Georgia Tech PHYS 6124 Fall 2011 Mathematical Methods of Physics I

Instructor: Predrag Cvitanović

Homework #11

due Tuesday November 15 2011, in class

- == show all your work for maximum credit,
- == put labels, title, legends on any graphs
- == acknowledge study group member, if collective effort

[All problems in this set are from Goldbart]

Problem 5) More applications of Cauchy's theorem (Ablowitz & Fokas, p. 90-91, p. 231-233)

(a) We wish to evaluate the Fresnel integral $I = \int_0^\infty \exp(ix^2) dx$. To do this, consider the contour integral $I_R = \int_{C(R)} \exp(iz^2) dz$, where C(R) is the closed circular sector in the upper half-plane with boundary points 0, R and $R \exp(i\pi/4)$. Show that $I_R = 0$ and that $\lim_{R\to\infty} \int_{C_1(R)} \exp(iz^2) dz = 0$, where $C_1(R)$ is the contour integral along the circular sector from R to $R \exp(i\pi/4)$. [Hint: use $\sin x \ge (2x/\pi)$ on $0 \le x \le \pi/2$.] Then, by breaking up the contour C(R) into three components, deduce that

$$\lim_{R \to \infty} \left(\int_0^R \exp\left(ix^2\right) dx - e^{i\pi/4} \int_0^R \exp\left(-r^2\right) dr \right) = 0$$

and, from the well-known result of real integration $\int_0^\infty \exp(-x^2) dx = \sqrt{\pi}/2$, deduce that $I = e^{i\pi/4}\sqrt{\pi}/2$.

(b) (optional) Consider the integral $I = \int_{-\infty}^{\infty} (x^2 + 1)^{-1} dx$. Evaluate this integral by considering $\int_{C(R)} (z^2 + 1)^{-1} dz$, where C(R) is the closed semicircle in the upper half-plane with end-points at (-R, 0) and (R, 0) together with the corresponding part of the *x* axis. [Hint: express the integrand in terms of partial fractions, and show that the contribution from the semicircle vanishes as $R \to \infty$.] Verify your answer by ordinary integration with real variables.

Optional problems

- Problem 1) Complex integration (Needham, p. 420; Carrier et al., p. 36-37)
 - (a) Write down the values of $\oint_C (1/z) dz$ for each of the following choices of *C*:

(i) |z| = 1, (ii) |z - 2| = 1, (iii) |z - 1| = 2.

(optional) Then confirm the answers the hard way, using parametric evaluation.

- (b) Evaluate parametrically the integral of 1/z around the square with vertices $\pm 1 \pm i$.
- (c) Confirm by parametric evaluation that the integral of z^m around an origin centered circle vanishes, except when the integer m = -1.
- (d) Evaluate $\int_{1+i}^{3-2i} dz \sin z$ in two ways: (i) via the fundamental theorem of (complex) calculus, and (ii) **(optional)** by choosing any path between the end-points and using real integrals.

Problem 2) More complex integration (Ablowitz & Fokas, p. 79-81)

- (a) By using parametric integration, evaluate $\oint_C f(z) dz$, where C is the unit circle enclosing the origin and f(z) is given by: (i) z^2 , (ii) \bar{z}^2 , (iii) $(z + z^2)$ $1)/z^{2}$.
- (b) Evaluate $\oint_C f(z) dz$, where *C* is the unit circle enclosing the origin and f(z) is

(i) $1 + 2z + z^2$, (ii) $1/(z - (1/2))^2$, (iii) $1/\overline{z}$, (iv) $\exp \overline{z}$. (c) Let *C* be the square with vertices $\pm 1 \pm i$. Evaluate $\oint_C f(z) dz$, where f(z)is

(i) $\sin z$, (ii) 1/(2z+1), (iii) \bar{z} , (iv) Re z.

(d) (optional) Let *C* be an arc of a circle of radius *R* (with R > 1) of angle $\pi/3$. Show that

$$\left| \int_C \frac{dz}{z^3 + 1} \right| \le \frac{\pi}{3} \left(\frac{R}{R^3 - 1} \right),$$

and hence deduce that $\lim_{R\to\infty} \int_C dz/(z^3+1) = 0$.

Problem 3) Cauchy's theorem via Green's theorem in the plane

Express the integral $\oint_C dz f(z)$ of the analytic function f = u + iv around the simple contour C in parametric form, apply the two-dimensional version of Gauss' theorem (a.k.a. Green's theorem in the plane), and invoke the Cauchy-Riemann conditions. Hence establish Cauchy's theorem $\oint_C dz f(z) = 0$.

4) Applications of Cauchy's theorem (Ablowitz & Fokas, p. 90-91)

(a) Evaluate $\oint_C f(z) dz$, where *C* is the unit circle centered at the origin and f(z) is

(i) exp iz, (ii) exp z^2 , (iii) 1/(2z-1), (iv) $1/(z^2-4)$, (v) $1/(2z^2+1)$ 1).

(b) By using partial fractions, evaluate $\oint_C f(z) dz$, where *C* is the unit circle centered at the origin and f(z) is given by (i) 1/z(z-2), (ii) $z/(9z^2-1)$, (iii) 1/z(2z+1)(z-2).

(c) Evaluate $\oint_C dz \, z^{-1} (z - \pi)^{-1} \exp(iz)$ for the following origin-centered contours:

(i) C is the boundary of the annulus between circles of radius 1 and 3.

(ii) *C* is the boundary of the annulus between circles of radius 1 and 4.

- (iii) *C* is the circle of radius *R* where $R > \pi$.
- (iv) *C* is the circle of radius *R* where $R < \pi$.
- (d) **(optional)** Discuss how to evaluate $\oint dz z^{-2} \exp(z^2)$, where *C* is a simple closed curved enclosing the origin.

6) Nyquist's stability criterion (Needham, p. 371)

Let Q(t) be a function of time obeying the linear ordinary differential equation $c_n Q^{(n)} + c_{n-1}Q^{(n-1)} + \cdots + c_1Q' + c_0Q = 0$. with constant complex coefficients $\{c_0, \ldots, c_n\}$. Recall that one solves this equation by taking a linear combination of the special solutions of the form $\exp s_j t$.

(a) Show that the s_i are roots of the polynomial equation

 $F(s) \equiv c_n s^n + c_{n-1} s^{n-1} + \dots + c_1 s + c_0 = 0.$

- (b) As an aside, consider the case in which the coefficients $\{c_0, \ldots, c_n\}$ are real. Explain why, even though the roots of F(s) may be complex, a real solution may be obtained.
- (c) Now revert to the general case, in which the coefficients $\{c_0, \ldots, c_n\}$ may be complex. All solutions Q(t) will decay with time provides that $\operatorname{Re} s_j < 0$ for all roots. Thus, the issue of determining whether all solutions decay reduces to the issue of whether all roots of F(s) lie in the half-plane $\operatorname{Re} s < 0$ (*i.e.*, whether the polynomial is a *Hurwitz polynomial*). Let \mathcal{R} be the net rotation of the polynomial F(s) as *s* moves along the imaginary axis from bottom to top. Explain the following result, known as the Nyquist stability criterion: the general solution of the ordinary differential equation will decay away if and only if $\mathcal{R} = n\pi$.
- (d) Consider the ordinary differential equation $d^3Q/dt^3 = Q$. Find \mathcal{R} for this equation. Does it satisfy the Nyquist stability criterion? Confirm your conclusion by explicitly solving the ordinary differential equation.

7) Area of an epicycloid (Needham, p. 421)

Hold a coin (of radius *A*) down on a flat surface and roll another coin (of radius *B*) round it. The curve traced by a point on the rim of the rolling coin is called an *epicycloid*, and closes if A = nB, where *n* is an integer.

- (a) With the centre of the fixed coin at the origin, show that the epicycloid can be represented parametrically as $z(t) = B[(n+1)\exp(it) \exp(i(n+1)t)]$.
- (b) By evaluating parametrically the integral for the area enclosed, *i.e.*, $(1/2i) \oint_C \bar{z} dz$, show that the area of the epicycloid is given by $\pi B^2(n+1)(n+2)$.

8) Quaternions (Needham, p. 290-291 & 328-329)

Sir William Rowan Hamilton discovered the following four-dimensional generalization of complex numbers, called the quaternions, in which four-component entities can be multiplied and divided.

- Introduce (as analogues of the unit basis "vectors" 1 and *i* of complex numbers) the four unit basis "vectors" {1, I, J, K}.
- Express a general quaternion \mathcal{V} via the four unit basis "vectors" and their real coefficients $\{v, v_1, v_2, v_3\}$ as $\mathcal{V} = v\mathbf{1} + v_1\mathbf{I} + v_2\mathbf{J} + v_3\mathbf{K}$.

• Endow the basis "vectors" with the following (revolutionary—the year was 1843!) non-commutative multiplication structure:

	1	1 I	J	K
1	/ 1	1 I	J	K
I]	[-1	K	-J
J	J	ј —К	-1	I '
Κ	ŀ	K J	-I	-1 /

where the entries correspond to the column label pre-multiplied by the row label, e.g., IJ = -JI = K.

Sometimes we suppress the identity factor (1), writing v for the scalar part v1, and we write the remaining (vector) part (v_1 I + v_2 J + v_3 K) as V. Thus we have $\mathcal{V} = v + V$.

- (a) Show that $\mathcal{VW} = (vw \mathbf{V} \cdot \mathbf{W}) + (v\mathbf{W} + w\mathbf{V} + \mathbf{V} \times \mathbf{W})$, where the dot and cross denote the usual scalar and vector products of three-dimensional vector algebra.
- (b) The conjugate $\bar{\mathcal{V}}$ of a quaternion \mathcal{V} is given by $\mathcal{V} = v \mathbf{V}$. The length $|\mathcal{V}|$ of a quaternion \mathcal{V} is defined via $|\mathcal{V}|^2 \equiv \bar{\mathcal{V}}\mathcal{V}$. Show that $|\mathcal{V}|^2 = |\bar{\mathcal{V}}|^2 = v^2 + \mathbf{V} \cdot \mathbf{V}$.
- (c) Show that $\overline{\mathcal{V}\mathcal{W}} = \overline{\mathcal{W}}\overline{\mathcal{V}}$ and that $|\mathcal{V}\mathcal{W}| = |\mathcal{V}||\mathcal{W}|$.
- (d) \mathcal{V} is a *pure* quaternion if v = 0. \mathcal{V} is a *unit* quaternion if $|\mathcal{V}| = 1$. Show that \mathcal{W} is a pure unit quaternion if and only if $\mathcal{W}^2 = -1$.

There are interesting and useful connections between three-dimensional rotations, spinors and quaternions; see, *e.g.*, **Needham**, p. 290 *et seq*.