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Mathematical Methods of Physics I
Instructor: Predrag Cvitanović
Fall semester 2012

Homework Set #5 due October 2, 2012

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

Stone & Goldbart Exercise 6.1) Characteristics

Show that the general solution to the equation

∂ϕ

∂x
− ∂ϕ

∂y
− (x− y)ϕ = 0 .

is
ϕ(x, y) = e−xy f (x + y) ,

where f is an arbitrary function. Don’t just substitute the solution into the
equation and verify that it works - that’s a copout. Derive the solution by the
method of characteristics discussed in the book, leading to this exercise.

Problem 4) The wave equation

Consider the wave equation in one spatial variable x and one temporal vari-
able t,

∂tt u− c2 ∂xx u = 0.

a) Transform from the independent variables x and t to the characteristic
variables ξ ≡ (x − ct) and η ≡ (x + ct), and determine the resulting
form of the wave equation.

b) By making use of your answer to part (a) determine the general solution
u(x, t) of the wave equation.

c) Interpret the two contributions to u(x, t).

d) Suppose that Cauchy boundary conditions are given for all x at the time
t = 0, i.e., it is given that u(x, t)|t=0 = α(x) and ∂tu(x, t)|t=0 = β(x).
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Determine, in terms of α(x) and β(x), the solution to the wave equation
throughout space-time.

Now consider waves in a finite segment of space 0 ≤ x ≤ `, and suppose
that homogeneous Dirichlet boundary conditions are applied at all times
at the ends x = 0 and `.

e) Explain how these boundary conditions lead iteratively to relations which,
together with the initial conditions, determine the solution to the wave
equation in the segment 0 ≤ x ≤ ` for all time.

Problem B) Series solutions of ordinary differential equations

a) Show that if m is not zero or an integer then the equation

d2u
dx2 +

(
1
4 −m2

x2 − 1
4

)
u = 0

is satisfied by two series about x = 0 with leading terms

x
1
2+m

(
1 +

x2

16(1 + m)
+ · · ·

)
, x

1
2−m

(
1 +

x2

16(1−m)
+ · · ·

)
.

Determine the recursion relation for the coefficient of the general term in
each series, and show that the series converge for all values of x. (From
Whittaker and Watson.)

b) By expanding about the regular singular point x = 1, find the series so-
lutions of Legendre’s equation of order zero:(

1− x2
) d2u

dx2 − 2x
du
dx

+ λu = 0.

Show that both roots of the indicial equation vanish. Find the first three
terms of the regular solution P(x). Suppose that the singular solution
Q(x) has the form

Q(x) = P(x) ln(x− 1) +
(

x− 1
)(

b0 + b1(x− 1) + b2(x− 1)2 + · · ·
)

.

Find the coefficients b0 and b1 of the singular solution. (From Whittaker
and Watson.)
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Optional problems

Problem A) Linear homogeneous ODEs with constant coefficients

Consider the general linear nth-order homogeneous ordinary differential
equation with constant coefficients: y(n)(x) + pn−1 y(n−1)(x) + · · ·+ p0 y(x) =
0 . The general solution can be obtained by inserting the hypothesis y(x) =
erx, after which the equation becomes an algebraic (rather than differential)
equation for r,

rn + pn−1 rn−1 + · · · p1 r1 + p0 = 0 .

Now, the fundamental theorem of algebra guarantees that this equation has
exactly n roots {rj}n

j=1 in the complex plane; they occur as complex conjugate
pairs if the constant coefficients {pj}n

j=1 are real. If all the roots are distinct (i.e.,
all different) then the general solution is y(x) = ∑n

j=1 cj erjx where {cj}n
j=1 are

constants of integration.

a) Find the general solution of the equation y(2) − 5y(1) + 4y = 0.

If the roots are not all distinct then we must work a little harder because
y = ∑n

j=1 cj erjx is not the most general solution. For example, suppose
that the first m roots are equal: r1 = r2 = . . . = rm = ρ. Then the algebraic
equation becomes (r − ρ)mQ(r) = 0, where Q is a polynomial of order
n−m.

b) Show that (∂/∂r)`erx|r=ρ (for ` = 0, 1, . . . , m− 1) are solutions of the or-
dinary differential equation.

c) Apply this method by finding the general solution to the ordinary differ-
ential equation y(3) − 3y(2) + 3y(1) − y = 0.

Problem B) Series solutions of ordinary differential equations

c) Continued: Show that the solutions of the equation

d2u
dx2 +

1
x

du
dx
−m2u = 0

near x = 0 are

u1(x) = 1+
∞

∑
n=1

m2nx2n

22n(n!)2 , u2(x) = u1(x) ln x−
∞

∑
n=1

m2nx2n

22n(n!)2

(
1 +

1
2
+ · · ·+ 1

n

)
.

Show that these solutions converge for all values of x.
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Problem 2) Separability

Show that Helmholtz’s equation
(
∇2 + k2)u(r, θ, z) = 0 remains separable

if {r, θ, z} represent circular cylindrical coordinates and k2 is replaced by k2 +
f (r) + g(θ)/r2 + h(z).

Problem 3) Linear homogeneous second order ordinary differential equations

The purpose of this question is to derive some properties of the general
linear homogeneous second order ordinary differential equation,

d2y
dx2 + p(x)

dy
dx

+ q(x) y = 0 ,

and then to exhibit these properties for specific cases. Suppose you have two
solutions to the above ordinary differential equation, namely u1(x) and u2(x).

a) Show that the condition for u1(x) and u2(x) to be linearly independent
is that their Wronskian does not vanish identically. Show that the Wron-
skian does not vary, apart from a multiplicative constant, when u1(x) and
u2(x) are replaced by alternative linear combinations, i.e.,

u1(x) → a1 u1(x) + a2 u2(x)
u2(x) → b1 u1(x) + b2 u2(x)

where a1, a2, b1 and b2 are constants. What property does the new lin-
ear combination have if the multiplicative constant makes the Wronskian
vanish?
[Note: vanish identically means be zero everywhere throughout the range
of values of x relevant to the case at hand, not simply at some isolated
points.]

b) Show that if the Wronskian of the two solutions vanishes identically then
u2(x) = c1 u1(x), where c1 is a constant (i.e. the solutions are not linearly
independent).

The problem of computing the Wronskian reduces to quadratures (i.e. to
the evaluation of an integral), even for linear homogeneous ordinary dif-
ferential equations of higher than second order. For the case of second
order ordinary differential equations, this becomes particularly useful
when one solution is known and a second linearly independent solution
is desired.

c) To see this, show that knowledge of the Wronskian W(x) and one solu-
tion u1(x) is sufficient to reduce to quadratures the problem of finding a
second, linearly independent, solution.
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d) Show that there can be no more than two linearly independent analytic
solutions of a second order ordinary differential equation in the neigh-
bourhood of a regular point x0.

e) Consider Legendre’s equation with ` = 1 and m = 0, i.e.,
(
(1− x2)y′

)′
+

2y = 0. Given that y(x) = x is a solution, compute the Wronskian and use
the Wronskian and the given solution to construct a linearly independent
solution.

f) Compute the Wronskian of the three functions ex, e−x and cosh x. Are
these three functions linearly independent?

Problem 5) Series solution at an ordinary point

Consider the first-order ordinary differential equation: (1 + x2) y′ + 2xy =
0.

a) Classify the point x = 0.

b) Show that y = c (1 + x2)−1 is a solution.

c) Suppose you did not know the exact solution. Construct the series solu-
tion by expanding around the point x = 0. What is the radius of conver-
gence of your series?

d) What feature of the ordinary differential equation is responsible for the
finite radius of convergence?

Problem 6) Separation of variables for non-linear partial differential equations

Occasionally, the method of separation of variables is useful for non-linear
ordinary differential equations. Although superposition is not now legitimate,
it is sometimes possible to obtain a useful solution, as the following example
shows. Consider the partial differential equation

f (x) u2
x + g(y) u2

y = a(x) + b(y),

where f , g, a and b are presumed known.

a) By hypothesising a solution with the additively separated form u(x, y, ) =
φ(x) + ψ(y) derive a solution of this partial differential equation with
the form

u(x, y, ) = β +
∫ x

x0

dx′A
(

a(x′) + α

f (x′)

)
+
∫ y

y0

dy′B
(

b(y′)− α

g(y′)

)
in terms of one separation constant α, one integration constant β and two
functions A and B. State the form of the functions A and B.
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b) Apply this method to determine a solution when the equation is specified
by a(z) = b(z) = f (z) = g(z) = z2 and the boundary conditions are
u(0, 0) = 0 and u(x, y, ) = u(y, x).

Problem 7) Frullanian integrals

(After Zwillinger: Handbook of Integration .) A convergent integral can
sometimes be written as the difference of two integrals that each diverge. If
these two integrals diverge in the same way, then the difference may be eval-
uated by certain limiting processes. Consider the convergent integral: I =∫ ∞

0 x−2 sin3 x dx.

a) Rewrite this integral as I = 1
4

∫ ∞
0 x−2 (3 sin x− sin 3x) dx, and explain

why it cannot be rewritten as I = 3
4

∫ ∞
0 x−2 sin x dx− 1

4

∫ ∞
0 x−2 sin 3x dx.

b) Explain why I can, however, be rewritten as:

I = lim
δ→0

(
3
4

∫ ∞

δ
x−2 sin x dx− 1

4

∫ ∞

δ
x−2 sin 3x dx

)
.

c) Show, by using the change of variables x → y = 3x in the second integral,
that I = 3

4 log 3.

d) Generalise the above procedure to derive the rule:∫ ∞

0
x−1

(
f (ax)− f (bx)

)
dx =

[
f (∞)− f (0)

]
log(a/b).

e) Use this generalisation to evaluate
∫ ∞

0 x−1
(

tanh(ax)− tanh(bx)
)

dx.

Problem 8) Coupled ordinary differential equations

a) Consider the system of N coupled first-order ordinary differential equa-
tions:

d
dt

xi(t) =
N

∑
j=1

Aij xj(t),

where we assume that the constant N × N matrix A has N linearly inde-
pendent right eigenvectors. Show that the general solution can be written
as

xi(t) =
N

∑
`=1

C(`) x(`)i eλ(`)t,

where x(`)i and λ(`) are, respectively the right eigenvectors and eigenval-
ues of A, and C(`) are arbitrary constants that can be chosen to fit the
initial conditions.
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b) Apply this technique to the problem of finding the general solution of the
system

d
dt

(
x1
x2

)
=

(
9 2
1 8

)(
x1
x2

)
.
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