, out|=
u NN photon

Index a stands for the charged particle's position and spin,
and index p stands for all labels characterizing the neutral
particle. The "in" - "out" labels can be eliminated by taking
a to be an upper index for "in" particles, and a lower index
for "out" particles. Diagrammatically they are distinguished
by drawing arrows pointing away from upper indices and down

into lower indices: -

theory

+—4——~ clectron

Ag = a »pab
Yo - /{:

Show that if the sources and fields are replaced by J=

(n?, Ny e Ju), b= (Ya, wb, aY), the combinatoric factors in
(2.9) cancel, and the wvertices such as the electron-positron-
photon vertex have no combinatoric weight:

arbitrary

{positron)
(2.1} now

}_,h_*:zi.J_Al'J_= e +i.xnnnnx
2 2 1713773 , 2

1 £ L _., ayb

3 @g =1 ¥19%%1%5% = VY pra

Exercise 2.D.2 Write the Dyson-Schwinger equations for QED-like
theories. (We say "QED-like" because electrons are fermions.
We shall return to the fermion DS eguations later.)

Exercise 2.D.3 Determine the one-loop self-energy diagrams (2.9) for
QED-1like theories.

E. Generating functionals

The structure of the DS eguations is very general;

still,

at present we have to write them separately for two-leg Green

function,

three-leg Green function,

and so on. To state rela-

tions between Green functions in a more compact way we intro-

duce generating functionals. A generating functional is the

vacuum {legless} Green functicn for a theory with sources

1

Z[J]

m!Tili i Ji Ji
1t2++-im 1 2

R

B

(2.4):

eond,
i

m

(2.10)

. aaw ’
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(as‘Ji is a function which depends on both discrete and con-
tinuous indices, Z[J] is a functional). The coefficients in
this expansion are the usual Green functions. They can be re-

trieved from the generating functional by differentiation:

2

d

. FZ[J] P etc. (2.11)

e
&

The DS equations (2.7) can be written as

dJ_}Z[J]
(2.12)

The bare propagators and vertices can themselves be collect-

ed in a functional called the action:

S[e)=- 2 0,872, + 5 [0] (2.13)
— $iP5...0g
splel=z v, ot (2.14)

m legs

Now the Dyson-Schwinger equations can be stated in an even

more elegant way:

0= ('&%[%] + Ji)Z[J] ' {2.15)
where
ds [_Q]EGS[¢] .
d¢, 147 d¢i ¢=§L
J

The action {or the Lagrangian) is just another way of defining
the propagators and vertices for a given theory. Giving the
Lagrangian or listing the Feynman rules is one and the same
thing.



Exercise 2.E.l Functional derivatives. For continuous indices the
Kronecker deltas are replaced by Dirac deltas. For example,
check that in d-dimensions

dJ(x) _
dd(y)

5% (x-y)

is the correct definition of the derivative in (2.11).

Exercise 2.E.2 Feynman rules. Consider.cb3 theory given by the Lagrangian
density

£(x) =% 8u¢(x)8p¢(x) —% m2¢(x)2—3£! ix) 3

s = fa%xe (x) .

Read off the bare propagators and vertices (the Feynman rules)
from the Lagrangian.
d d d

ik T s, ag, " & s[¢]

Hint:

r

k =0

and the derivatives are in this case functional derivatives.

Exercise 2.E.3. Zero-dimensional field theory. Consider a ¢3 theory
defined by trivial Feynman rules

—e =1 , ,k\==g .

The value of a graph with k vertices is gk, and k-th order
contribution to Green function is basically the number of
contributing diagrams. More precisely, if

Jm
z2[7) =% glmlgk —
k,m ]'{ m!

the Green function

(m)
=X C
Gk a G
is the sum of combinatoric factors of all diagrams with m
legs and k vertices. Use the Dyson-Schwinger equation (2.7)
to show that for a free field theory

Gém)==(m—1)!! m even
=0 m odd .
Piagrammatically
G(2)=°—-4=1
M -9¢ + X+ = 3, etc.

The zero-dimensional field theory is about the only field
theory which is easily computable to all orders. We shall
use it often to illustrate in a concrete way various field-
theoretic relations.




F. Connected Green functions

Generating functionals are a powerful tool for stating re-
lations between Green functions., For example, we can use them

to derive relations between the full and the connected Green
functions:

Pick ocut a leg and fellow it into a full Green function.
This separates all associated Feynman diagrams into two parts
- the part that is connected to the initial leg, and the re-

mainder:

(2.16)

The generating functional for the connected Green functions
is defined in the same way as (2.10), the generating functional

for the full Green functions:

- 5y 1 ~flc)
wial=x= —¢G'7. ., J.J3 ...0
m=1 m. 1112..lm ll 12 1

622% = %%3 +§% j%%?. +§% j%%zk S (2.17)

The differential equation (2.16) is easily solved

2[7] = ¥L7] (2.18)

A disconnected Feynman diagram such as

represents a product of two independent processes; one could
take place on the moon, and the other in Aarhus. The physical-
ly interesting processes are described by the connected Green

functions. To obtain a systematic perturbation series which
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includes only the connected Feynman diagrams, we use the identi-

dwlJ] d
ar ‘v a (2.19)
1 1

7157 35~ Zl91 =

to rewrite the DS equations (2.15) in terms of the connected

Green functions:

0 - fans]

d¢ + dJ]+.J . {(2.20)

This is very elegant, but possibly not too transparent. To get
a feeling for these equations, take the ¢+ ¢* DS equations
(2.12) and substitute Z[J] = exp(W[J]). The result is, in the

functional notation

awlJ] _ 1 a*wlgl |, awlJl Awl[J]
=85 572 YJkIL(dJ i, "1, Taj, )

&

i

+ 1 ( WLIl |, 5 aWlJ] d2WlJ]
6 'ikim 47 as,aj, a7 a3,

(2.21)

L WlI] dwlJl dwlal
s, a1, A )

and in the longleggedy notation

"“@:o—-x +

b
ng
U

NiH

oy
+
e~

mlp

<o
%
1

After reaching a vertex, one continues into dlagrams that are

either mutually disconnected, or connected - that is the reason
that there are extra terms in the connected DS equations, com-

pared with the full Green functions equations (2.12).

more explicitly

1 aw[J] .
2T dJ(Z[J]f[J]) —( oK )f[J]

.



Exercise 2.F.1 Use DS egquations (2.21) to compute self-energy to one
loop. How does the result differ from (2.9)?

Exercise 2.F.2 Expand some full Green functions in terms of the con-
nected ones:

~D—~ =1 -O~+ 00} @

-GELIEE L
+'%+ (10 terms)

Hint: iterating (2.19) is probably the fastest way.

G. Free field theory

The connected generating functional for a free field theory
is trivial: there are no interactions, so the only connected

Feynman diagram is the propagator:

AMEE SR

=%x—-—x X (2.22)

For the free field theory (2.18) gives an explicit expression

for the generating functional:

e . (2.23)

H. One-particle irreducible Green functions

A one-particle irreducible (1PI) diagram cannot be cut into
two disconnected parts by cutting a single internal line. An
arbitrary connected diagram has in general a number of such lines.
The connected and the 1PI Green furictions can be related by our

usual diagrammatic trick:

Pick out a leg of a connected diagram. This pulls out a 1PI



piece, which ends in 0, 1, 2, ... lines whose cutting would dis-
connect the diagram. Those lines continue into further connected
pieces:

—D

i
6

=
I}

Y
Aij(Jj+-Tj+-ﬂjk¢k4-2 b b, +.o.ua) (2.24)

Here the "field" ¢ is defined by

. _awlal
—-—@ =g, =S (2.25)

i

We draw the 1PI Green functions as cross-hatched blobs

Unlike the full and the connected Green functions, the T1PI ones
do not have propagators on external legs - the external indices
always belong to a vertex of an 1PI diagram. This is indicated
by drawing dots on the edges of 1PI Green functions. Any con-
nected diagram belongs to one and only one term in the expansion
(2.24). For example, going into connected diagram

followed by connected bits

{)r

)

Multiplying both sides of (2.24) by the inverse of the bare
propagator we obtain
= -At 1
0 Ji+1“i+( A ‘+ﬂ)ij¢j+2 r

ijk¢k¢j-+"" .
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(For reasons which should soon be clear, it is convenient to

define the two-leg T as T..=-A+7,., where m . is the 1PI two-
ij iy "ij ij

leg Green function, or the proper self-energy.)

tion functional

b 0301 (2.26)
k m!

I'lel= =T

m=1 ~J°°

we can write (2.24), the relation between the connected and the

1PI Green functions, as:

drle¢] -
it d¢i !

0= —x+—@. (2.27)

This, together with (2.25}, can be summarized by a Legendre trans-

0=J

formation
Wlgl =T[¢l +¢.J, . (2.28)

(2.27) guarantees that W is independent of ¢, and (2.25) guaran-
tees that T is independent of J:

awla] _ driel _
T—O, T—O.

This is elegant, but how does it help us to get 1PI Green func-
tions? The point is that we are not interested in extracting 1PI
Green functions from the connected ones; what we need are the

1PI Dyson-Schwinger equations, i.e. the systematics of generating
1PI diagrams {and only 1PI diagrams). To achieve this, we must
first eliminate J-derivatives in favour of ¢-derivatives (cf.
(2.25)):

d _dpy d _dWlI] d
— = -
as, ~ aj, d¢. aJ.aJ, d¢,

i d¢] 1 ] ¢J

i

— = —~2<€ (2.29)
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This accounts for all self-eneryy insertions. The right~hand
side can be expressed in terms of 1PI Green functions by taking

a derivative of (2.27):

d_darle] _, ,d*WLJ] &2riel

0=6,, +== . .
15 47,d3, d%,dé,

- = 2.30)
ij de d¢i (

In order to understand this relation diagrammatically, we sepa-
rate out the bare propagator in (2.26)} by defining the "inter-
action" part of I:

Plol =~ 3¢,875¢.+ I lo] . (2.31)

Now (2.30) can be written as

2
awal _, o, il
a7, - Cia e @, St

13

WY = — 1V (2.32)

A =T [9)"

Diagrammatically W' is a complete propagator which sums up all

proper self-energies,

We can use (2.25) and (2.27) to eliminate source-dependent.
functionals in favour of field-dependent functionals, and (2.29)

to replace J-derivatives by ¢-derivatives, in order to rewrite

(2.20) as the 1PI Dyson-Schwinger equation:

dri¢l _ ds [ —y
ab a5, b+W [J]d¢] . (2.33)

i

The form of this equation is one of the reasons why the
generating functional for 1PI Green functicns is called the

effective action. If the derivatives are dropped, the effective

action reduces to the classical acticon. The role of the deriva-
tives is to generate loops, i.e. quantum corrections (or sta-

tistical fluctuations). We shall return to this in our discussion
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of path integrals.

DS equations (2.33) are again so elegant that one is proba-
bly at a loss as to what to do with them. To get a feeling for
their utility, we write them out for the ¢3 + ¢ example (2.21):

—p -- 40 - . 1 9,

o) —

+1 —-(::E%Q + L _152%§Ei%§
2 6
arl¢] _ _.-1 1 1 L d*wlJ]
dp, - Aij¢j * 2Yijk¢k¢j * BYijkz%q’]{?j * 2Yijk2¢2 dJdej
pyy GWLIL L &*W[7) @*W[J} a%Wlg] _da'rle]
i3k A5, a3, $Viske AJ.AJ A3, 7 47,45 T 4B db_

{2.34)

Such equations are used iteratively. For example, to obtain the

DS equation for the proper self-energy+, take a derivative of

(2.34):

Exercise 2.H.1 Use (2.32) to show that

-di——%— - —@—W— (2.36)
i i )

This is a useful identity for deriving relations such as (2.34)
and (2.35).

Exercise 2.H.2 Take successive derivatives of (2.30) to show that the
connected Green functions can be expanded in terms of 1PI Green
functions as

Here the slash stands for inverse propagator; diagrammatically it is a two-
leg vertex. Other vertices are denoted by dots, and a line connecting two
vertices is always a propagator, so that ﬂi;’ﬁ‘jk= ifrok = lemmk =5, .
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Exercise 2.H.3 Jens J. Jensen, a serious young student of field theory,

is getting set to compute the two-loop QCD beta-function. He
has drawn up a list of gluon corrections to the three-glucn
vertex. Use the 1PI Dyson-Schwinger equations to check this
list and make Jens aware of 7 {seven) errors before he rushes
his results to a respectable physics journal:

1 T TR
2 % T2 T2
PR B é\
2 2 2
5
T LR R
o1 . o ,‘E)\
= 1 /AQ 3 pé\
+2£\ T3 3
1 1 1 /‘ZE\\
+—2~A +-§ A +-§
S A A A
2 2 2
S N N N
1 1
7 9)\ *a )CCK 2 /Qﬁ\
1 i 1
+59i\ 2 /‘—'i 2 A
i 1 i
+EA i) A +'§A\
1 1 1
+5'é\ +3 /il +5/é\
+ A + A + A
I. Vacuum bubbles

The Green function formalism we have developed so far is

tailored to scattering problems; all the Green functions we
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have considered had external legs. Processes without external
particles (the corresponding legless diagrams. are called vacuum
bubbles) are ‘also physically interesting. For example, if a
particle is propagating through a hot; denseASOup+, a particle-
particle scattering experiment would be a hopeless and messy

undertaking. Such systems are probed by varying bulk parameters,

such as temperature. Indeed, the generating functionals do not

depend only on the single-particle sources J;, but on all inter-
action parameters

Z[J] _Z[J,Y 1 . (2.38)

'Yljk'Ylij""

Any of these, or any combination of these, can be varied. Dia-
grammatically we view an n-vertex as an n-particle source. For

example, if we rescale Wﬁj.J{agYij and vary infinitesimally

. 4
the coupling constant g, we "touch" each Vi .k vertex in a
Green function:
d da d
z[J]-— % @ =Ly zl3] . (2.39)
it K's3..x &3 00 &, &,

We can use such generalizations of the Dyson-Schwinger
equations (from varying single-particle sources J; to varying
many-particle sources Yiﬁg.ﬂ) to compute hosts of physically
significant quantities. One such quantity is the expectation
value of the action. We rescale the entire action (2.13)

1 I PO S PO I
g Slol=-5¢ 185595 31E Yigxhibid ¥ oeee o (2.40)

and vary B (depending on the context, K could be the Planck

ceonstant, coupling constant, inverse temperature or something

else):
E-———Z{J] 1( %—. BL .
-_1gldly |
= ﬁs[dJ]z[J] . (2.41)

minestxone, to be specific,
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To normalize the expectation value properly, we divide by Z[J]:

Slel> =Z[1—J] S[%]Z[J] . (2.42)

That this is really an expectation value will perhaps be easier

to grasp in the path-integral formalism, cf. (3.11) in the next

chapter. Anyway, we can use (2.19) to rewrite the above in terms

of connected Green functions:

i i
e &
..l % +LI b +i'. /
2 31 4! &5 %

(2.43)

(the diagrammatic expansion is for the ¢*® + ¢* theories). Even

better, we can use (2.25) and (2.29) together with the identity

(follows from (2.28))

aWigl _ arie]
T & (2.44)

to relate the {S[¢]> to the effective action:

(2.45)

The above expansions can be used to compute the perturbative
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expansions for the connected and 1PI. vacuum bubbles (see exer-
cises). Their physical significance will become clearer in the

next chapter.

Exercise 2,I.1 Loop expansion. Show that with action (2.40) the ex-
pansion in powers of B is the loop expansion, i.e. that each
loop 'in a Feynman diagram carries a factor A. Hence the loop
expansion offers a systematic way of computing quantum correc-
tions {or thermal fluctuations in statisti¢al mechanics). Hint:
eagh propagator carries a factor K, while each vertex carries
h ~.

Exercise 2.I.2 Free energy W[0]. Compute
1 Sii gnmA | 1 1 1
FHl-5F 5 © 500 500 +...

for ¢3+¢l+ theory. Hint: use (2.43) and the DS equations (2.21).

Exercise 2.I1.3 Gibbs free energy I'[0]. Compute

Lrg-diimi by 10 )

i B - 5D+ Qﬁb ﬁé? Eég}h

+ - {2.486)

for ¢|3+¢li theory. Hint: use (2.45) and the DS equations {2.34).
Note that the one-particle reducible diagrams from W[0] are in-
deed missing. The vacuum-bubble combinatoric weights are not al-
ways obviocus - equation (2.45) provides the fastest way of com-
puting them, as far as I know.

Exercise 2,1.4 Show that for the zero-dimensional ¢3 theory (continua-
tion of exercise 2.E.3)

¢ o m-143g Ly
dg

Hint: use (2.39) together with the Dyson-Schwinger egquations
(2.12).
Show also that (1)

¢ '=2¢

2
Hence all Green functions can be computed from ZEEG(O), the

vacuum bubbles. Show that these satisfy

(2)

d 5 .9_4d4 .3 2d)
Yag” {3 +793g dg "4 93gz/” -
Compute the first few terms of the expansion in powers of g.
The complete solution is given in exercise 3.C.1.




Exercise

2.I.5 Zero-dimensional field theory. Show that the connected

Exercise

vacuum bubbles W=W[C] satisfy

d._ 2[5 9 aw 3 fd*w _ faw\*\]
93 E;_g[12+4gdg+4g(dg2+ dg :

Use this equation to derive recursion relations for connected
m-leg Green functions. Compute the exact propagator D= cc (2)

25 4 390 ¢
= + + == + ==L + .
b=1+g 3 g 35 g .o

N

[ag

and check that this agrees wit

D2=%-0-+%—?— =1,
D, =3-P-+3-O- ;00
1o 120113
i 1L 1 @ 189 s
Hint: establish first that .
%W[J]=%+J+%(Jc%+ 3g§—g)W[J] .

That relates GS{M} to the vacuum bubbles W.

2.1.6 Zero-dimensional ¢3 theory. Combine the DS eguation

Exercise

(2.34) and the previous results to relate 1PI Green functiomns
with different numbers of legs:

- d _9_ gf .d d
rio1=3- 0+ F5S + 392 )rel

and show that the proper tadpoles J==—T(l) satisfy

__9.9(, 3 d\=>
J = +§'(1 EQE)J

[T PRI ST N

1

s |
e}
|

wj

e}

I

Compute the proper self-energy

ﬂ=% g +g* 35 &

and the proper three-vertex T Ef(s)

T=g+g°+5g°+35g7 +....

A A
YA BT Y WL

Compare m with the preceeding exercise, D= (1 - )L,

2.1.7 Check (2.44).

ey b



generating
i functionals

Full Green functions:

| .
i PN
Connected Green functions: Gj(;) K = _%‘.‘k wlial= %
.- 1" : Z

1PI Green functions:

Full <+ connected relation:

1

KN _awlJ]
Z1J] dJi

z[J]

4
ay. 4,
1

1

Connected +» 1PI relations:

_dwlJ] _ dr'[¢]
¢; = @, 0 -

. 4 -

1
2

v

d _ awlgl d _
a, T Ta, &%, —<-—€ -

Dyson~Schwinger equations:

ds| d _
full (55: 5] + Ji)Z[J] =0 ,
connected %[dggﬂ + %:I +Ji—0 ’
arf¢l _ dS[ ¢ g_]
1PI 3, @, ¢'+MF[J]d¢

By now we are thoroughly fed up with longleggedy beasties, and
the diagrammatic manipulations:
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TYING THE NUDO DEL. DIABLO
DEVIL'S KNOT

(CONTWUED NEXT WEEK)

Let us now see whether the crow's vision of Quefithe is any more

fun than the mole's wversion.



Critics say:

... Seen in [Cvitanovic's] framework, field theory books
are like every other form in the universe: they are
generated by changing intervals of tension between a
dominant system and a competing system in a space-time
continuum that is dependent on the process of competition
between these two stabilities and not on any General
Concept of Space and Time .., [Cvitanovic's] method thus
valorizes the microcosm which illuminates macrecesmic form
by the high tendency of microcosmic patterns to repeat
themselves and so greatly limit structural variagion in
the macrocosm ... But on another level, as in the sagas,
the Song of Rolland, the I1liad, the Odyssey, the
Nibelungenlied, the Aeneid and Beowulf, the real dynamic
focus of the book is thepower of anger,

Patricia Harris Stablein

A distinguished reviewer says:

IT IS NOT
EVEN WRONG

- v——- RS
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