
Chapter 2

Function Spaces

Many differential equations of physics are relations involving linear differ-
ential operators. These operators, like matrices, are linear maps acting on
vector spaces. The new feature is that the elements of the vector spaces are
functions, and the spaces are infinite dimensional. We can try to survive
in these vast regions by relying on our experience in finite dimensions, but
sometimes this fails, and more sophistication is required.

2.1 Motivation

In the previous chapter we considered two variational problems:
1) Find the stationary points of

F (x) =
1

2
x ·Ax =

1

2
xiAijxj (2.1)

on the surface x · x = 1. This led to the matrix eigenvalue equation

Ax = λx. (2.2)

2) Find the stationary points of

J [y] =

∫ b

a

1

2

{
p(x)(y′)2 + q(x)y2

}
dx, (2.3)

subject to the conditions y(a) = y(b) = 0 and

K[y] =

∫ b

a

y2 dx = 1. (2.4)

55
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This led to the differential equation

−(py′)′ + qy = λy, y(a) = y(b) = 0. (2.5)

There will be a solution that satisfies the boundary conditions only for
a discrete set of values of λ.

The stationary points of both function and functional are therefore deter-
mined by linear eigenvalue problems. The only difference is that the finite
matrix in the first is replaced in the second by a linear differential operator.
The theme of the next few chapters is an exploration of the similarities and
differences between finite matrices and linear differential operators. In this
chapter we will focus on how the functions on which the derivatives act can
be thought of as vectors.

2.1.1 Functions as vectors

Consider F [a, b], the set of all real (or complex) valued functions f(x) on the
interval [a, b]. This is a vector space over the field of the real (or complex)
numbers: Given two functions f1(x) and f2(x), and two numbers λ1 and λ2,
we can form the sum λ1f1(x)+λ2f2(x) and the result is still a function on the
same interval. Examination of the axioms listed in appendix A will show that
F [a, b] possesses all the other attributes of a vector space as well. We may
think of the array of numbers (f(x)) for x ∈ [a, b] as being the components
of the vector. Since there is an infinity of independent components — one
for each point x — the space of functions is infinite dimensional.

The set of all functions is usually too large for us. We will restrict our-
selves to subspaces of functions with nice properties, such as being continuous
or differentiable. There is some fairly standard notation for these spaces: The
space of Cn functions (those which have n continuous derivatives) is called
Cn[a, b]. For smooth functions (those with derivatives of all orders) we write
C∞[a, b]. For the space of analytic functions (those whose Taylor expansion
actually converges to the function) we write Cω[a, b]. For C∞ functions de-
fined on the whole real line we write C∞(R). For the subset of functions
with compact support (those that vanish outside some finite interval) we
write C∞

0 (R). There are no non-zero analytic functions with compact sup-
port: Cω

0 (R) = {0}.
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2.2 Norms and inner products

We are often interested in “how large” a function is. This leads to the idea of
normed function spaces. There are many measures of function size. Suppose
R(t) is the number of inches per hour of rainfall. If your are a farmer you
are probably most concerned with the total amount of rain that falls. A big
rain has big

∫
|R(t)| dt. If you are the Urbana city engineer worrying about

the capacity of the sewer system to cope with a downpour, you are primarily
concerned with the maximum value of R(t). For you a big rain has a big
“sup |R(t)|.”1

2.2.1 Norms and convergence

We can seldom write down an exact solution function to a real-world problem.
We are usually forced to use numerical methods, or to expand as a power
series in some small parameter. The result is a sequence of approximate
solutions fn(x), which we hope will converge to the desired exact solution
f(x) as we make the numerical grid smaller, or take more terms in the power
series.

Because there is more than one way to measure of the “size” of a function,
the convergence of a sequence of functions fn to a limit function f is not as
simple a concept as the convergence of a sequence of numbers xn to a limit x.
Convergence means that the distance between the fn and the limit function
f gets smaller and smaller as n increases, so each different measure of this
distance provides a new notion of what it means to converge. We are not go-
ing to make much use of formal “ε, δ” analysis, but you must realize that this
distinction between different forms of convergence is not merely academic:
real-world engineers must be precise about the kind of errors they are pre-
pared to tolerate, or else a bridge they design might collapse. Graduate-level
engineering courses in mathematical methods therefore devote much time to
these issues. While physicists do not normally face the same legal liabilities
as engineers, we should at least have it clear in our own minds what we mean
when we write that fn → f .

1Here “sup,” short for supremum, is synonymous with the “least upper bound” of a
set of numbers, i.e. the smallest number that is exceeded by no number in the set. This
concept is more useful than “maximum” because the supremum need not be an element
of the set. It is an axiom of the real number system that any bounded set of real numbers
has a least upper bound. The “greatest lower bound” is denoted “inf”, for infimum.



58 CHAPTER 2. FUNCTION SPACES

Here are some common forms of convergence:
i) If, for each x in its domain of definition D, the set of numbers fn(x)

converges to f(x), then we say the sequence converges pointwise.
ii) If the maximum separation

sup
x∈D
|fn(x)− f(x)| (2.6)

goes to zero as n → ∞, then we say that fn converges to f uniformly
on D.

iii) If ∫

D
|fn(x)− f(x)| dx (2.7)

goes to zero as n → ∞, then we say that fn converges in the mean to
f on D.

Uniform convergence implies pointwise convergence, but not vice versa. If
D is a finite interval, then uniform convergence implies convergence in the
mean, but convergence in the mean implies neither uniform nor pointwise
convergence.
Example: Consider the sequence fn = xn (n = 1, 2, . . .) and D = [0, 1).
Here, the round and square bracket notation means that the point x = 0 is
included in the interval, but the point 1 is excluded.

x

x x

x

1

3

2

1

1

Figure 2.1: xn → 0 on [0, 1), but not uniformly.

As n becomes large we have xn → 0 pointwise in D, but the convergence is
not uniform because

sup
x∈D
|xn − 0| = 1 (2.8)

for all n.
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Example: Let fn = xn with D = [0, 1]. Now the the two square brackets
mean that both x = 0 and x = 1 are to be included in the interval. In this
case we have neither uniform nor pointwise convergence of the xn to zero,
but xn → 0 in the mean.

We can describe uniform convergence by means of a norm — a general-
ization of the usual measure of the length of a vector. A norm, denoted by
‖f‖, of a vector f (a function, in our case) is a real number that obeys

i) positivity: ‖f‖ ≥ 0, and ‖f‖ = 0⇔ f = 0,
ii) the triangle inequality : ‖f + g‖ ≤ ‖f‖+ ‖g‖,
iii) linear homogeneity: ‖λf‖ = |λ|‖f‖.

One example is the “sup” norm, which is defined by

‖f‖∞ = sup
x∈D
|f(x)|. (2.9)

This number is guaranteed to be finite if f is continuous and D is compact.
In terms of the sup norm, uniform convergence is the statement that

lim
n→∞

‖fn − f‖∞ = 0. (2.10)

2.2.2 Norms from integrals

The space Lp[a, b], for any 1 ≤ p <∞, is defined to be our F [a, b] equipped
with

‖f‖p =

(∫ b

a

|f(x)|p dx
)1/p

, (2.11)

as the measure of length, and with a restriction to functions for which ‖f‖p
is finite.

We say that fn → f in Lp if the Lp distance ‖f − fn‖p tends to zero. We
have already seen the L1 measure of distance in the definition of convergence
in the mean. As in that case, convergence in Lp says nothing about pointwise
convergence.

We would like to regard ‖f‖p as a norm. It is possible, however, for a
function to have ‖f‖p = 0 without f being identically zero — a function
that vanishes at all but a finite set of points, for example. This pathology
violates number i) in our list of requirements for something to be called a
norm, but we circumvent the problem by simply declaring such functions to
be zero. This means that elements of the Lp spaces are not really functions,
but only equivalence classes of functions — two functions being regarded as
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the same is they differ by a function of zero length. Clearly these spaces are
not for use when anything significant depends on the value of the function
at any precise point. They are useful in physics, however, because we can
never measure a quantity at an exact position in space or time. We usually
measure some sort of local average.

The Lp norms satisfy the triangle inequality for all 1 ≤ p ≤ ∞, although
this is not exactly trivial to prove.

An important property for any space to have is that of being complete.
Roughly speaking, a space is complete if when some sequence of elements of
the space look as if they are converging, then they are indeed converging and
their limit is an element of the space. To make this concept precise, we need
to say what we mean by the phrase “look as if they are converging.” This
we do by introducing the idea of a Cauchy sequence.
Definition: A sequence fn in a normed vector space is Cauchy if for any ε > 0
we can find an N such that n,m > N implies that ‖fm − fn‖ < ε.
This definition can be loosely paraphrased to say that the elements of a
Cauchy sequence get arbitrarily close to each other as n→∞.

A normed vector space is complete with respect to its norm if every
Cauchy sequence actually converges to some element in the space. Consider.
for example, the normed vector space Q of rational numbers with distance
measured in the usual way as ‖q1 − q2‖ ≡ |q1 − q2|. The sequence

q0 = 1.0,

q1 = 1.4,

q2 = 1.41,

q3 = 1.414,
...

consisting of successive decimal approximations to
√

2, obeys

|qn − qm| <
1

10min(n,m)
(2.12)

and so is Cauchy. Pythagoras famously showed that
√

2 is irrational, however,
and so this sequence of rational numbers has no limit in Q. Thus Q is not
complete. The space R of real numbers is constructed by filling in the gaps
between the rationals, and so completing Q. A real number such as

√
2

is defined as a Cauchy sequence of rational numbers (by giving a rule, for
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example, that determines its infinite decimal expansion), with two rational
sequences qn and q′n defining the same real number if qn − q′n converges to
zero.

A complete normed vector space is called a Banach space. If we interpret
the norms as Lebesgue integrals2 then the Lp[a, b] are complete, and therefore
Banach spaces. The theory of Lebesgue integration is rather complicated,
however, and is not really necessary. One way of avoiding it is explained in
exercise 2.2.

Exercise 2.1: Show that any convergent sequence is Cauchy.

2.2.3 Hilbert space

The Banach space L2[a, b] is special in that it is also a Hilbert space. This
means that its norm is derived from an inner product. If we define the inner
product

〈f, g〉 =

∫ b

a

f ∗g dx (2.13)

then the L2[a, b] norm can be written

‖f‖2 =
√
〈f, f〉. (2.14)

When we omit the subscript on a norm, we mean it to be this one. You
are probably familiar with this Hilbert space from your quantum mechanics
classes.

Being positive definite, the inner product satisfies the Cauchy-Schwarz-
Bunyakovsky inequality

|〈f, g〉| ≤ ‖f‖‖g‖. (2.15)

That this is so can be seen by observing that

〈λf + µg, λf + µg〉 = (λ∗, µ∗ )

(
‖f‖2 〈f, g〉
〈f, g〉∗ ‖g‖2

)(
λ
µ

)
, (2.16)

must be non-negative for any choice of λ and µ. We therefore select λ = ‖g‖,
µ = −〈f, g〉∗‖g‖−1, in which case the non-negativity of (2.16) becomes the
statement that

‖f‖2‖g‖2 − |〈f, g〉|2 ≥ 0. (2.17)

2The “L” in Lp honours Henri Lebesgue. Banach spaces are named after Stefan Banach,
who was one of the founders of functional analysis, a subject largely developed by him
and other habitués of the Scottish Café in Lvóv, Poland.
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From Cauchy-Schwarz-Bunyakovsky we can establish the triangle inequal-
ity:

‖f + g‖2 = ‖f‖2 + ‖g‖2 + 2Re〈f, g〉
≤ ‖f‖2 + ‖g‖2 + 2|〈f, g〉|,
≤ ‖f‖2 + ‖g‖2 + 2‖f‖‖g‖,
= (‖f‖+ ‖g‖)2, (2.18)

so
‖f + g‖ ≤ ‖f‖+ ‖g‖. (2.19)

A second important consequence of Cauchy-Schwarz-Bunyakovsky is that
if fn → f in the sense that ‖fn − f‖ → 0, then

|〈fn, g〉 − 〈f, g〉| = |〈(fn − f), g〉|
≤ ‖fn − f‖ ‖g‖ (2.20)

tends to zero, and so
〈fn, g〉 → 〈f, g〉. (2.21)

This means that the inner product 〈f, g〉 is a continuous functional of f and
g. Take care to note that this continuity hinges on ‖g‖ being finite. It is for
this reason that we do not permit ‖g‖ = ∞ functions to be elements of our
Hilbert space.

Orthonormal sets

Once we are in possession of an inner product, we can introduce the notion
of an orthonormal set . A set of functions {un} is orthonormal if

〈un, um〉 = δnm. (2.22)

For example,

2

∫ 1

0

sin(nπx) sin(mπx) dx = δnm, n,m = 1, 2, . . . (2.23)

so the set of functions un =
√

2 sinnπx is orthonormal on [0, 1]. This set of
functions is also complete — in a different sense, however, from our earlier
use of this word. A orthonormal set of functions is said to be complete if any
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function f for which ‖f‖2 is finite, and hence f an element of the Hilbert
space, has a convergent expansion

f(x) =
∞∑

n=0

anun(x).

If we assume that such an expansion exists, and that we can freely interchange
the order of the sum and integral, we can multiply both sides of this expansion
by u∗m(x), integrate over x, and use the orthonormality of the un’s to read
off the expansion coefficients as an = 〈un, f〉. When

‖f‖2 =

∫ 1

0

|f(x)|2 dx (2.24)

and un =
√

2 sin(nπx), the result is the half-range sine Fourier series.

Example: Expanding unity. Suppose f(x) = 1. Since
∫ 1

0
|f |2dx = 1 is

finite, the function f(x) = 1 can be represented as a convergent sum of the
un =

√
2 sin(nπx).

The inner product of f with the un’s is

〈un, f〉 =

∫ 1

0

√
2 sin(nπx) dx =

{
0, n even,

2
√

2
nπ
, n odd.

Thus,

1 =
∞∑

n=0

4

(2n+ 1)π
sin
(
(2n+ 1)πx

)
, in L2[0, 1]. (2.25)

It is important to understand that the sum converges to the left-hand side
in the closed interval [0, 1] only in the L2 sense. The series does not converge
pointwise to unity at x = 0 or x = 1 — every term is zero at these points.
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 2.2: The sum of the first 31 terms in the sine expansion of f(x) = 1.

Figure 2.2 shows the sum of the series up to and including the term with
n = 30. The L2[0, 1] measure of the distance between f(x) = 1 and this sum
is ∫ 1

0

∣∣∣∣∣1−
30∑

n=0

4

(2n+ 1)π
sin
(
(2n+ 1)πx

)∣∣∣∣∣

2

dx = 0.00654. (2.26)

We can make this number as small as we desire by taking sufficiently many
terms.

It is perhaps surprising that a set of functions that vanish at the end-
points of the interval can be used to expand a function that does not vanish
at the ends. This exposes an important technical point: Any finite sum of
continuous functions vanishing at the endpoints is also a continuous function
vanishing at the endpoints. It is therefore tempting to talk about the “sub-
space” of such functions. This set is indeed a vector space, and a subset of
the Hilbert space, but it is not itself a Hilbert space. As the example shows,
a Cauchy sequence of continuous functions vanishing at the endpoints of an
interval can converge to a continuous function that does not vanish there.
The “subspace” is therefore not complete in our original meaning of the term.
The set of continuous functions vanishing at the endpoints fits into the whole
Hilbert space much as the rational numbers fit into the real numbers: A fi-
nite sum of rationals is a rational number, but an infinite sum of rationals
is not in general a rational number and we can obtain any real number as
the limit of a sequence of rational numbers. The rationals Q are therefore
a dense subset of the reals, and, as explained earlier, the reals are obtained
by completing the set of rationals by adding to this set its limit points. In
the same sense, the set of continuous functions vanishing at the endpoints is
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a dense subset of the whole Hilbert space and the whole Hilbert space is its
completion.

Exercise 2.2: In this technical exercise we will explain in more detail how
we “complete” a Hilbert space. The idea is to mirror the construction to
the real numbers and define the elements of the Hilbert space to be Cauchy
sequences of continuous functions. To specify a general element of L2[a, b]
we must therefore exhibit a Cauchy sequence fn ∈ C[a, b]. The choice is not

unique: two Cauchy sequences f
(1)
n (x) and f

(2)
n (x) will specify the the same

element if

lim
n→∞

‖f (1)
n − f (2)

n ‖ = 0.

Such sequences are said to be equivalent . For convenience, we will write
“limn→∞ fn = f” but bear in mind that, in this exercise, this means that
the sequence fn defines the symbol f , and not that f is the limit of the se-
quence, as this limit need have no prior existence. We have deliberately written
“f”, and not “f(x)”, for the “limit function” to warn us that f is assigned no
unique numerical value at any x. A continuous function f(x) can still be con-
sidered to be an element of L2[a, b]—take a sequence in which every fn(x) is
equal to f(x)—but an equivalent sequence of fn(x) can alter the limiting f(x)
on a set of measure zero without changing the resulting element f ∈ L2[a, b].

i) If fn and gn are Cauchy sequences defining f , g, respectively, it is natural
to try to define the inner product 〈f, g〉 by setting

〈f, g〉 ≡ lim
n→∞

〈fn, gn〉.

Use the Cauchy-Schwarz-Bunyakovsky inequality to show that the num-
bers Fn = 〈fn, gn〉 form a Cauchy sequence in C. Since C is complete,
deduce that this limit exists. Next show that the limit is unaltered if
either fn or gn is replaced by an equivalent sequence. Conclude that our
tentative inner product is well defined.

ii) The next, and harder, task is to show that the “completed” space is
indeed complete. The problem is to show that given a Cauchy sequence
fk ∈ L2[a, b], where the fk are not necessarily in C[a, b], has a limit
in L2[a, b]. Begin by taking Cauchy sequences fki ∈ C[a, b] such that
limi→∞ fki = fk. Use the triangle inequality to show that we can select
a subsequence fk,i(k) that is Cauchy and so defines the desired limit.

Later we will show that the elements of L2[a, b] can be given a concrete meaning
as distributions.
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Best approximation

Let un(x) be an orthonormal set of functions. The sum of the first N terms of
the Fourier expansion of f(x) in the un, is the closest— measuring distance
with the L2 norm — that one can get to f whilst remaining in the space
spanned by u1, u2, . . . , uN .

To see this, consider the square of the error-distance:

∆
def
= ‖f −

N∑

1

anun‖2 = 〈f −
N∑

m=1

amum, f −
N∑

n=1

anun〉

= ‖f‖2 −
N∑

n=1

an〈f, un〉 −
N∑

m=1

a∗m〈um, f〉+
N∑

n,m=1

a∗man〈um, un〉

= ‖f‖2 −
N∑

n=1

an〈f, un〉 −
N∑

m=1

a∗m〈um, f〉+
N∑

n=1

|an|2, (2.27)

In the last line we have used the orthonormality of the un. We can complete
the squares, and rewrite ∆ as

∆ = ‖f‖2 −
N∑

n=1

|〈un, f〉|2 +
N∑

n=1

|an − 〈un, f〉|2. (2.28)

We seek to minimize ∆ by a suitable choice of coefficients an. The smallest
we can make it is

∆min = ‖f‖2 −
N∑

n=1

|〈un, f〉|2, (2.29)

and we attain this bound by setting each of the |an − 〈un, f〉| equal to zero.
That is, by taking

an = 〈un, f〉. (2.30)

Thus the Fourier coefficients 〈un, f〉 are the optimal choice for the an.
Suppose we have some non-orthogonal collection of functions gn, n =

1, . . .N , and we have found the best approximation
∑N

n=1 angn(x) to f(x).
Now suppose we are given a gN+1 to add to our collection. We may then seek
an improved approximation

∑N+1
n=1 a

′
ngn(x) by including this new function —

but finding this better fit will generally involve tweaking all the an, not just
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trying different values of aN+1. The great advantage of approximating by
orthogonal functions is that, given another member of an orthonormal family,
we can improve the precision of the fit by adjusting only the coefficient of the
new term. We do not have to perturb the previously obtained coefficients.

Parseval’s theorem

The “best approximation” result from the previous section allows us to give
an alternative definition of a “complete orthonormal set,” and to obtain the
formula an = 〈un, f〉 for the expansion coefficients without having to assume
that we can integrate the infinite series

∑
anun term-by-term. Recall that

we said that a set of points S is a dense subset of a space T if any given
point x ∈ T is the limit of a sequence of points in S, i.e. there are elements
of S lying arbitrarily close to x. For example, the set of rational numbers Q
is a dense subset of R. Using this language, we say that a set of orthonormal
functions {un(x)} is complete if the set of all finite linear combinations of
the un is a dense subset of the entire Hilbert space. This guarantees that, by
taking N sufficently large, our best approximation will approach arbitrarily
close to our target function f(x). Since the best approximation containing
all the un up to uN is the N -th partial sum of the Fourier series, this shows
that the Fourier series actually converges to f .

We have therefore proved that if we are given un(x), n = 1, 2, . . . , a
complete orthonormal set of functions on [a, b], then any function for which
‖f‖2 is finite can be expanded as a convergent Fourier series

f(x) =
∞∑

n=1

anun(x), (2.31)

where

an = 〈un, f〉 =

∫ b

a

u∗n(x)f(x) dx. (2.32)

The convergence is guaranteed only in the L2 sense that

lim
N→∞

∫ b

a

∣∣∣∣∣f(x)−
N∑

n=1

anun(x)

∣∣∣∣∣

2

dx = 0. (2.33)

Equivalently

∆N = ‖f −
N∑

n=1

anun‖2 → 0 (2.34)
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as N →∞. Now, we showed in the previous section that

∆N = ‖f‖2 −
N∑

n=1

|〈un, f〉|2

= ‖f‖2 −
N∑

n=1

|an|2, (2.35)

and so the L2 convergence is equivalent to the statement that

‖f‖2 =

∞∑

n=1

|an|2. (2.36)

This last result is called Parseval’s theorem.
Example: In the expansion (2.25), we have ‖f 2‖ = 1 and

|an|2 =

{
8/(n2π2), n odd,
0, n even.

(2.37)

Parseval therefore tells us tells us that

∞∑

n=0

1

(2n+ 1)2
= 1 +

1

32
+

1

52
+ · · · = π2

8
. (2.38)

Example: The functions un(x) = 1√
2π
einx, n ∈ Z form a complete orthonor-

mal set on the interval [−π, π]. Let f(x) = 1√
2π
eiζx. Then its Fourier expan-

sion is
1√
2π
eiζx =

∞∑

n=−∞
cn

1√
2π
einx, −π < x < π, (2.39)

where

cn =
1

2π

∫ π

−π
eiζxe−inx dx =

sin(π(ζ − n))

π(ζ − n)
. (2.40)

We also have that

‖f‖2 =

∫ π

−π

1

2π
dx = 1. (2.41)

Now Parseval tells us that

‖f‖2 =

∞∑

n=−∞

sin2(π(ζ − n))

π2(ζ − n)2
, (2.42)
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the left hand side being unity.
Finally, as sin2(π(ζ − n)) = sin2(πζ), we have

cosec2(πζ) ≡ 1

sin2(πζ)
=

∞∑

n=−∞

1

π2(ζ − n)2
. (2.43)

The end result is a quite non-trivial expansion for the square of the cosecant.

2.2.4 Orthogonal polynomials

A useful class of orthonormal functions are the sets of orthogonal polynomials
associated with an interval [a, b] and a positive weight function w(x) such

that
∫ b
a
w(x) dx is finite. We introduce the Hilbert space L2

w[a, b] with the
real inner product

〈u, v〉w =

∫ b

a

w(x)u(x)v(x) dx, (2.44)

and apply the Gram-Schmidt procedure to the monomial powers 1, x, x2, x3, . . .
so as to produce an orthonomal set. We begin with

P0(x) ≡ 1/‖1‖w, (2.45)

where ‖1‖w =
√∫ b

a
w(x) dx, and define recursively

Pn+1(x) =
xPn(x)−

∑n
0 Pi(x)〈Pi, xPn〉w

‖xPn −
∑n

0 Pi〈Pi, xPn〉‖w
. (2.46)

Clearly Pn(x) is an n-th order polynomial, and by construction

〈Pn, Pm〉w = δnm. (2.47)

All such sets of polynomials obey a three-term recurrence relation

xPn(x) = bnPn+1(x) + anPn(x) + bn−1Pn−1(x). (2.48)

That there are only three terms, and that the coefficients of Pn+1 and Pn−1

are related, is due to the identity

〈Pn, xPm〉w = 〈xPn, Pm〉w. (2.49)
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This means that the matrix (in the Pn basis) representing the operation of
multiplication by x is symmetric. Since multiplication by x takes us from
Pn only to Pn+1, the matrix has just one non-zero entry above the main
diagonal, and hence, by symmetry, only one below.

The completeness of a family of polynomials orthogonal on a finite interval
is guaranteed by the Weierstrass approximation theorem which asserts that
for any continuous real function f(x) on [a, b], and for any ε > 0, there exists
a polynomial p(x) such that |f(x)− p(x)| < ε for all x ∈ [a, b]. This means
that polynomials are dense in the space of continuous functions equipped
with the ‖ . . .‖∞ norm. Because |f(x)− p(x)| < ε implies that

∫ b

a

|f(x)− p(x)|2w(x) dx ≤ ε2

∫ b

a

w(x) dx, (2.50)

they are also a dense subset of the continuous functions in the sense of L2
w[a, b]

convergence. Because the Hilbert space L2
w[a, b] is defined to be the comple-

tion of the space of continuous functions, the continuous functions are auto-
matically dense in L2

w[a, b]. Now the triangle inequality tells us that a dense
subset of a dense set is dense in the larger set, so the polynomials are dense in
L2
w[a, b] itself. The normalized orthogonal polynomials therefore constitute a

complete orthonormal set.
For later use, we here summarize the properties of the families of polyno-

mials named after Legendre, Hermite and Tchebychef.

Legendre polynomials

Legendre polynomials have a = −1, b = 1 and w = 1. The standard Legendre
polynomials are not normalized by the scalar product, but instead by setting
Pn(1) = 1. They are given by Rodriguez’ formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (2.51)

The first few are

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1),
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P3(x) =
1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3).

Their inner product is

∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δnm. (2.52)

The three-term recurrence relation is

(2n+ 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x). (2.53)

The Pn form a complete set for expanding functions on [−1, 1].

Hermite polynomials

The Hermite polynomials have a = −∞, b = +∞ and w(x) = e−x
2

, and are
defined by the generating function

e2tx−t
2

=

∞∑

n=0

1

n!
Hn(x)t

n. (2.54)

If we write
e2tx−t

2

= ex
2−(x−t)2 , (2.55)

we may use Taylor’s theorem to find

Hn(x) =
dn

dtn
ex

2−(x−t)2
∣∣∣∣
t=0

= (−1)nex
2 dn

dxn
e−x

2

, (2.56)

which is a a useful alternative definition. The first few Hermite polynomials
are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12,
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The normalization is such that
∫ ∞

−∞
Hn(x)Hm(x)e−x

2

dx = 2nn!
√
πδnm, (2.57)

as may be proved by using the generating function. The three-term recur-
rence relation is

2xHn(x) = Hn+1(x) + 2nHn−1(x). (2.58)

Exercise 2.3: Evaluate the integral

F (s, t) =

∫ ∞

−∞
e−x

2

e2sx−s
2

e2tx−t
2

dx

and expand the result as a double power series in s and t. By examining the
coefficient of sntm, show that

∫ ∞

−∞
Hn(x)Hm(x)e−x

2

dx = 2nn!
√
πδnm.

Problem 2.4: Let

ϕn(x) =
1√

2nn!
√
π
Hn(x)e

−x2/2

be the normalized Hermite functions. They form a complete orthonormal set
in L2(R). Show that

∞∑

n=0

tnϕn(x)ϕn(y) =
1√

π(1− t2)
exp

{
4xyt− (x2 + y2)(1 + t2)

2(1− t2)

}
, 0 ≤ t < 1.

This is Mehler’s formula. (Hint: Expand of the right hand side as
∑∞

n=0 an(x, t)ϕn(y).

To find an(x, t), multiply by e2sy−s
2−y2/2 and integrate over y.)

Exercise 2.5: Let ϕn(x) be the same functions as in the preceding problem.
Define a Fourier-transform operator F : L2(R)→ L2(R) by

F (f) =
1√
2π

∫ ∞

−∞
eixsf(s) ds.

With this normalization of the Fourier transform, F 4 is the identity map. The
possible eigenvalues of F are therefore ±1, ±i. Starting from (2.56), show that
the ϕn(x) are eigenfunctions of F , and that

F (ϕn) = inϕn(x).
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Tchebychef polynomials

Tchebychef polynomials are defined by taking a = −1, b = +1 and w(x) =
(1− x2)±1/2. The Tchebychef polynomials of the first kind are

Tn(x) = cos(n cos−1 x). (2.59)

The first few are

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x.

The Tchebychef polynomials of the second kind are

Un−1(x) =
sin(n cos−1 x)

sin(cos−1 x)
=

1

n
T ′
n(x). (2.60)

and the first few are

U−1(x) = 0,

U0(x) = 1,

U1(x) = 2x,

U2(x) = 4x2 − 1,

U3(x) = 8x3 − 4x.

Tn and Un obey the same recurrence relation

2xTn = Tn+1 + Tn−1,

2xUn = Un+1 + Un−1,

which are disguised forms of elementary trigonometric identities. The orthog-
onality is also a disguised form of the orthogonality of the functions cos nθ
and sinnθ. After setting x = cos θ we have

∫ π

0

cosnθ cosmθ dθ =

∫ 1

−1

1√
1− x2

Tn(x)Tm(x) dx = hnδnm, n,m,≥ 0,

(2.61)
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where h0 = π, hn = π/2, n > 0, and

∫ π

0

sinnθ sinmθ dθ =

∫ 1

−1

√
1− x2Un−1(x)Um−1(x) dx =

π

2
δnm, n,m > 0.

(2.62)
The set {Tn(x)} is therefore orthogonal and complete in L2

(1−x2)−1/2 [−1, 1],

and the set {Un(x)} is orthogonal and complete in L2
(1−x2)1/2 [−1, 1]. Any

function continuous on the closed interval [−1, 1] lies in both of these spaces,
and can therefore be expanded in terms of either set.

2.3 Linear operators and distributions

Our theme is the analogy between linear differential operators and matrices.
It is therefore useful to understand how we can think of a differential operator
as a continuously indexed “matrix.”

2.3.1 Linear operators

The action of a matrix on a vector y = Ax is given in components by

yi = Aijxj. (2.63)

The function-space analogue of this, g = Af , is naturally to be thought of as

g(x) =

∫ b

a

A(x, y)f(y) dy, (2.64)

where the summation over adjacent indices has been replaced by an inte-
gration over the dummy variable y. If A(x, y) is an ordinary function then
A(x, y) is called an integral kernel . We will study such linear operators in
the chapter on integral equations.

The identity operation is

f(x) =

∫ b

a

δ(x− y)f(y) dy, (2.65)

and so the Dirac delta function, which is not an ordinary function, plays the
role of the identity matrix. Once we admit distributions such as δ(x), we can
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a a
x x

(x−a)δ (x−a)δ

Figure 2.3: Smooth approximations to δ(x− a) and δ ′(x− a).

think of differential operators as continuously indexed matrices by using the
distribution

δ′(x) = “
d

dx
δ(x)”. (2.66)

The quotes are to warn us that we are not really taking the derivative of the
highly singular delta function. The symbol δ′(x) is properly defined by its
behaviour in an integral

∫ b

a

δ′(x− y)f(y) dy =

∫ b

a

d

dx
δ(x− y)f(y) dy

= −
∫ b

a

f(y)
d

dy
δ(x− y) dy

=

∫ b

a

f ′(y)δ(x− y) dy, (Integration by parts)

= f ′(x).

The manipulations here are purely formal, and serve only to motivate the
defining property

∫ b

a

δ′(x− y)f(y) dy = f ′(x). (2.67)

It is, however, sometimes useful to think of a smooth approximation to
δ′(x− a) being the genuine derivative of a smooth approximation to δ(x−a),
as illustrated in figure 2.3.
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We can now define higher “derivatives” of δ(x) by
∫ b

a

δ(n)(x)f(x)dx = (−1)nf (n)(0), (2.68)

and use them to represent any linear differential operator as a formal integral
kernel.
Example: In chapter one we formally evaluated a functional second derivative
and ended up with the distributional kernel (1.186), which we here write as

k(x, y) = − d

dy

(
p(y)

d

dy
δ(y − x)

)
+ q(y)δ(y − x)

= −p(y)δ′′(y − x)− p′(y)δ′(y − x) + q(y)δ(y − x). (2.69)

When k acts on a function u, it gives
∫
k(x, y)u(y) dy =

∫
{−p(y)δ′′(y − x)− p′(y)δ′(y − x) + q(y)δ(y − x)} u(y) dy

=

∫
δ(y − x) {−[p(y)u(y)]′′ + [p′(y)u(y)]′ + q(y)u(y)} dy

=

∫
δ(y − x) {−p(y)u′′(y)− p′(y)u′(y) + q(y)u(y)} dy

= − d

dx

(
p(x)

du

dx

)
+ q(x)u(x). (2.70)

The continuous matrix (1.186) therefore does, as indicated in chapter one,
represent the Sturm-Liouville operator L defined in (1.182).

Exercise 2.6: Consider the distributional kernel

k(x, y) = a2(y)δ
′′(x− y) + a1(y)δ

′(x− y) + a0(y)δ(x − y).

Show that
∫
k(x, y)u(y) dy = (a2(x)u(x))

′′ + (a1(x)u(x))
′ + a0(x)u(x).

Similarly show that

k(x, y) = a2(x)δ
′′(x− y) + a1(x)δ

′(x− y) + a0(x)δ(x − y),

leads to
∫
k(x, y)u(y) dy = a2(x)u

′′(x) + a1(x)u
′(x) + a0(x)u(x).
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Exercise 2.7: The distributional kernel (2.69) was originally obtained as a
functional second derivative

k(x1, x2) =
δ

δy(x1)

(
δJ [y]

δy(x2)

)

= − d

dx2

(
p(x2)

d

dx2
δ(x2 − x1)

)
+ q(x2)δ(x2 − x1).

By analogy with conventional partial derivatives, we would expect that

δ

δy(x1)

(
δJ [y]

δy(x2)

)
=

δ

δy(x2)

(
δJ [y]

δy(x1)

)
,

but x1 and x2 appear asymmetrically in k(x1, x2). Define

kT (x1, x2) = k(x2, x1),

and show that
∫
kT (x1, x2)u(x2) dx2 =

∫
k(x1, x2)u(x2) dx2.

Conclude that, superficial appearance notwithstanding, we do have k(x1, x2) =
k(x2, x1).

The example and exercises show that linear differential operators correspond
to continuously-infinite matrices having entries only infinitesimally close to
their main diagonal.

2.3.2 Distributions and test-functions

It is possible to work most the problems in this book with no deeper under-
standing of what a delta-function is than that presented in section 2.3.1. At
some point however, the more careful reader will wonder about the logical
structure of what we are doing, and will soon discover that too free a use
of δ(x) and its derivatives can lead to paradoxes. How do such creatures fit
into the function-space picture, and what sort of manipulations with them
are valid?

We often think of δ(x) as being a “limit” of a sequence of functions whose
graphs are getting narrower and narrower while their height grows to keep
the area under the curve fixed. An example would be the spike function
δε(x− a) appearing in figure 2.4.
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ε

ε1/

a
x

Figure 2.4: Approximation δε(x− a) to δ(x− a).

The L2 norm of δε,

‖δε‖2 =

∫
|δε(x)|2 dx =

1

ε
, (2.71)

tends to infinity as ε → 0, so δε cannot be tending to any function in L2.
This delta function has infinite “length,” and so is not an element of our
Hilbert space.

The simple spike is not the only way to construct a delta function. In
Fourier theory we meet

δΛ(x) =

∫ Λ

−Λ

eikx
dk

2π
=

1

π

sin Λx

x
, (2.72)

which becomes a delta-function when Λ becomes large. In this case

‖δΛ‖2 =

∫ ∞

−∞

sin2Λx

π2x2
dx = Λ/π. (2.73)

Again the “limit” has infinite length and cannot be accommodated in Hilbert
space. This δΛ(x) is even more pathological than δε. It provides a salutary
counter-example to the often asserted “fact” that δ(x) = 0 for x 6= 0. As
Λ becomes large δΛ(0) diverges to infinity. At any fixed non-zero x, how-
ever, δΛ(x) oscillates between ±1/x as Λ grows. Consequently the limit
limΛ→∞ δΛ(x) exists nowhere. It therefore makes no sense to assign a numer-
ical value to δ(x) at any x.

Given its wild behaviour, is not surprising that mathematicians looked
askance at Dirac’s δ(x). It was only in 1944, long after its effectiveness in
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solving physics and engineering problems had become an embarrassment,
that Laurent Schwartz was able to tame δ(x) by creating his theory of dis-
tributions. Using the language of distributions we can state precisely the
conditions under which a manoeuvre involving singular objects such as δ ′(x)
is legitimate.

Schwartz’ theory is built on a concept from linear algebra. Recall that
the dual space V ∗ of a vector space V is the vector space of linear functions
from the original vector space V to the field over which it is defined. We
consider δ(x) to be an element of the dual space of a vector space T of test
functions. When a test function ϕ(x) is plugged in, the δ-machine returns
the number ϕ(0). This operation is a linear map because the action of δ on
λϕ(x)+µχ(x) is to return λϕ(0)+µχ(0). Test functions are smooth (infinitely
differentiable) functions that tend rapidly to zero at infinity. Exactly what
class of function we chose for T depends on the problem at hand. If we are
going to make extensive use of Fourier transforms, for example, we mght
select the Schwartz space, S(R). This is the space of infinitely differentiable
functions ϕ(x) such that the seminorms3

|ϕ|m,n = sup
x∈R

{
|x|n

∣∣∣∣
dmϕ

dxm

∣∣∣∣
}

(2.74)

are finite for all positive integers m and n. The Schwartz space has the
advantage that if ϕ is in S(R), then so is its Fourier transform. Another
popular space of test functions is D consisting of C∞ functions of compact
support—meaning that each function is identically zero outside some finite
interval. Only if we want to prove theorems is a precise specification of T
essential. For most physics calculations infinite differentiability and a rapid
enough decrease at infinity for us to be able to ignore boundary terms is all
that we need.

The “nice” behaviour of the test functions compensates for the “nasty”
behaviour of δ(x) and its relatives. The objects, such as δ(x), composing the
dual space of T are called generalized functions, or distributions. Actually,
not every linear map T → R is to be included in the dual space because,
for technical reasons, we must require the maps to be continuous. In other
words, if ϕn → ϕ, we want our distributions u to obey u(ϕn)→ u(ϕ). Making
precise what we mean by ϕn → ϕ is part of the task of specifying T . In the

3A seminorm | · · · | has all the properties of a norm except that |ϕ| = 0 does not imply
that ϕ = 0.
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Schwartz space, for example, we declare that ϕn → ϕ if |ϕn−ϕ|n,m → 0, for
all positive m,n. When we restrict a dual space to continuous functionals,
we usually denote it by V ′ rather than V ∗. The space of distributions is
therefore T ′.

When they wish to stress the dual-space aspect of distribution theory,
mathematically-minded authors use the notation

δ(ϕ) = ϕ(0), (2.75)

or
(δ, ϕ) = ϕ(0), (2.76)

in place of the common, but purely formal,

∫
δ(x)ϕ(x) dx = ϕ(0). (2.77)

The expression (δ, ϕ) here represents the pairing of the element ϕ of the
vector space T with the element δ of its dual space T ′. It should not be
thought of as an inner product as the distribution and the test function lie in
different spaces. The “integral” in the common notation is purely symbolic,
of course, but the common notation should not be despised even by those in
quest of rigour. It suggests correct results, such as

∫
δ(ax− b)ϕ(x) dx =

1

|a|ϕ(b/a), (2.78)

which would look quite unmotivated in the dual-space notation.
The distribution δ′(x) is now defined by the pairing

(δ′, ϕ) = −ϕ′(0), (2.79)

where the minus sign comes from imagining an integration by parts that
takes the “derivative” off δ(x) and puts it on to the smooth function ϕ(x):

“

∫
δ′(x)ϕ(x) dx” = −

∫
δ(x)ϕ′(x) dx. (2.80)

Similarly δ(n)(x) is now defined by the pairing

(δ(n), ϕ) = (−1)nϕ(n)(0). (2.81)
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The “nicer” the class of test function we take, the “nastier” the class
of distributions we can handle. For example, the Hilbert space L2 is its
own dual: the Riesz-Fréchet theorem (see exercise 2.10) asserts that any
continuous linear map F : L2 → R can be written as F [f ] = 〈l, f〉 for some
l ∈ L2. The delta-function map is not continuous when considered as a
map from L2 → R however. An arbitrarily small change, f → f + δf , in a
function (small in the L2 sense of ‖δf‖ being small) can produce an arbitrarily
large change in f(0). Thus L2 functions are not “nice” enough for their
dual space to be able accommodate the delta function. Another way of
understanding this is to remember that we regard two L2 functions as being
the same whenever ‖f1 − f2‖ = 0. This distance will be zero even if f1

and f2 differ from one another on a countable set of points. As we have
remarked earlier, this means that elements of L2 are not really functions
at all — they do not have an assigned valued at each point. They are,
instead, only equivalence classes of functions. Since f(0) is undefined, any
attempt to interpret the statement

∫
δ(x)f(x) dx = f(0) for f an arbitrary

element L2 is necessarily doomed to failure. Continuous functions, however,
do have well-defined values at every point. If we take the space of test
of functions T to consist of all continuous functions, but not demand that
they be differentiable, then T ′ will include the delta function, but not its
“derivative” δ′(x), as this requires us to evaluate f ′(0). If we require the test
functions to be once-differentiable, then T ′ will include δ′(x) but not δ′′(x),
and so on.

When we add suitable spaces T and T ′ to our toolkit, we are constructing
what is called a rigged 4 Hilbert space. In such a rigged space we have the
inclusion

T ⊂ L2 ≡ [L2]′ ⊂ T ′. (2.82)

The idea is to take the space T ′ big enough to contain objects such as the
limit of our sequence of “approximate” delta functions δε, which does not
converge to anything in L2.

Ordinary functions can also be regarded as distributions, and this helps
illuminate the different senses in which a sequence un can converge. For
example, we can consider the functions

un = sinnπx, 0 < x < 1, (2.83)

4“Rigged” as in a sailing ship ready for sea, not “rigged” as in a corrupt election.
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as being either elements of L2[0, 1] or as distributions. As distributions we
evaluate them on a smooth function ϕ as

(un, ϕ) =

∫ 1

0

ϕ(x)un(x) dx. (2.84)

Now
lim
n→∞

(un, ϕ) = 0, (2.85)

since the high-frequency Fourier coefficients of any smooth function tend
to zero. We deduce that as a distribution we have limn→∞ un = 0, the
convergence being pointwise on the space of test functions. Considered as
elements of L2[0, 1], however, the un do not tend to zero. Their norm is
‖un‖ = 1/2 and so all the un remain at the same fixed distance from 0.

Exercise 2.8: Here we show that the elements of L2[a, b], which we defined
in exercise 2.2 to be the formal limits of of Cauchy sequences of continuous
functions, may be thought of as distributions.

i) Let ϕ(x) be a test function and fn(x) a Cauchy sequence of continuous
functions defining f ∈ L2. Use the Cauchy-Schwarz-Bunyakovsky in-
equality to show that the sequence of numbers 〈ϕ, fn〉 is Cauchy and so
deduce that limn→∞ 〈ϕ, fn〉 exists.

ii) Let ϕ(x) be a test function and f
(1)
n (x) and f

(2)
n (x) be a pair of equiva-

lent sequences defining the same element f ∈ L2. Use Cauchy-Schwarz-
Bunyakovsky to show that

lim
n→∞

〈ϕ, f (1)
n − f (2)

n 〉 = 0.

Combine this result with that of the preceding exercise to deduce that
we can set

(ϕ, f) ≡ lim
n→∞

〈ϕ∗, fn〉,

and so define f ≡ limn→∞ fn as a distribution.

The interpretation of elements of L2 as distributions is simultaneously simpler
and more physical than the classical interpretation via the Lebesgue integral.

Weak derivatives

By exploiting the infinite differentiability of our test functions, we were able
to make mathematical sense of the “derivative” of the highly singular delta
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function. The same idea of a formal integration by parts can be used to
define the “derivative” for any distribution, and also for ordinary functions
that would not usually be regarded as being differentiable.

We therefore define the weak or distributional derivative v(x) of a distri-
bution u(x) by requiring its evaluation on a test function ϕ ∈ T to be

∫
v(x)ϕ(x) dx

def
= −

∫
u(x)ϕ′(x) dx. (2.86)

In the more formal pairing notation we write

(v, ϕ)
def
= −(u, ϕ′). (2.87)

The right hand side of (2.87) is a continuous linear function of ϕ, and so,
therefore, is the left hand side. Thus the weak derivative u′ ≡ v is a well-
defined distribution for any u.

When u(x) is an ordinary function that is differentiable in the conven-
tional sense, its weak derivative coincides with the usual derivative. When
the function is not conventionally differentiable the weak derivative still ex-
ists, but does not assign a numerical value to the derivative at each point. It
is therefore a distribution and not a function.

The elements of L2 are not quite functions — having no well-defined
value at a point — but are particularly mild-mannered distributions, and
their weak derivatives may themselves be elements of L2. It is in this weak
sense that we will, in later chapters, allow differential operators to act on L2

“functions.”
Example: In the weak sense

d

dx
|x| = sgn(x), (2.88)

d

dx
sgn(x) = 2δ(x). (2.89)

The object |x| is an ordinary function, but sgn(x) has no definite value at
x = 0, whilst δ(x) has no definite value at any x.
Example: As a more subtle illustration, consider the weak derivative of the
function ln |x|. With ϕ(x) a test function, the improper integral

I = −
∫ ∞

−∞
ϕ′(x) ln |x| dx ≡ − lim

ε,ε′→0

(∫ −ε

−∞
+

∫ ∞

ε′

)
ϕ′(x) ln |x| dx (2.90)
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is convergent and defines the pairing (− ln |x|, ϕ′). We wish to integrate by
parts and interpret the result as ([ln |x|]′, ϕ). The logarithm is differentiable
in the conventional sense away from x = 0, and

[ln |x|ϕ(x)]′ =
1

x
ϕ(x) + ln |x|ϕ′(x), x 6= 0. (2.91)

From this we find that

−(ln |x|, ϕ′) = lim
ε,ε′→0

{(∫ −ε

−∞
+

∫ ∞

ε′

)
1

x
ϕ(x) dx+

(
ϕ(ε′) ln |ε′| − ϕ(−ε) ln |ε|

)}
.

(2.92)
So far ε and ε′ are unrelated except in that they are both being sent to zero.
If, however, we choose to make them equal, ε = ε′, then the integrated-out
part becomes (

ϕ(ε)− ϕ(−ε)
)

ln |ε| ∼ 2ϕ′(0)ε ln |ε|, (2.93)

and this tends to zero as ε becomes small. In this case

−([ln |x|], ϕ′) = lim
ε→0

{(∫ −ε

−∞
+

∫ ∞

ε

)
1

x
ϕ(x) dx

}
. (2.94)

By the definition of the weak derivative, the left hand side of (2.94) is the
pairing ([ln |x|]′, ϕ). We conclude that

d

dx
ln |x| = P

(
1

x

)
, (2.95)

where P (1/x), the principal-part distribution, is defined by the right-hand-
side of (2.94). It is evaluated on the test function ϕ(x) by forming

∫
ϕ(x)/x dx,

but with an infinitesimal interval from −ε to +ε, omitted from the range
of integration. It is essential that this omitted interval lie symmetrically
about the dangerous point x = 0. Otherwise the integrated-out part will
not vanish in the ε → 0 limit. The resulting principal-part integral , written
P
∫
ϕ(x)/x dx, is then convergent and P (1/x) is a well-defined distribution

despite the singularity in the integrand. Principal-part integrals are common
in physics. We will next meet them when we study Green functions.

For further reading on distributions and their applications we recommend
M. J. Lighthill Fourier Analysis and Generalised Functions, or F. G. Fried-
lander Introduction to the Theory of Distributions. Both books are published
by Cambridge University Press.
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2.4 Further exercises and problems

The first two exercises lead the reader through a proof of the Riesz-Fréchet
theorem. Although not an essential part of our story, they demonstrate how
“completeness” is used in Hilbert space theory, and provide some practice
with “ε, δ” arguments for those who desire it.

Exercise 2.9: Show that if a norm ‖ ‖ is derived from an inner product, then
it obeys the parallelogram law

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).

Let N be a complete linear subspace of a Hilbert space H. Let g /∈ N , and let

inf
f∈N
‖g − f‖ = d.

Show that there exists a sequence fn ∈ N such that limn→∞ ‖fn − g‖ = d.
Use the parallelogram law to show that the sequence fn is Cauchy, and hence
deduce that there is a unique f ∈ N such that ‖g − f‖ = d. From this,
conclude that d > 0. Now show that 〈(g − f), h〉 = 0 for all h ∈ N .

Exercise 2.10: Riesz-Fréchet theorem. Let L[h] be a continuous linear func-
tional on a Hilbert space H. Here continuous means that

‖hn − h‖ → 0⇒ L[hn]→ L[h].

Show that the set N = {f ∈ H : L[f ] = 0} is a complete linear subspace of H.

Suppose now that there is a g ∈ H such that L(g) 6= 0, and let l ∈ H be the
vector “g − f” from the previous problem. Show that

L[h] = 〈αl, h〉, where α = L[g]/〈l, g〉 = L[g]/‖l‖2.

A continuous linear functional can therefore be expressed as an inner product.

Next we have some problems on orthogonal polynomials and three-term re-
currence relations. They provide an excuse for reviewing linear algebra, and
also serve to introduce the theory behind some practical numerical methods.

Exercise 2.11: Let {Pn(x)} be a family of polynomials orthonormal on [a, b]
with respect to a a positive weight function w(x), and with deg [Pn(x)] = n.

Let us also scale w(x) so that
∫ b
a w(x) dx = 1, and P0(x) = 1.
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a) Suppose that the Pn(x) obey the three-term recurrence relation

xPn(x) = bnPn+1(x)+anPn(x)+bn−1Pn−1(x); P−1(x) = 0, P0(x) = 1.

Define
pn(x) = Pn(x)(bn−1bn−2 · · · b0),

and show that

xpn(x) = pn+1(x) + anpn(x) + b2n−1pn−1(x); p−1(x) = 0, p0(x) = 1.

Conclude that the pn(x) are monic — i.e. the coefficient of their leading
power of x is unity.

b) Show also that the functions

qn(x) =

∫ b

a

pn(x)− pn(ξ)
x− ξ w(ξ) dξ

are degree n−1 monic polynomials that obey the same recurrence relation
as the pn(x), but with initial conditions q0(x) = 0, q1(x) ≡

∫ b
a w dx = 1.

Warning: while the qn(x) polynomials defined in part b) turn out to be very
useful, they are not mutually orthogonal with respect to 〈 , 〉w.

Exercise 2.12: Gaussian quadrature. Orthogonal polynomials have application
to numerical integration. Let the polynomials {Pn(x)} be orthonormal on [a, b]
with respect to the positive weight function w(x), and let xν , ν = 1, . . . , N be
the zeros of PN (x). You will show that if we define the weights

wν =

∫ b

a

PN (x)

P ′
N (xν)(x− xν)

w(x) dx

then the approximate integration scheme
∫ b

a
f(x)w(x) dx ≈ w1f(x1) + w2f(x2) + · · ·wNf(xN ),

known as Gauss’ quadrature rule, is exact for f(x) any polynomial of degree
less than or equal to 2N − 1.

a) Let π(x) = (x − ξ1)(x − ξ2) · · · (x − ξN ) be a polynomial of degree N .
Given a function F (x), show that

FL(x)
def
=

N∑

ν=1

F (ξν)
π(x)

π′(ξν)(x− ξν)

is a polynomial of degree N − 1 that coincides with F (x) at x = ξν ,
ν = 1, . . . , N . (This is Lagrange’s interpolation formula.)
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b) Show that if F (x) is polynomial of degree N − 1 or less then FL(x) =
F (x).

c) Let f(x) be a polynomial of degree 2N − 1 or less. Cite the polynomial
division algorithm to show that there exist polynomials Q(x) and R(x),
each of degree N − 1 or less, such that

f(x) = PN (x)Q(x) +R(x).

d) Show that f(xν) = R(xν), and that

∫ b

a
f(x)w(x) dx =

∫ b

a
R(x)w(x) dx.

e) Combine parts a), b) and d) to establish Gauss’ result.
f) Show that if we normalize w(x) so that

∫
w dx = 1 then the weights wν

can be expressed as wν = qN (xν)/p
′
N (xν), where pn(x), qn(x) are the

monic polynomials defined in the preceding problem.

The ultimate large-N exactness of Gaussian quadrature can be expressed as

w(x) = lim
N→∞

{
∑

ν

δ(x− xν)wν
}
.

Of course, a sum of Dirac delta-functions can never become a continuous
function in any ordinary sense. The equality holds only after both sides are
integrated against a smooth test function, i.e., when it is considered as a
statement about distributions.

Exercise 2.13: The completeness of a set of polynomials {Pn(x)}, orthonor-
mal with respect to the positive weight function w(x), is equivalent to the
statement that ∞∑

n=0

Pn(x)Pn(y) =
1

w(x)
δ(x − y).

It is useful to have a formula for the partial sums of this infinite series.

Suppose that the polynomials Pn(x) obey the three-term recurrence relation

xPn(x) = bnPn+1(x) + anPn(x) + bn−1Pn−1(x); P−1(x) = 0, P0(x) = 1.

Use this recurrence relation, together with its initial conditions, to obtain the
Christoffel-Darboux formula

N−1∑

n=0

Pn(x)Pn(y) =
bN−1[PN (x)PN−1(y)− PN−1(x)PN (y)]

x− y .
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Exercise 2.14: Again suppose that the polynomials Pn(x) obey the three-term
recurrence relation

xPn(x) = bnPn+1(x) + anPn(x) + bn−1Pn−1(x); P−1(x) = 0, P0(x) = 1.

Consider the N -by-N tridiagonal matrix eigenvalue problem



aN−1 bN−2 0 0 . . . 0
bN−2 aN−2 bN−3 0 . . . 0

0 bN−3 aN−3 bN−4 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . b2 a2 b1 0
0 . . . 0 b1 a1 b0
0 . . . 0 0 b0 a0







uN−1

uN−2

uN−3
...
u2

u1

u0




= x




uN−1

uN−2

uN−3
...
u2

u1

u0




a) Show that the eigenvalues x are given by the zeros xν , ν = 1, . . . , N
of PN (x), and that the corresponding eigenvectors have components
un = Pn(xν), n = 0, . . . , N − 1.

b) Take the x→ y limit of the Christoffel-Darboux formula from the preced-
ing problem, and use it to show that the orthogonality and completeness
relations for the eigenvectors can be written as

N−1∑

n=0

Pn(xν)Pn(xµ) = w−1
ν δνµ,

N∑

ν=1

wνPn(xν)Pm(xν) = δnm, n.m ≤ N − 1,

where w−1
ν = bN−1P

′
N (xν)PN−1(xν).

c) Use the original Christoffel-Darboux formula to show that, when the
Pn(x) are orthonormal with respect to the positive weight function w(x),
the normalization constants wν of this present problem coincide with the
weights wν occurring in the Gauss quadrature rule. Conclude from this
equality that the Gauss-quadrature weights are positive.

Exercise 2.15: Write the N -by-N tridiagonal matrix eigenvalue problem from
the preceding exercise as Hu = xu, and set dN (x) = det (xI−H). Similarly
define dn(x) to be the determinant of the n-by-n tridiagonal submatrix with x−
an−1, . . . , x−a0 along its principal diagonal. Laplace-develop the determinant
dn(x) about its first row, and hence obtain the recurrence

dn+1(x) = (x− an)dn(x)− b2n−1dn−1(x).
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Conclude that

det (xI−H) = pN (x),

where pn(x) is the monic orthogonal polynomial obeying

xpn(x) = pn+1(x) + anpn(x) + b2n−1pn−1(x); p−1(x) = 0, p0(x) = 1.

Exercise 2.16: Again write the N -by-N tridiagonal matrix eigenvalue problem
from the preceding exercises as Hu = xu.

a) Show that the lowest and rightmost matrix element

〈0|(xI−H)−1|0〉 ≡ (xI−H)−1
00

of the resolvent matrix (xI − H)−1 is given by a continued fraction
GN−1,0(x) where, for example,

G3,z(x) =
1

x− a0 −
b20

x− a1 −
b21

x− a2 −
b22

x− a3 + z

.

b) Use induction on n to show that

Gn,z(x) =
qn(x)z + qn+1(x)

pn(x)z + pn+1(x)
,

where pn(x), qn(x) are the monic polynomial functions of x defined by
the recurrence relations

xpn(x) = pn+1(x) + anpn(x) + b2n−1pn−1(x), p−1(x) = 0, p0(x) = 1,

xqn(x) = qn+1(x) + anqn(x) + b2n−1qn−1(x), q0(x) = 0, q1(x) = 1.

b) Conclude that

〈0|(xI−H)−1|0〉 =
qN (x)

pN (x)
,

has a pole singularity when x approaches an eigenvalue xν . Show that
the residue of the pole (the coefficient of 1/(x − xn)) is equal to the
Gauss-quadrature weight wν for w(x), the weight function (normalized
so that

∫
w dx = 1) from which the coefficients an, bn were derived.
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Continued fractions were introduced by John Wallis in his Arithmetica
Infinitorum (1656), as was the recursion formula for their evaluation. Today,
when combined with the output of the next exercise, they provide the math-
ematical underpinning of the Haydock recursion method in the band theory
of solids. Haydock’s method computes w(x) = limN→∞ {

∑
ν δ(x− xν)wν},

and interprets it as the local density of states that is measured in scanning
tunnelling microscopy.

Exercise 2.17: The Lanczos tridiagonalization algorithm. Let V be an N -
dimensional complex vector space equipped with an inner product 〈 , 〉 and
let H : V → V be a hermitian linear operator. Starting from a unit vector u0,
and taking u−1 = 0, recursively generate the unit vectors un and the numbers
an, bn and cn by

Hun = bnun+1 + anun + cn−1un−1,

where the coefficients

an ≡ 〈un,Hun〉,
cn−1 ≡ 〈un−1,Hun〉,

ensure that un+1 is perpendicular to both un and un−1, and

bn = ‖Hun − anun − cn−1un−1‖,
a positive real number, makes ‖un+1‖ = 1.

a) Use induction on n to show that un+1, although only constructed to be
perpendicular to the previous two vectors, is in fact (and in the absence
of numerical rounding errors) perpendicular to all um with m ≤ n.

b) Show that an, cn are real , and that cn−1 = bn−1.
c) Conclude that bN−1 = 0, and (provided that no earlier bn happens to

vanish) that the un, n = 0, . . . , N − 1, constitute an orthonormal basis
for V , in terms of which H is represented by the N -by-N real-symmetric
tridiagonal matrix H of the preceding exercises.

Because the eigenvalues of a tridiagonal matrix are given by the numerically
easy-to-find zeros of the associated monic polynomial pN (x), the Lanczos al-
gorithm provides a computationally efficient way of extracting the eigenvalues
from a large sparse matrix. In theory, the entries in the tridiagonal H can be
computed while retaining only un, un−1 and Hun in memory at any one time.
In practice, with finite precision computer arithmetic, orthogonality with the
earlier um is eventually lost, and spurious or duplicated eigenvalues appear.
There exist, however, stratagems for identifying and eliminating these fake
eigenvalues.
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The following two problems are “toy” versions of the Lax pair and tau func-
tion constructions that arise in the general theory of soliton equations. They
provide useful practice in manipulating matrices and determinants.

Problem 2.18: The monic orthogonal polynomials pi(x) have inner products

〈pi, pj〉w ≡
∫
pi(x)pj(x)w(x) dx = hiδij ,

and obey the recursion relation

xpi(x) = pi+1(x) + aipi(x) + b2i−1pi−1(x); p−1(x) = 0, p0(x) = 1.

Write the recursion relation as

Lp = xp,

where

L ≡




. . .
. . .

. . .
. . .

...
. . . 1 a2 b21 0
. . . 0 1 a1 b20
. . . 0 0 1 a0


 , p ≡




...
p2

p1

p0


 .

Suppose that

w(x) = exp

{
−

∞∑

n=1

tnx
n

}
,

and consider how the pi(x) and the coefficients ai and b2i vary with the pa-
rameters tn.

a) Show that
∂p

∂tn
= M(n)p,

where M(n) is some strictly upper triangular matrix - i.e. all entries on
and below its principal diagonal are zero.

b) By differentiating Lp = xp with respect to tn show that

∂L

∂tn
= [M(n),L].

c) Compute the matrix elements

〈i|M(n)|j〉 ≡M (n)
ij =

〈
pj,

∂pi
∂tn

〉

w
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(note the interchange of the order of i and j in the 〈 , 〉w product!) by
differentiating the orthogonality condition 〈pi, pj〉w = hiδij . Hence show
that

M(n) = (Ln)+

where (Ln)+ denotes the strictly upper triangular projection of the n’th
power of L — i.e. the matrix Ln, but with its diagonal and lower trian-
gular entries replaced by zero.

Thus
∂L

∂tn
=
[
(Ln)+ ,L

]

describes a family of deformations of the semi-infinite matrix L that, in some
formal sense, preserve its eigenvalues x.

Problem 2.19: Let the monic polynomials pn(x) be orthogonal with respect
to the weight function

w(x) = exp

{
−

∞∑

n=1

tnx
n

}
.

Define the “tau-function” τn(t1, t2, t3 . . .) of the parameters ti to be the n-fold
integral

τn(t1, t2, . . .) =

∫∫
· · ·
∫
dxxdx2 . . . dxn∆

2(x) exp

{
−

n∑

ν=1

∞∑

m=1

tmx
m
ν

}

where

∆(x) =

∣∣∣∣∣∣∣∣

xn−1
1 xn−2

1 . . . x1 1
xn−1

2 xn−2
2 . . . x2 1

...
...

. . .
...

...
xn−1
n xn−2

n . . . xn 1

∣∣∣∣∣∣∣∣
=
∏

ν<µ

(xν − xµ)

is the n-by-n Vandermonde determinant.

a) Show that

∣∣∣∣∣∣∣∣

xn−1
1 xn−2

1 . . . x1 1
xn−1

2 xn−2
2 . . . x2 1

...
...

. . .
...

...
xn−1
n xn−2

n . . . xn 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

pn−1(x1) pn−2(x1) . . . p1(x1) p0(x1)
pn−1(x2) pn−2(x2) . . . p1(x2) p0(x2)

...
...

. . .
...

...
Pn−1(xn) pn−2(xn) . . . p1(xn) p0(xn)

∣∣∣∣∣∣∣∣
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b) Combine the identity from part a) with the orthogonality property of the
pn(x) to show that

pn(x) =
1

τn

∫
dx1dx2 . . . dxn∆

2(x)
n∏

µ=1

(x− xµ) exp

{
−

n∑

ν=1

∞∑

m=1

tmx
m
ν

}

= xn
τn(t

′
1, t

′
2, t

′
3, . . .)

τn(t1, t2, t3, . . .)

where

t′m = tm +
1

mxm
.

Here are some exercises on distributions:

Exercise 2.20: Let f(x) be a continuous function. Observe that f(x)δ(x) =
f(0)δ(x). Deduce that

d

dx
[f(x)δ(x)] = f(0)δ′(x).

If f(x) were differentiable we might also have used the product rule to conclude
that

d

dx
[f(x)δ(x)] = f ′(x)δ(x) + f(x)δ′(x).

Show, by evaluating f(0)δ′(x) and f ′(x)δ(x) + f(x)δ′(x) on a test function
ϕ(x), that these two expressions for the derivative of f(x)δ(x) are equivalent.

Exercise 2.21: Let ϕ(x) be a test function. Show that

d

dt

{
P

∫ ∞

−∞

ϕ(x)

(x− t) dx
}

= P

∫ ∞

−∞

ϕ(x) − ϕ(t)

(x− t)2 dx.

Show further that the right-hand-side of this equation is equal to

−
(
d

dx
P

(
1

x− t

)
, ϕ

)
≡ P

∫ ∞

−∞

ϕ′(x)
(x− t) dx.

Exercise 2.22: Let θ(x) be the step function or Heaviside distribution

θ(x) =

{ 1, x > 0,
undefined, x = 0,
0, x < 0.
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By forming the weak derivative of both sides of the equation

lim
ε→0+

ln(x+ iε) = ln |x|+ iπθ(−x),

conclude that

lim
ε→0+

(
1

x+ iε

)
= P

(
1

x

)
− iπδ(x).

Exercise 2.23: Use induction on n to generalize exercise 2.21 and show that

dn

dtn

{
P

∫ ∞

−∞

ϕ(x)

(x− t) dx
}

= P

∫ ∞

−∞

n!

(x− t)n+1

[
ϕ(x)−

n−1∑

m=0

1

m!
(x− t)mϕ(m)(t)

]
dx,

= P

∫ ∞

−∞

ϕ(n)

x− t dx.

Exercise 2.24: Let the non-local functional S[f ] be defined by

S[f ] =
1

4π

∫ ∞

−∞

∫ ∞

−∞

{
f(x)− f(x′)

x− x′
}2

dxdx′

Compute the functional derivative of S[f ] and verify that it is given by

δS

δf(x)
=

1

π

d

dx

{
P

∫ ∞

−∞

f(x′)
x− x′ dx

′
}
.

See exercise 6.10 for an occurence of this functional.


