
Georgia Tech PHYS 6124
Mathematical Methods of Physics I
Instructor: Predrag Cvitanović
Fall semester 2011

Homework Set #2 due Sept 6 2011, in class

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

[All problems from Stone and Goldbart, but renumbered for this course]

Problem 1.4 Scalar wave equation

The functional S has, as its argument, a single function u of the two inde-
pendent variables x and t:

S [u] = 1
2

∫ t2

t1

dt
∫ x2

x1

dx
{

ρ̄ut(x, t)2 − κ̄ux(x, t)2
}

,

where ρ̄ and κ̄ are constants.

• a) Find the condition on u that makes S stationary with respect to varia-
tions that vanish at all times at the boundary points x1 and x2, and at all
points at the initial and final times t1 and t2.

[Note: ut(x, t) ≡ ∂u/∂t and ux(x, t) ≡ ∂u/∂x.]

You have just implemented Hamilton’s principle to obtain the equation
of motion for transverse displacements of a stretched string of line den-
sity ρ̄ and tension κ̄, i.e., the scalar one-dimensional wave equation. L =
1
2
{

ρ̄ut(x, t)2 − κ̄ux(x, t)2} is known as the Lagrange density; L =
∫ x2

x1
dxL

is known as the Lagrangian; and S =
∫ t2

t1
dt L is known as the action.

• b) Repeat part (a), but now supposing that the line density varies with
position, i.e., ρ̄ → ρ(x), and that the Lagrange density has also acquired
the additional term gρ(x) u(x, t). State a possible physical origin for such
a term.

• c) Show that the vector wave equation follows from the stationarity of
the functional

W [u] =
1
2

∫ t2

t1

dt
∫ x2

x1

dx
{

ρ̄|ut|(x, t)2 − κ̄|ux|(x, t)2
}

,
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where u(x, t) is a vector function of x and t.

Problem 2.1 Higher derivatives

Construct the Euler equation for the functional

J[y] =
1
2

∫ x2

x1

dx

{(
d2y
dx2

)2

+

(
dy
dx

)2
+ y2

}
.

Of what order is the resulting ordinary differential equation? You may assume
that the variation of y and its first derivative vanish at the end-points.

Problem 2.2 Dynamics of fields

A real field Φ(x, t) obeys the variational principle

δ
∫

d3x dtL(x, t) = 0.

Find the partial differential equation of motion obeyed by Φ(x, t) for the fol-
lowing cases:

• a) L(x, t) = 1
2

{
(∂tΦ)2 − c2|∇Φ|2 − µ2Φ2

}
• b) L(x, t) = 1

2

{
(∂tΦ)2 − c2|∇Φ|2 + 2µ2 cos Φ

}
• c) A real scalar field φ(x, t) and a real vector field A(x, t) also obey the

variational principle stated above, but with

L(x, t) =
1

8π

{∣∣∣−∇φ− 1
c

∂A
∂t

∣∣∣2−|∇×A|2−
(
∇·A+

1
c

∂φ

∂t

)2
}
+ c−1j ·A− ρφ,

where j(x, t) and ρ(x, t) are the current and charge densities, and c is the
speed of light in vacuo. Find the partial differential equations of motion
obeyed by A(x, t) and φ(x, t).
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Optional problems

Problem 2.3 Scalar wave equation with one free end

The functional S has, as its argument, a single function u of the two inde-
pendent variables x and t:

S [u] = 1
2

∫ t2

t1

dt
∫ x2

x1

dx
{

ρ̄ut(x, t)2 − κ̄ux(x, t)2
}

,

where ρ̄ and κ̄ are constants. Find the additional condition on u, beyond the
condition that u satisfies the wave equation, that makes S stationary with re-
spect to variations that vanish at all points at the initial and final times t1 and t2,
and at all times at the boundary point x1, but with no restriction on the variation
at the point x2.
[Note: ut(x, t) ≡ ∂u/∂t and ux(x, t) ≡ ∂u/∂x.]

Problem 2.4 Lagrange multipliers

• a) Find the stationary values of the function f (x, y) = 13x2 + 8xy + 7y2

on the circle x2 + y2 = 1.

• b) Identical particles can be distributed amongst R energy levels, having
energies {εr}R

r=1. In a given configuration, nr is the number of particles
occupying level r. The total number of particles ∑R

r=1 nr and the total
energy of the system ∑R

r=1 nrεr are fixed, and take the values N and E,
respectively. Find the distribution {n̄r}R

r=1 that maximises the quantity

Γ ≡ N!
n1!n2! . . . nR!

,

subject to the stated constraints.
[Hint: You may use Stirling’s approximation: n! ≈ exp{n ln(n/e)}, valid
for large n.]

• c) Consider the Hermitian form Q = ∑ij ψ∗i Hijψj, where {ψk} are the M
complex-valued components of a vector ψ, and {Hkl} are the complex-
valued elements of an Hermitian M × M matrix H. Show that the con-
dition that Q be stationary with respect to variations in ψ, subject to the
constraint that ∑i ψ∗i ψi = 1 (i.e., that ψ be normalised to unity) leads to
the Hermitian eigenproblem ∑j Hijψj = Eψi, where the eigenvalue E is
the Lagrange multiplier enforcing the normalisation constraint.
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Problem 2.5 Curve of fixed length

Two fixed points, A and B, line in the xy-plane at the locations (x, y) =
(0,±a). They are connected by a curve Γ of fixed length L (> 2a) lying in the
plane. Assume that the radius vector from the origin to any point on Γ cuts Γ
in at most one point so that Γ may be described using plane polar coordinates:
r = r(θ).

• a) Express in the form δ
∫ π/2
−π/2 dθ F(r, dr/dθ, θ) = 0 the problem of find-

ing the curve Γ for which the area between Γ and the chord AB is station-
ary, and identify an appropriate function F.

• b) Construct (but do not attempt to solve) the associated Euler equation.

• c) If one necessarily exists, construct a simpler differential equation satis-
fied by r(θ) [i.e., the equation for curve Γ], and state why it must exist.

[Note: Although you cannot use the following information to address this
question, you may wish to know that the sought curve is one of the two arcs of
length L of a circle passing through A and B.]

Problem 2.6 Mass distribution for prescribed profile

You are provided with a light-weight line of length πa/2 and some lead
shot of total mass M. Determine how the lead should be distributed along the
line if the loaded line is to hang in an arc of a circle of radius a when its ends
are attached to two points at the same height.
[Hint: Use plane polar coordinates having their origin at the centre of the cir-
cle.]

Problem 2.7 Flowing river

A river has parallel straight banks, given by the lines x = 0 and x = b(> 0).
The velocity V at which the river water flows is always directed parallel to the
banks, but varies with the distance from the banks: V = A(x) ey, where A(x)
is a certain prescribed function. A boat moves at constant speed C(> |V|)
relative to the water, and follows the path R = x ex + Y(x) ey. Construct the
functional T[Y] that gives the time to cross the river in terms of the path taken
[i.e., Y(x) and its derivative(s)], the boat speed C, and the river speed A(x).
Constructing an Euler equation is not required.
[Hint: Observe that the boat velocity relative to the banks has the form (dx/dt, dy/dt) =
(C sin α, A + C cos α).]

Problem 2.8 Mechanical equilibrium of a hard ferromagnet

Let m(x) be the local value of the magnetisation in a ferromagnet. Suppose
that the ferromagnet is hard, which means that the magnitude of the magnetisa-
tion is everywhere equal to unity. Suppose, further, that the free energy of the
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ferromagnet is given by

E =
1
2

J
∫

V
d3x
(
∂µ ma(x)

)2 ≡ 1
2

J
∫

V
d3x

3

∑
µ=1

3

∑
a=1

(
∂µ ma(x)

)2 ,

where V denotes the volume of the sample.

• a)By making a small variation of the magnetisation that vanishes at the
boundary of the sample and integrating by parts, and by using a La-
grange multiplier at each position x to enforce the (non-linear) constraint
that |m(x)| = 1, show that the condition for mechanical equilibrium is
given by

∇2ma(x)−ma(x)mb(x)∇2mb(x) = 0 .

• b)What do you think is the origin of the non-linearity in this partial dif-
ferential equation ?

• c)Briefly discuss the number of independent partial differential equa-
tions, in the context of the number of dependent variables.

Problem 2.9 Geodesics in curved spaces

Suppose that a particle moves along a curve in three dimensions. The time
δt taken to move from the point xi (i = 1, 2, 3) to the nearby point xi + δxi
(i = 1, 2, 3) is given by

(δt)2 =
3

∑
i,j=1

gij({x}) δxi δxj .

Find the set of coupled ordinary differential equations satisfied by xi(s) (i =
1, 2, 3), the [parametric form of the] path that makes stationary the time taken
to move between between two fixed points.

Problem 2.10 Differential calculus with functionals

Just as there is a version of Taylor’s theorem for functions of several vari-
ables, so there is a version for functionals. We can use this version of Taylor’s
theorem to define functional derivatives. Consider the functional J[y]. If we
make a small shift, y→ y + εη, then J[y]→ J[y + εη], where

J[y+ εη] = J[y]+ ε
∫

dx1 J(1)[y; x1] η(x1)+
ε2

2!

∫
dx1dx2 J(2)[y; x1, x2] η(x1)η(x2)+O(ε3).

We define the coefficient of εη, i.e., J(1)[y; x1], to be the first functional derivative
of J with respect to y(x1), which we denote δJ/δy(x1). Similarly, we define the
coefficient of ε2η2/2!, i.e., J(2)[y; x1, x2], to be the second functional derivative
of J with respect to y(x1) and y(x2), which we denote δ2 J/δy(x1)δy(x2), etc.
Compute the first and second functional derivatives of the following function-
als:
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• a) 1
2

∫
dz1 dz2 α(z1, z2) y(z1) y(z2)

• b) 1
2

∫
dz1 dz2 α(z1, z2) y(z1)

2 y(z2)
2

• c) 1
2

∫
dz1 dz2 α(z1, z2) y′(z1) y′(z2), where y′(z) denotes dy/dz

• d) 1
2

∫
dz1 dz2 α(z1, z2) y′(z1)

2 y′(z2)
2

Problem 2.11 Navier-Stokes equation

Consider a fluid with density ρ(x, t) flowing at a velocity v(x, t). Then, at
least for so-called simple fluids, the rate of change of the momentum density is
given by the forces acting on a small volume element of fluid, i.e., ∂(ρvi)/∂t =
−∂kΠik , where Πik is the momentum flux density tensor, given by

Πik = ρ vi vk + p δik − η
{

∂kvi + ∂ivk −
2
3

δik ∂jvj
}
− ζδik ∂jvj ,

p is the pressure, η and ζ are two (positive) coefficients of viscosity, and sum-
mation over repeated indices is implied. Show that this form of Πik, together
with the continuity equation ∂ρ/∂t = −∇·(ρv), produces the Navier-Stokes
equation of motion for simple fluids:

ρ
∂v
∂t

+ ρ
(
v·∇

)
v = −∇p + η∇2v +

(
ζ + (η/3)

)
∇
(
∇·v

)
.

Problem 2.12 Foucault’s pendulum in disguise

A particle of mass µ moving in three dimensions is bound to the origin O
by a harmonic spring of spring constant κ. Let R(t) denote the position of the
particle at time t.

• a) Write down the lagrangian that controls the motion of the system.

Now suppose that the motion is confined to a certain moving plane that
passes through O and has unit normal vector N(t).

• b) Write down the appropriate equation of constraint, and use it to con-
struct the appropriate new lagrangian, which involves a lagrangian un-
determined multiplier λ.

• c) Construct the classical equation of motion in terms of λ.

Now restrict your attention to the situation in which the orientation of the
plane varies slowly, compared with the natural frequency ω (≡

√
κ/µ)

of the oscillating particle, i.e., |Ṅ(t)| � ω. In addition, consider only
“linearly polarised” motions, i.e., those that pass through O.
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• d) By assuming that the only consequence of the motion of the constraint-
plane is the slow variation of the direction of oscillation A(t), ie, that
R(t) = A(t) sin(ωt + ϕ), show that the oscillation-direction A(t) obeys

Ȧ(t) ≈
(

N(t)× Ṅ(t)
)
×A(t).

• e) Show that the magnitude of A(t) does not vary with time.

• f) Show that A(t) is not integrable, i.e., that A(t) cannot be written as
A(t) = f

(
N(t)

)
.

• g) Suppose that N(t) is slowly driven around a closed path over a time T,
i.e., N(T) = N(0). Find a relationship between A(T) ·A(0)/|A(T)| |A(0)|
and the area of the unit sphere enclosed by the path N(t).

• h) By using the equation given in part (d) and your answer to parts (g),
explain why your answer to part (g) can be described as geometric.

[Hint: See the article entitled The Quantum Phase, Five Years After, by M. V. Berry,
in Geometric Phases in Physics, A. Shapere and F. Wilczek (World Scientific, Sin-
gapore, 1989), especially p. 8 et seq.]
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