
Georgia Tech PHYS 6124 Fall 2011

Mathematical Methods of Physics I
Instructor: Predrag Cvitanović

Homework #11 due Tuesday November 15 2011, in class

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

[All problems in this set are from Goldbart]

Problem 5) More applications of Cauchy’s theorem (Ablowitz & Fokas, p. 90-
91, p. 231-233)

(a) We wish to evaluate the Fresnel integral I =
∫ ∞

0 exp
(
ix2) dx. To do this,

consider the contour integral IR =
∫

C(R) exp
(
iz2) dz, where C(R) is the

closed circular sector in the upper half-plane with boundary points 0, R
and R exp(iπ/4). Show that IR = 0 and that limR→∞

∫
C1(R) exp

(
iz2) dz =

0, where C1(R) is the contour integral along the circular sector from R to
R exp(iπ/4). [Hint: use sin x ≥ (2x/π) on 0 ≤ x ≤ π/2.] Then, by
breaking up the contour C(R) into three components, deduce that

lim
R→∞

(∫ R

0
exp

(
ix2) dx− eiπ/4

∫ R

0
exp

(
− r2) dr

)
= 0

and, from the well-known result of real integration
∫ ∞

0 exp
(
− x2) dx =√

π/2, deduce that I = eiπ/4√π/2.
(b) (optional) Consider the integral I =

∫ ∞
−∞

(
x2 + 1

)−1dx. Evaluate this in-

tegral by considering
∫

C(R)
(
z2 + 1

)−1dz, where C(R) is the closed semi-
circle in the upper half-plane with end-points at (−R, 0) and (R, 0) to-
gether with the corresponding part of the x axis. [Hint: express the inte-
grand in terms of partial fractions, and show that the contribution from
the semicircle vanishes as R → ∞.] Verify your answer by ordinary inte-
gration with real variables.

.

Optional problems

Problem 1) Complex integration (Needham, p. 420; Carrier et al., p. 36-37)
(a) Write down the values of

∮
C(1/z) dz for each of the following choices of

C:
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(i) |z| = 1, (ii) |z− 2| = 1, (iii) |z− 1| = 2.
(optional) Then confirm the answers the hard way, using parametric eval-
uation.

(b) Evaluate parametrically the integral of 1/z around the square with ver-
tices ±1± i.

(c) Confirm by parametric evaluation that the integral of zm around an origin
centered circle vanishes, except when the integer m = −1.

(d) Evaluate
∫ 3−2i

1+i dz sin z in two ways: (i) via the fundamental theorem of
(complex) calculus, and (ii) (optional) by choosing any path between the
end-points and using real integrals.

Problem 2) More complex integration (Ablowitz & Fokas, p. 79-81)
(a) By using parametric integration, evaluate

∮
C f (z) dz, where C is the unit

circle enclosing the origin and f (z) is given by: (i) z2, (ii) z̄2, (iii) (z +
1)/z2.

(b) Evaluate
∮

C f (z) dz, where C is the unit circle enclosing the origin and
f (z) is
(i) 1 + 2z + z2, (ii) 1/

(
z− (1/2)

)2, (iii) 1/z̄, (iv) exp z̄.
(c) Let C be the square with vertices ±1± i. Evaluate

∮
C f (z) dz, where f (z)

is
(i) sin z, (ii) 1/(2z + 1), (iii) z̄, (iv) Re z.

(d) (optional) Let C be an arc of a circle of radius R (with R > 1) of angle
π/3. Show that∣∣∣∣∫C

dz
z3 + 1

∣∣∣∣ ≤ π

3

(
R

R3 − 1

)
,

and hence deduce that limR→∞
∫

C dz/(z3 + 1) = 0.

Problem 3) Cauchy’s theorem via Green’s theorem in the plane
Express the integral

∮
C dz f (z) of the analytic function f = u + iv around

the simple contour C in parametric form, apply the two-dimensional version of
Gauss’ theorem (a.k.a. Green’s theorem in the plane), and invoke the Cauchy-
Riemann conditions. Hence establish Cauchy’s theorem

∮
C dz f (z) = 0.

4) Applications of Cauchy’s theorem (Ablowitz & Fokas, p. 90-91)
(a) Evaluate

∮
C f (z) dz, where C is the unit circle centered at the origin and

f (z) is
(i) exp iz, (ii) exp z2, (iii) 1/

(
2z− 1

)
, (iv) 1/

(
z2 − 4

)
, (v) 1/

(
2z2 +

1
)
.

(b) By using partial fractions, evaluate
∮

C f (z) dz, where C is the unit circle
centered at the origin and f (z) is given by
(i) 1/z

(
z− 2

)
, (ii) z/

(
9z2 − 1

)
, (iii) 1/z

(
2z + 1

)(
z− 2

)
.

(c) Evaluate
∮

C dz z−1(z−π)−1 exp(iz) for the following origin-centered con-
tours:

(i) C is the boundary of the annulus between circles of radius 1 and 3.
(ii) C is the boundary of the annulus between circles of radius 1 and 4.
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(iii) C is the circle of radius R where R > π.
(iv) C is the circle of radius R where R < π.

(d) (optional) Discuss how to evaluate
∮

dz z−2 exp
(
z2), where C is a simple

closed curved enclosing the origin.

6) Nyquist’s stability criterion (Needham, p. 371)
Let Q(t) be a function of time obeying the linear ordinary differential equa-

tion cnQ(n) + cn−1Q(n−1) + · · ·+ c1Q′ + c0Q = 0. with constant complex co-
efficients {c0, . . . , cn}. Recall that one solves this equation by taking a linear
combination of the special solutions of the form exp sjt.

(a) Show that the sj are roots of the polynomial equation
F(s) ≡ cnsn + cn−1sn−1 + · · ·+ c1s + c0 = 0.

(b) As an aside, consider the case in which the coefficients {c0, . . . , cn} are
real. Explain why, even though the roots of F(s) may be complex, a real
solution may be obtained.

(c) Now revert to the general case, in which the coefficients {c0, . . . , cn} may
be complex. All solutions Q(t) will decay with time provides that Re sj <
0 for all roots. Thus, the issue of determining whether all solutions de-
cay reduces to the issue of whether all roots of F(s) lie in the half-plane
Re s < 0 (i.e., whether the polynomial is a Hurwitz polynomial). Let R
be the net rotation of the polynomial F(s) as s moves along the imagi-
nary axis from bottom to top. Explain the following result, known as the
Nyquist stability criterion: the general solution of the ordinary differen-
tial equation will decay away if and only if R = nπ.

(d) Consider the ordinary differential equation d3Q/dt3 = Q. Find R for
this equation. Does it satisfy the Nyquist stability criterion? Confirm
your conclusion by explicitly solving the ordinary differential equation.

7) Area of an epicycloid (Needham, p. 421)
Hold a coin (of radius A) down on a flat surface and roll another coin (of

radius B) round it. The curve traced by a point on the rim of the rolling coin is
called an epicycloid, and closes if A = nB, where n is an integer.

(a) With the centre of the fixed coin at the origin, show that the epicycloid can
be represented parametrically as z(t) = B [(n + 1) exp(it)− exp i(n + 1)t].

(b) By evaluating parametrically the integral for the area enclosed, i.e., (1/2i)
∮

C z̄ dz,
show that the area of the epicycloid is given by πB2(n + 1)(n + 2).

8) Quaternions (Needham, p. 290-291 & 328-329)
Sir William Rowan Hamilton discovered the following four-dimensional

generalization of complex numbers, called the quaternions, in which four-
component entities can be multiplied and divided.

• Introduce (as analogues of the unit basis “vectors” 1 and i of complex
numbers) the four unit basis “vectors” {1, I, J, K}.

• Express a general quaternion V via the four unit basis “vectors” and their
real coefficients {v, v1, v2, v3} as V = v1 + v1I + v2J + v3K.
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• Endow the basis “vectors” with the following (revolutionary—the year
was 1843!) non-commutative multiplication structure:

1 I J K
1 1 I J K
I I −1 K −J
J J −K −1 I
K K J −I −1

,

where the entries correspond to the column label pre-multiplied by the
row label, e.g., IJ = −JI = K.

Sometimes we suppress the identity factor (1), writing v for the scalar part v1,
and we write the remaining (vector) part (v1I + v2J + v3K) as V. Thus we have
V = v + V.

(a) Show that VW = (vw − V · W) + (vW + wV + V × W), where the dot
and cross denote the usual scalar and vector products of three-dimensional
vector algebra.

(b) The conjugate V̄ of a quaternion V is given by V = v−V. The length |V|
of a quaternion V is defined via |V|2 ≡ V̄V . Show that |V|2 = |V̄ |2 =
v2 + V ·V.

(c) Show that VW = W̄ V̄ and that |VW| = |V| |W|.
(d) V is a pure quaternion if v = 0. V is a unit quaternion if |V| = 1. Show

that W is a pure unit quaternion if and only if W2 = −1.
There are interesting and useful connections between three-dimensional rota-
tions, spinors and quaternions; see, e.g., Needham, p. 290 et seq.
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