Georgia Tech PHYS 6124 Fall 2011
Mathematical Methods of Physics I

Instructor: Predrag Cvitanovié

Homework #12 due Tuesday November 22 2011, in class

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

[All problems in this set are from Goldbart]

Problem 3) Cauchy’s integral formula (Needham, p. 446)
(@) (i) If C is the unit circle, show that

2 dt B idz
/0 1—2acost+a? f; (z—a)(az—1)"

(if) Use Cauchy’s integral formula to deduce that if 0 < a < 1 then the
above integrals are given by 27t/ (1 — a?).

(b) Let f(z) be holomorphic on and inside a circle K defined by |z —a| = p,
and let M be the maximum value of |f(z)| on K.

(i) Use Cauchy’s integral formula for derivatives to show that | f(") (a)| <
n!M/p".

(i) Suppose that |f(z)| < M for all z, where M is some positive con-
stant. By choosing # = 1 in the above inequality, derive Liouville’s
theorem.

(iii) (optional) Suppose that |f(z)| < M|z"| for all z, where 1 is some
positive integer. Show that f("*1)(z) = 0, and hence deduce that
f(z) must be a polynomial whose degree does not exceed n.

(c) (optional)
(i) Show that if C is any simple loop around the origin then

1 1+z)",  [(n
27711?4(.: o) dz—(r).

(if) By taking C to be the unit circle, deduce that (2: ) < 4"

Problem 6-2) Evaluation of definite integrals (Ablowitz & Fokas, p. 235-237)
(a) Evaluate the following real integrals via residues (for a2, b%,k > 0):

()/ ()/ dx coskx (ii )/ dx x sinx
x6—|—1 (x% 4 a2) (x2 + b2) x24a2




(i) / dx x3 sinkx v /2” de vi) /2” de
Coxt gt 0 14cos?6 o (5—3sinf)?

(b) (optional) Evaluate the following real integrals via residues (for a%, b2, k, m >
0):

N [P dx Y A dx oo [ dx
(l)/o x% +a? (n)/o (x2 4 a?)? (m)/o (x2 4 a2) (x% + b?)

(iv) /°° dx x coskx W) /°° dx coskx cosmx
o X2 +4x+4 oo x2 + a?

/2
(vi) / d6 sin 0
0

(c) (optional) Use an origin-centered sector contour of radius R and angle
27t/5 to show that (for a > 0)

/°° dx T
0o x>+a° bBatsin(r/5)
(d) (i) Viaarectangular contour with cornersatb£iR and b +1+iR, show

that

b+iR 4 az 1 1
lim T (0 <b<1,|Imal < 7).
R—co Jp—iR 27i sinztz 1wl +exp(—a)

(ii) (optional) By using a rectangular contour with corners at =R and
+R + i, show that

dx (coshax/coshx) = (1/2)sec(a/2)  (|a| < 7).

JO
(e) (optional)
(i) Use arectangular contour Cy with corners (N + %) ( +1+ i) to eval-
uate

1 dz 7t cot 7tz coth 7z
27ti f; z3 '
(if) By considering the N — oo limit of your answer to part (i) show
that
Yo n~3cothnm = (7/180)

Optional problems

Problem 1) Winding numbers and topology (Needham, p. 369-372)

(a) Envisage an arbitrarily complicated but nevertheless simple contour. By
considering the collection of possible values taken by the winding num-
bers for off-contour points, devise a fast algorithm for establishing whether
or not an arbitrary off-contour point lies inside or outside the contour.
[Note: You may use this algorithm to impress your friends at dinner par-
ties.]

(b) For each of the following functions f(z), find all the p-points lying inside
the specified disc and determine their multiplicities.

(i) f(z) =exp3mzand p =i for the disc |z| < 4/3;



(i) f(z) =coszand p =1 for the disc |z| < 5;
(ili) f(z) = sin (z*) and p = 0 for the disc |z| < 2.
In each case, use a computer to draw the image of the boundary of the
circle and, hence, verify the argument principle
(c) Use Rouché’s theorem to establish the following results:
(i) If a is greater than 1 then the equation z"e? = e* has n solutions
inside the unit circle.
(ii) If f(z) = 2z° and g(z) = 8z — 1 then all five of the solutions of the
equation f(z) + ¢(z) = 0 lie in the disc |z| < 2.
(iii) By reversing the roles of f and g, show that there is only one root in
the unit disc. Hence, deduce that there are four roots in the annulus
1<zl <2

Problem 2) Cauchy’s theorem (Needham, p. 421-423)
(a) Let K be a contour that winds once around z = 1, once around z = 0,
twice around z = —1, and not around z = 1 +i.
(i) Evaluate the following integral by factoring the denominator and
putting the integrand into partial fractions:

f zdz
Kz2—iz—1—1i

(ii) Write down the Laurent series (centered at the origin) for z W cosz.
Hence find

cosz
sz .
Jk z
(b) This exercise illustrates how one type of integral may be evaluated easily
using a complex integral. Let L be the straight contour along the real axis
from —R to R, and let | be the semicircular contour in the upper half-
plane back from R to —R. The complete contour L + | is thus a closed
loop.
(i) By using partial fractions, show that the integral
dz
fL—&- ] z4 41
vanishes if R < 1, and find its value if R > 1.

(ii) By using the fact that z* + 1 is the complex number from —1 to z*,
write down the minimum of |z* + 1| as Z travels around ]. Now
think of R as large, and use the Darboux inequality to show that the
integral of | dies away to zero as R grows to infinity.

(iif) From the previous parts, deduce the value of
©  dx
_/700 x4 + 1 ’
(iv) Although it can be evaluated easily by ordinary means, evaluate the
integral
©  dx
[oo x2 + 1

by the method used in the previous parts of this exercise.



(v) Likewise, evaluate
/°° dx
oo (X2 4+1)% A
(¢c) (i) Write down the value of anJr’b dz e*.

(if) By equating your answer to part (i) to the parametric form of the in-
tegral taken along the straight contour from z = 0 to z = a + ib, de-

duce the values of the integrals fol dx e™ sin bx and fol dx e™ cos bx.
(d) (i) Show that when integrating a product of holomorphic functions we
may use the method of integration by parts.

(ii) Let L be a contour between the real numbers +6. Evaluate | L dzz ez,
Verify your result via parametric integration along the line segment
between +6.

(e) Let f(z) =z~ (z+21)", where n is a positive integer.
(i) Use the binomial theorem to find the residue of f at the origin when
n is even or odd.

(ii) If nis odd, determine the value of the integral of f around any con-
tour.

(iii) If n is even (and equal to 2m) and K is a simple contour winding
once around the origin, deduce from part (i) that the integral of f
around K is given by 27ti (2m)!/ (m!)2.

(iv) By taking K to be the unit circle, deduce Wallis’ result:

27 om 27t(2m)!
/0 df cos™ 6 = 22 ()2

(v) Similarly, by considering functions of the form z* f(z) with integral
k, evaluate foh d0 cos™ 0 cos k@ and fozn d6 cos™ 8 sin k#.

(f) Let E be the elliptical orbit z(t) = acost + ibsint, where a and b are

positive and f varies from 0 to 27. By considering the integral of 1/z

around E, show that

/2” dt 27
0 a2cos?t+b2sin®t ab’

Problem 4) Kramers-Kronig relations
(@) The Debye form of the frequency-dependent generalized response func-
tion e(w) is given by
€) — €xo
1—iwT’
where €, €, and T are real parameters. Show that this form corresponds
to the time-dependent generalized reponse function
4(T) = €000 (T) + (€0 — €00) T 1 ™7,
where 6(+)(7) is understood to mean limy o+ Ty Lexp(—1/1) with 19
real. Confirm that the Debye form obeys the Kramers-Kronig relations.
(b) The Van Vleck-Weisskopf-Frohlich form of the time-dependent general-
ized response function «(7) is given by
2(T) = €00 6 (1) + Ae T 1 e/ T (cos wyT + wo T sin wyt),
where Ae and wy are further real parameters. Determine the correspond-

€(w) = € +



ing frequency-dependent generalized response function, and confirm that
it obeys the Kramers-Kronig relations.



