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Chapter 1

Calculus of Variations

We begin our tour of useful mathematics with what is called the calculus of
variations. Many physics problems can be formulated in the language of this
calculus, and once they are there are useful tools to hand. In the text and
associated exercises we will meet some of the equations whose solution will
occupy us for much of our journey.

1.1 What is it good for?

The classical problems that motivated the creators of the calculus of varia-
tions include:

i) Dido’s problem: In Virgil’s Aeneid we read how Queen Dido of Carthage
must find largest area that can be enclosed by a curve (a strip of bull’s
hide) of fixed length.

ii) Plateau’s problem: Find the surface of minimum area for a given set of
bounding curves. A soap film on a wire frame will adopt this minimal-
area configuration.

iii) Johann Bernoulli’s Brachistochrone: A bead slides down a curve with
fixed ends. Assuming that the total energy 1

2
mv2 + V (x) is constant,

find the curve that gives the most rapid descent.
iv) Catenary : Find the form of a hanging heavy chain of fixed length by

minimizing its potential energy.

These problems all involve finding maxima or minima, and hence equating
some sort of derivative to zero. In the next section we define this derivative,
and show how to compute it.

1



2 CHAPTER 1. CALCULUS OF VARIATIONS

1.2 Functionals

In variational problems we are provided with an expression J [y] that “eats”
whole functions y(x) and returns a single number. Such objects are called
functionals to distinguish them from ordinary functions. An ordinary func-
tion is a map f : R→ R. A functional J is a map J : C∞(R)→ R where
C∞(R) is the space of smooth (having derivatives of all orders) functions.
To find the function y(x) that maximizes or minimizes a given functional
J [y] we need to define, and evaluate, its functional derivative.

1.2.1 The functional derivative

We restrict ourselves to expressions of the form

J [y] =

∫ x2

x1

f(x, y, y′, y′′, · · · y(n)) dx, (1.1)

where f depends on the value of y(x) and only finitely many of its derivatives.
Such functionals are said to be local in x.

Consider first a functional J =
∫
fdx in which f depends only x, y and

y′. Make a change y(x)→ y(x) + εη(x), where ε is a (small) x-independent
constant. The resultant change in J is

J [y + εη]− J [y] =

∫ x2

x1

{f(x, y + εη, y′ + εη′)− f(x, y, y′)} dx

=

∫ x2

x1

{
εη
∂f

∂y
+ ε

dη

dx

∂f

∂y′
+O(ε2)

}
dx

=

[
εη
∂f

∂y′

]x2

x1

+

∫ x2

x1

(εη(x))

{
∂f

∂y
− d

dx

(
∂f

∂y′

)}
dx+O(ε2).

If η(x1) = η(x2) = 0, the variation δy(x) ≡ εη(x) in y(x) is said to have
“fixed endpoints.” For such variations the integrated-out part [. . .]x2

x1
van-

ishes. Defining δJ to be the O(ε) part of J [y + εη]− J [y], we have

δJ =

∫ x2

x1

(εη(x))

{
∂f

∂y
− d

dx

(
∂f

∂y′

)}
dx

=

∫ x2

x1

δy(x)

(
δJ

δy(x)

)
dx. (1.2)
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The function
δJ

δy(x)
≡ ∂f

∂y
− d

dx

(
∂f

∂y′

)
(1.3)

is called the functional (or Fréchet) derivative of J with respect to y(x). We
can think of it as a generalization of the partial derivative ∂J/∂yi, where the
discrete subscript “i” on y is replaced by a continuous label “x,” and sums
over i are replaced by integrals over x:

δJ =
∑

i

∂J

∂yi
δyi →

∫ x2

x1

dx

(
δJ

δy(x)

)
δy(x). (1.4)

1.2.2 The Euler-Lagrange equation

Suppose that we have a differentiable function J(y1, y2, . . . , yn) of n variables
and seek its stationary points — these being the locations at which J has its
maxima, minima and saddlepoints. At a stationary point (y1, y2, . . . , yn) the
variation

δJ =

n∑

i=1

∂J

∂yi
δyi (1.5)

must be zero for all possible δyi. The necessary and sufficient condition for
this is that all partial derivatives ∂J/∂yi, i = 1, . . . , n be zero. By analogy,
we expect that a functional J [y] will be stationary under fixed-endpoint vari-
ations y(x)→ y(x)+δy(x), when the functional derivative δJ/δy(x) vanishes
for all x. In other words, when

∂f

∂y(x)
− d

dx

(
∂f

∂y′(x)

)
= 0, x1 < x < x2. (1.6)

The condition (1.6) for y(x) to be a stationary point is usually called the
Euler-Lagrange equation.

That δJ/δy(x) ≡ 0 is a sufficient condition for δJ to be zero is clear
from its definition in (1.2). To see that it is a necessary condition we must
appeal to the assumed smoothness of y(x). Consider a function y(x) at which
J [y] is stationary but where δJ/δy(x) is non-zero at some x0 ∈ [x1, x2].
Because f(y, y′, x) is smooth, the functional derivative δJ/δy(x) is also a
smooth function of x. Therefore, by continuity, it will have the same sign
throughout some open interval containing x0. By taking δy(x) = εη(x) to be
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x
y(x)

1 xx2

Figure 1.1: Soap film between two rings.

zero outside this interval, and of one sign within it, we obtain a non-zero δJ
— in contradiction to stationarity. In making this argument, we see why it
was essential to integrate by parts so as to take the derivative off δy: when
y is fixed at the endpoints, we have

∫
δy′ dx = 0, and so we cannot find a δy′

that is zero everywhere outside an interval and of one sign within it.
When the functional depends on more than one function y, then station-

arity under all possible variations requires one equation

δJ

δyi(x)
=
∂f

∂yi
− d

dx

(
∂f

∂y′i

)
= 0 (1.7)

for each function yi(x).
If the function f depends on higher derivatives, y′′, y(3), etc., then we

have to integrate by parts more times, and we end up with

0 =
δJ

δy(x)
=
∂f

∂y
− d

dx

(
∂f

∂y′

)
+

d2

dx2

(
∂f

∂y′′

)
− d3

dx3

(
∂f

∂y(3)

)
+ · · · . (1.8)

1.2.3 Some applications

Now we use our new functional derivative to address some of the classic
problems mentioned in the introduction.
Example: Soap film supported by a pair of coaxial rings (figure 1.1) This
a simple case of Plateau’s problem. The free energy of the soap film is
equal to twice (once for each liquid-air interface) the surface tension σ of the
soap solution times the area of the film. The film can therefore minimize its
free energy by minimizing its area, and the axial symmetry suggests that the
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minimal surface will be a surface of revolution about the x axis. We therefore
seek the profile y(x) that makes the area

J [y] = 2π

∫ x2

x1

y

√
1 + y′2 dx (1.9)

of the surface of revolution the least among all such surfaces bounded by
the circles of radii y(x1) = y1 and y(x2) = y2. Because a minimum is a
stationary point, we seek candidates for the minimizing profile y(x) by setting
the functional derivative δJ/δy(x) to zero.

We begin by forming the partial derivatives

∂f

∂y
= 4πσ

√
1 + y′2,

∂f

∂y′
=

4πσyy′√
1 + y′2

(1.10)

and use them to write down the Euler-Lagrange equation

√
1 + y′2 − d

dx

(
yy′√
1 + y′2

)
= 0. (1.11)

Performing the indicated derivative with respect to x gives

√
1 + y′2 − (y′)2

√
1 + y′2

− yy′′√
1 + y′2

+
y(y′)2y′′

(1 + y′2)3/2
= 0. (1.12)

After collecting terms, this simplifies to

1√
1 + y′2

− yy′′

(1 + y′2)3/2
= 0. (1.13)

The differential equation (1.13) still looks a trifle intimidating. To simplify
further, we multiply by y′ to get

0 =
y′√

1 + y′2
− yy′y′′

(1 + y′2)3/2

=
d

dx

(
y√

1 + y′2

)
. (1.14)

The solution to the minimization problem therefore reduces to solving

y√
1 + y′2

= κ, (1.15)



6 CHAPTER 1. CALCULUS OF VARIATIONS

where κ is an as yet undetermined integration constant. Fortunately this
non-linear, first order, differential equation is elementary. We recast it as

dy

dx
=

√
y2

κ2
− 1 (1.16)

and separate variables ∫
dx =

∫
dy√
y2

κ2 − 1
. (1.17)

We now make the natural substitution y = κ cosh t, whence
∫
dx = κ

∫
dt. (1.18)

Thus we find that x + a = κt, leading to

y = κ cosh
x + a

κ
. (1.19)

We select the constants κ and a to fit the endpoints y(x1) = y1 and y(x2) =
y2.

x

y

h

−L +L

Figure 1.2: Hanging chain

Example: Heavy Chain over Pulleys. We cannot yet consider the form of
the catenary, a hanging chain of fixed length, but we can solve a simpler
problem of a heavy flexible cable draped over a pair of pulleys located at
x = ±L, y = h, and with the excess cable resting on a horizontal surface as
illustrated in figure 1.2.
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y

y= ht/L

y=cosh t

t=L/κ

Figure 1.3: Intersection of y = ht/L with y = cosh t.

The potential energy of the system is

P.E. =
∑

mgy = ρg

∫ L

−L
y
√

1 + (y′)2dx+ const. (1.20)

Here the constant refers to the unchanging potential energy

2×
∫ h

0

mgy dy = mgh2 (1.21)

of the vertically hanging cable. The potential energy of the cable lying on the
horizontal surface is zero because y is zero there. Notice that the tension in
the suspended cable is being tacitly determined by the weight of the vertical
segments.

The Euler-Lagrange equations coincide with those of the soap film, so

y = κ cosh
(x + a)

κ
(1.22)

where we have to find κ and a. We have

h = κ cosh(−L + a)/κ,

= κ cosh(L+ a)/κ, (1.23)
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x

y

g

(a,b)

Figure 1.4: Bead on a wire.

so a = 0 and h = κ coshL/κ. Setting t = L/κ this reduces to

(
h

L

)
t = cosh t. (1.24)

By considering the intersection of the line y = ht/L with y = cosh t (figure
1.3) we see that if h/L is too small there is no solution (the weight of the
suspended cable is too big for the tension supplied by the dangling ends)
and once h/L is large enough there will be two possible solutions. Further
investigation will show that the solution with the larger value of κ is a point
of stable equilibrium, while the solution with the smaller κ is unstable.

Example: The Brachistochrone. This problem was posed as a challenge by
Johann Bernoulli in 1696. He asked what shape should a wire with endpoints
(0, 0) and (a, b) take in order that a frictionless bead will slide from rest down
the wire in the shortest possible time (figure 1.4). The problem’s name comes
from Greek: βραχιστoς means shortest and χρoνoς means time.

When presented with an ostensibly anonymous solution, Johann made his
famous remark: “Tanquam ex unguem leonem” (I recognize the lion by his
clawmark) meaning that he recognized that the author was Isaac Newton.

Johann gave a solution himself, but that of his brother Jacob Bernoulli
was superior and Johann tried to pass it off as his. This was not atypical.
Johann later misrepresented the publication date of his book on hydraulics
to make it seem that he had priority in this field over his own son, Daniel
Bernoulli.
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x

y

(0,0)

(a,b)

θ
θ

(x,y)

Figure 1.5: A wheel rolls on the x axis. The dot, which is fixed to the rim of
the wheel, traces out a cycloid.

We begin our solution of the problem by observing that the total energy

E =
1

2
m(ẋ2 + ẏ2)−mgy =

1

2
mẋ2(1 + y′2)−mgy, (1.25)

of the bead is constant. From the initial condition we see that this constant
is zero. We therefore wish to minimize

T =

∫ T

0

dt =

∫ a

0

1

ẋ
dx =

∫ a

0

√
1 + y′2

2gy
dx (1.26)

so as find y(x), given that y(0) = 0 and y(a) = b. The Euler-Lagrange
equation is

yy′′ +
1

2
(1 + y′2) = 0. (1.27)

Again this looks intimidating, but we can use the same trick of multiplying
through by y′ to get

y′
(
yy′′ +

1

2
(1 + y′2)

)
=

1

2

d

dx

{
y(1 + y′2)

}
= 0. (1.28)

Thus
2c = y(1 + y′2). (1.29)

This differential equation has a parametric solution

x = c(θ − sin θ),

y = c(1− cos θ), (1.30)



10 CHAPTER 1. CALCULUS OF VARIATIONS

(as you should verify) and the solution is the cycloid shown in figure 1.5.
The parameter c is determined by requiring that the curve does in fact pass
through the point (a, b).

1.2.4 First integral

How did we know that we could simplify both the soap-film problem and
the brachistochrone by multiplying the Euler equation by y ′? The answer
is that there is a general principle, closely related to energy conservation in
mechanics, that tells us when and how we can make such a simplification.
The y′ trick works when the f in

∫
f dx is of the form f(y, y′), i.e. has no

explicit dependence on x. In this case the last term in

df

dx
= y′

∂f

∂y
+ y′′

∂f

∂y′
+
∂f

∂x
(1.31)

is absent. We then have

d

dx

(
f − y′ ∂f

∂y′

)
= y′

∂f

∂y
+ y′′

∂f

∂y′
− y′′ ∂f

∂y′
− y′ d

dx

(
∂f

∂y′

)

= y′
(
∂f

∂y
− d

dx

(
∂f

∂y′

))
, (1.32)

and this is zero if the Euler-Lagrange equation is satisfied.
The quantity

I = f − y′ ∂f
∂y′

(1.33)

is called a first integral of the Euler-Lagrange equation. In the soap-film case

f − y′ ∂f
∂y′

= y
√

1 + (y′)2 − y(y′)2

√
1 + (y′)2

=
y√

1 + (y′)2
. (1.34)

When there are a number of dependent variables yi, so that we have

J [y1, y2, . . . yn] =

∫
f(y1, y2, . . . yn; y

′
1, y

′
2, . . . y

′
n) dx (1.35)

then the first integral becomes

I = f −
∑

i

y′i
∂f

∂y′i
. (1.36)
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Again

dI

dx
=

d

dx

(
f −

∑

i

y′i
∂f

∂y′i

)

=
∑

i

(
y′i
∂f

∂yi
+ y′′i

∂f

∂y′i
− y′′i

∂f

∂y′i
− y′i

d

dx

(
∂f

∂y′i

))

=
∑

i

y′i

(
∂f

∂yi
− d

dx

(
∂f

∂y′i

))
, (1.37)

and this zero if the Euler-Lagrange equation is satisfied for each yi.
Note that there is only one first integral, no matter how many yi’s there

are.

1.3 Lagrangian mechanics

In his Mécanique Analytique (1788) Joseph-Louis de La Grange, following
Jean d’Alembert (1742) and Pierre de Maupertuis (1744), showed that most
of classical mechanics can be recast as a variational condition: the principle
of least action. The idea is to introduce the Lagrangian function L = T − V
where T is the kinetic energy of the system and V the potential energy, both
expressed in terms of generalized co-ordinates qi and their time derivatives
q̇i. Then, Lagrange showed, the multitude of Newton’s F = ma equations,
one for each particle in the system, can be reduced to

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (1.38)

one equation for each generalized coordinate q. Quite remarkably — given
that Lagrange’s derivation contains no mention of maxima or minima — we
recognise that this is precisely the condition that the action functional

S[q] =

∫ tfinal

tinitial

L(t, qi; q′
i
) dt (1.39)

be stationary with respect to variations of the trajectory qi(t) that leave the
initial and final points fixed. This fact so impressed its discoverers that they
believed they had uncovered the unifying principle of the universe. Mauper-
tuis, for one, tried to base a proof of the existence of God on it. Today the
action integral, through its starring role in the Feynman path-integral for-
mulation of quantum mechanics, remains at the heart of theoretical physics.
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m2

1m

T
1x

T x
2

g

Figure 1.6: Atwood’s machine.

1.3.1 One degree of freedom

We shall not attempt to derive Lagrange’s equations from d’Alembert’s ex-
tension of the principle of virtual work – leaving this task to a mechanics
course — but instead satisfy ourselves with some examples which illustrate
the computational advantages of Lagrange’s approach, as well as a subtle
pitfall.

Consider, for example, Atwood’s Machine (figure 1.6). This device, in-
vented in 1784 but still a familiar sight in teaching laboratories, is used to
demonstrate Newton’s laws of motion and to measure g. It consists of two
weights connected by a light string of length l which passes over a light and
frictionless pulley

The elementary approach is to write an equation of motion for each of
the two weights

m1ẍ1 = m1g − T,
m2ẍ2 = m2g − T. (1.40)

We then take into account the constraint ẋ1 = −ẋ2 and eliminate ẍ2 in favour
of ẍ1:

m1ẍ1 = m1g − T,
−m2ẍ1 = m2g − T. (1.41)
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Finally we eliminate the constraint force, the tension T , and obtain the
acceleration

(m1 +m2)ẍ1 = (m1 −m2)g. (1.42)

Lagrange’s solution takes the constraint into account from the very be-
ginning by introducing a single generalized coordinate q = x1 = l − x2, and
writing

L = T − V =
1

2
(m1 +m2)q̇

2 − (m2 −m1)gq. (1.43)

From this we obtain a single equation of motion

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 ⇒ (m1 +m2)q̈ = (m1 −m2)g. (1.44)

The advantage of the the Lagrangian method is that constraint forces, which
do no net work, never appear. The disadvantage is exactly the same: if we
need to find the constraint forces – in this case the tension in the string —
we cannot use Lagrange alone.

Lagrange provides a convenient way to derive the equations of motion in
non-cartesian co-ordinate systems, such as plane polar co-ordinates.

ϑ

r

y

x

ar

aϑ

Figure 1.7: Polar components of acceleration.

Consider the central force problem with Fr = −∂rV (r). Newton’s method
begins by computing the acceleration in polar coordinates. This is most
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easily done by setting z = reiθ and differentiating twice:

ż = (ṙ + irθ̇)eiθ,

z̈ = (r̈ − rθ̇2)eiθ + i(2ṙθ̇ + rθ̈)eiθ. (1.45)

Reading off the components parallel and perpendicular to eiθ gives the radial
and angular acceleration

ar = r̈ − rθ̇2,

aθ = rθ̈ + 2ṙθ̇. (1.46)

Newton’s equations therefore become

m(r̈ − rθ̇2) = −∂V
∂r

m(rθ̈ + 2ṙθ̇) = 0, ⇒ d

dt
(mr2θ̇) = 0. (1.47)

Setting l = mr2θ̇, the conserved angular momentum, and eliminating θ̇ gives

mr̈ − l2

mr3
= −∂V

∂r
. (1.48)

(If this were Kepler’s problem, where V = GmM/r, we would now proceed
to simplify this equation by substituting r = 1/u, but that is another story.)

Following Lagrange we first compute the kinetic energy in polar coordi-
nates (this requires less thought than computing the acceleration) and set

L = T − V =
1

2
m(ṙ2 + r2θ̇2)− V (r). (1.49)

The Euler-Lagrange equations are now

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0, ⇒ mr̈ −mrθ̇2 +

∂V

∂r
= 0,

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0, ⇒ d

dt
(mr2θ̇) = 0, (1.50)

and coincide with Newton’s.



1.3. LAGRANGIAN MECHANICS 15

The first integral is

E = ṙ
∂L

∂ṙ
+ θ̇

∂L

∂θ̇
− L

=
1

2
m(ṙ2 + r2θ̇2) + V (r). (1.51)

which is the total energy. Thus the constancy of the first integral states that

dE

dt
= 0, (1.52)

or that energy is conserved.
Warning: We might realize, without having gone to the trouble of deriving
it from the Lagrange equations, that rotational invariance guarantees that
the angular momentum l = mr2θ̇ is constant. Having done so, it is almost
irresistible to try to short-circuit some of the labour by plugging this prior
knowledge into

L =
1

2
m(ṙ2 + r2θ̇2)− V (r) (1.53)

so as to eliminate the variable θ̇ in favour of the constant l. If we try this we
get

L
?→ 1

2
mṙ2 +

l2

2mr2
− V (r). (1.54)

We can now directly write down the Lagrange equation r, which is

mr̈ +
l2

mr3

?
= −∂V

∂r
. (1.55)

Unfortunately this has the wrong sign before the l2/mr3 term! The lesson is
that we must be very careful in using consequences of a variational principle
to modify the principle. It can be done, and in mechanics it leads to the
Routhian or, in more modern language to Hamiltonian reduction, but it
requires using a Legendre transform. The reader should consult a book on
mechanics for details.

1.3.2 Noether’s theorem

The time-independence of the first integral

d

dt

{
q̇
∂L

∂q̇
− L

}
= 0, (1.56)



16 CHAPTER 1. CALCULUS OF VARIATIONS

and of angular momentum

d

dt
{mr2θ̇} = 0, (1.57)

are examples of conservation laws. We obtained them both by manipulating
the Euler-Lagrange equations of motion, but also indicated that they were
in some way connected with symmetries. One of the chief advantages of a
variational formulation of a physical problem is that this connection

Symmetry ⇔ Conservation Law

can be made explicit by exploiting a strategy due to Emmy Noether. She
showed how to proceed directly from the action integral to the conserved
quantity without having to fiddle about with the individual equations of
motion. We begin by illustrating her technique in the case of angular mo-
mentum, whose conservation is a consequence the rotational symmetry of
the central force problem. The action integral for the central force problem
is

S =

∫ T

0

{
1

2
m(ṙ2 + r2θ̇2)− V (r)

}
dt. (1.58)

Noether observes that the integrand is left unchanged if we make the variation

θ(t)→ θ(t) + εα (1.59)

where α is a fixed angle and ε is a small, time-independent, parameter. This
invariance is the symmetry we shall exploit. It is a mathematical identity:
it does not require that r and θ obey the equations of motion. She next
observes that since the equations of motion are equivalent to the statement
that S is left stationary under any infinitesimal variations in r and θ, they
necessarily imply that S is stationary under the specific variation

θ(t)→ θ(t) + ε(t)α (1.60)

where now ε is allowed to be time-dependent. This stationarity of the action
is no longer a mathematical identity, but, because it requires r, θ, to obey
the equations of motion, has physical content. Inserting δθ = ε(t)α into our
expression for S gives

δS = α

∫ T

0

{
mr2θ̇

}
ε̇ dt. (1.61)
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Note that this variation depends only on the time derivative of ε, and not ε
itself. This is because of the invariance of S under time-independent rota-
tions. We now assume that ε(t) = 0 at t = 0 and t = T , and integrate by
parts to take the time derivative off ε and put it on the rest of the integrand:

δS = −α
∫ {

d

dt
(mr2θ̇)

}
ε(t) dt. (1.62)

Since the equations of motion say that δS = 0 under all infinitesimal varia-
tions, and in particular those due to any time dependent rotation ε(t)α, we
deduce that the equations of motion imply that the coefficient of ε(t) must
be zero, and so, provided r(t), θ(t), obey the equations of motion, we have

0 =
d

dt
(mr2θ̇). (1.63)

As a second illustration we derive energy (first integral) conservation for
the case that the system is invariant under time translations — meaning
that L does not depend explicitly on time. In this case the action integral
is invariant under constant time shifts t → t + ε in the argument of the
dynamical variable:

q(t)→ q(t + ε) ≈ q(t) + εq̇. (1.64)

The equations of motion tell us that that the action will be stationary under
the variation

δq(t) = ε(t)q̇, (1.65)

where again we now permit the parameter ε to depend on t. We insert this
variation into

S =

∫ T

0

Ldt (1.66)

and find

δS =

∫ T

0

{
∂L

∂q
q̇ε+

∂L

∂q̇
(q̈ε+ q̇ε̇)

}
dt. (1.67)

This expression contains undotted ε’s. Because of this the change in S is not
obviously zero when ε is time independent — but the absence of any explicit
t dependence in L tells us that

dL

dt
=
∂L

∂q
q̇ +

∂L

∂q̇
q̈. (1.68)
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As a consequence, for time independent ε, we have

δS =

∫ T

0

{
ε
dL

dt

}
dt = ε[L]T0 , (1.69)

showing that the change in S comes entirely from the endpoints of the time
interval. These fixed endpoints explicitly break time-translation invariance,
but in a trivial manner. For general ε(t) we have

δS =

∫ T

0

{
ε(t)

dL

dt
+
∂L

∂q̇
q̇ε̇

}
dt. (1.70)

This equation is an identity. It does not rely on q obeying the equation of
motion. After an integration by parts, taking ε(t) to be zero at t = 0, T , it
is equivalent to

δS =

∫ T

0

ε(t)
d

dt

{
L− ∂L

∂q̇
q̇

}
dt. (1.71)

Now we assume that q(t) does obey the equations of motion. The variation
principle then says that δS = 0 for any ε(t), and we deduce that for q(t)
satisfying the equations of motion we have

d

dt

{
L− ∂L

∂q̇
q̇

}
= 0. (1.72)

The general strategy that constitutes “Noether’s theorem” must now be
obvious: we look for an invariance of the action under a symmetry trans-
formation with a time-independent parameter. We then observe that if the
dynamical variables obey the equations of motion, then the action principle
tells us that the action will remain stationary under such a variation of the
dynamical variables even after the parameter is promoted to being time de-
pendent. The resultant variation of S can only depend on time derivatives of
the parameter. We integrate by parts so as to take all the time derivatives off
it, and on to the rest of the integrand. Because the parameter is arbitrary,
we deduce that the equations of motion tell us that that its coefficient in the
integral must be zero. This coefficient is the time derivative of something, so
this something is conserved.

1.3.3 Many degrees of freedom

The extension of the action principle to many degrees of freedom is straight-
forward. As an example consider the small oscillations about equilibrium of
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a system with N degrees of freedom. We parametrize the system in terms of
deviations from the equilibrium position and expand out to quadratic order.
We obtain a Lagrangian

L =

N∑

i,j=1

{
1

2
Mij q̇

iq̇j − 1

2
Vijq

iqj
}
, (1.73)

where Mij and Vij are N ×N symmetric matrices encoding the inertial and
potential energy properties of the system. Now we have one equation

0 =
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

N∑

j=1

(
Mij q̈

j + Vijq
j
)

(1.74)

for each i.

1.3.4 Continuous systems

The action principle can be extended to field theories and to continuum me-
chanics. Here one has a continuous infinity of dynamical degrees of freedom,
either one for each point in space and time or one for each point in the mate-
rial, but the extension of the variational derivative to functions of more than
one variable should possess no conceptual difficulties.

Suppose we are given an action functional S[ϕ] depending on a field ϕ(xµ)
and its first derivatives

ϕµ ≡
∂ϕ

∂xµ
. (1.75)

Here xµ, µ = 0, 1, . . . , d, are the coordinates of d+1 dimensional space-time.
It is traditional to take x0 ≡ t and the other coordinates spacelike. Suppose
further that

S[ϕ] =

∫
Ldt =

∫
L(xµ, ϕ, ϕµ) d

d+1x, (1.76)

where L is the Lagrangian density , in terms of which

L =

∫
L ddx, (1.77)

and the integral is over the space coordinates. Now

δS =

∫ {
δϕ(x)

∂L
∂ϕ(x)

+ δ(ϕµ(x))
∂L

∂ϕµ(x)

}
dd+1x

=

∫
δϕ(x)

{
∂L

∂ϕ(x)
− ∂

∂xµ

(
∂L

∂ϕµ(x)

)}
dd+1x. (1.78)
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In going from the first line to the second, we have observed that

δ(ϕµ(x)) =
∂

∂xµ
δϕ(x) (1.79)

and used the divergence theorem,
∫

Ω

(
∂Aµ

∂xµ

)
dn+1x =

∫

∂Ω

AµnµdS, (1.80)

where Ω is some space-time region and ∂Ω its boundary, to integrate by
parts. Here dS is the element of area on the boundary, and nµ the outward
normal. As before, we take δϕ to vanish on the boundary, and hence there
is no boundary contribution to variation of S. The result is that

δS

δϕ(x)
=

∂L
∂ϕ(x)

− ∂

∂xµ

(
∂L

∂ϕµ(x)

)
, (1.81)

and the equation of motion comes from setting this to zero. Note that a sum
over the repeated coordinate index µ is implied. In practice it is easier not to
use this formula. Instead, make the variation by hand—as in the following
examples.
Example: The Vibrating string . The simplest continuous dynamical system
is the transversely vibrating string. We describe the string displacement by
y(x, t).

0 L
y(x,t)

Figure 1.8: Transversely vibrating string

Let us suppose that the string has fixed ends, a mass per unit length
of ρ, and is under tension T . If we assume only small displacements from
equilibrium, the Lagrangian is

L =

∫ L

0

dx

{
1

2
ρẏ2 − 1

2
Ty′

2

}
. (1.82)
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The dot denotes a partial derivative with respect to t, and the prime a partial
derivative with respect to x. The variation of the action is

δS =

∫∫ L

0

dtdx {ρẏ δẏ − Ty′δy′}

=

∫∫ L

0

dtdx {δy(x, t) (−ρÿ + Ty′′)} . (1.83)

To reach the second line we have integrated by parts, and, because the ends
are fixed, and therefore δy = 0 at x = 0 and L, there is no boundary term.
Requiring that δS = 0 for all allowed variations δy then gives the equation
of motion

ρÿ − Ty′′ = 0 (1.84)

This is the wave equation describing transverse waves propagating with speed
c =

√
T/ρ. Observe that from (1.83) we can read off the functional derivative

of S with respect to the variable y(x, t) as being

δS

δy(x, t)
= −ρÿ(x, t) + Ty′′(x, t). (1.85)

In writing down the first integral for this continuous system, we must
replace the sum over discrete indices by an integral:

E =
∑

i

q̇i
∂L

∂q̇i
− L→

∫
dx

{
ẏ(x)

δL

δẏ(x)

}
− L. (1.86)

When computing δL/δẏ(x) from

L =

∫ L

0

dx

{
1

2
ρẏ2 − 1

2
Ty′

2

}
,

we must remember that it is the continuous analogue of ∂L/∂q̇i, and so, in
contrast to what we do when computing δS/δy(x), we must treat ẏ(x) as a
variable independent of y(x). We then have

δL

δẏ(x)
= ρẏ(x), (1.87)

leading to

E =

∫ L

0

dx

{
1

2
ρẏ2 +

1

2
Ty′

2

}
. (1.88)

This, as expected, is the total energy, kinetic plus potential, of the string.
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The energy-momentum tensor

If we consider an action of the form

S =

∫
L(ϕ, ϕµ) d

d+1x, (1.89)

in which L does not depend explicitly on any of the co-ordinates xµ, we may
refine Noether’s derivation of the law of conservation total energy and obtain
accounting information about the position-dependent energy density . To do
this we make a variation of the form

ϕ(x)→ ϕ(xµ + εµ(x)) = ϕ(xµ) + εµ(x)∂µϕ+O(|ε|2), (1.90)

where ε depends on x ≡ (x0, . . . , xd). The resulting variation in S is

δS =

∫ {
∂L
∂ϕ

εµ∂µϕ+
∂L
∂ϕν

∂ν(ε
µ∂µϕ)

}
dd+1x

=

∫
εµ(x)

∂

∂xν

{
Lδνµ −

∂L
∂ϕν

∂µϕ

}
dd+1x. (1.91)

When ϕ satisfies the the equations of motion this δS will be zero for arbitrary
εµ(x). We conclude that

∂

∂xν

{
Lδνµ −

∂L
∂ϕν

∂µϕ

}
= 0. (1.92)

The (d+ 1)-by-(d+ 1) array of functions

T νµ ≡
∂L
∂ϕν

∂µϕ− δνµL (1.93)

is known as the canonical energy-momentum tensor because the statement

∂νT
ν
µ = 0 (1.94)

often provides book-keeping for the flow of energy and momentum.
In the case of the vibrating string, the µ = 0, 1 components of ∂νT

ν
µ = 0

become the two following local conservation equations:

∂

∂t

{
ρ

2
ẏ2 +

T

2
y′2
}

+
∂

∂x
{−T ẏy′} = 0, (1.95)
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and
∂

∂t
{−ρẏy′}+

∂

∂x

{
ρ

2
ẏ2 +

T

2
y′2
}

= 0. (1.96)

It is easy to verify that these are indeed consequences of the wave equation.
They are “local” conservation laws because they are of the form

∂q

∂t
+ div J = 0, (1.97)

where q is the local density, and J the flux, of the globally conserved quantity
Q =

∫
q ddx. In the first case, the local density q is

T 0
0 =

ρ

2
ẏ2 +

T

2
y′2, (1.98)

which is the energy density. The energy flux is given by T 1
0 ≡ −T ẏy′, which

is the rate that a segment of string is doing work on its neighbour to the right.
Integrating over x, and observing that the fixed-end boundary conditions are
such that ∫ L

0

∂

∂x
{−T ẏy′} dx = [−T ẏy′]L0 = 0, (1.99)

gives us
d

dt

∫ L

0

{
ρ

2
ẏ2 +

T

2
y′2
}
dx = 0, (1.100)

which is the global energy conservation law we obtained earlier.
The physical interpretation of T 0

1 = −ρẏy′, the locally conserved quan-
tity appearing in (1.96) is less obvious. If this were a relativistic system,
we would immediately identify

∫
T 0

1 dx as the x-component of the energy-
momentum 4-vector, and therefore T 0

1 as the density of x-momentum. Now
any real string will have some motion in the x direction, but the magni-
tude of this motion will depend on the string’s elastic constants and other
quantities unknown to our Lagrangian. Because of this, the T 0

1 derived
from L cannot be the string’s x-momentum density. Instead, it is the den-
sity of something called pseudo-momentum. The distinction between true
and pseudo-momentum is best appreaciated by considering the correspond-
ing Noether symmetry. The symmetry associated with Newtonian momen-
tum is the invariance of the action integral under an x translation of the
entire apparatus: the string, and any wave on it. The symmetry associ-
ated with pseudo-momentum is the invariance of the action under a shift
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y(x) → y(x − a) of the location of the wave on the string — the string it-
self not being translated. Newtonian momentum is conserved if the ambient
space is translationally invariant. Pseudo-momentum is conserved only if the
string is translationally invariant — i.e. if ρ and T are position independent.
A failure to realize that the presence of a medium (here the string) requires us
to distinguish between these two symmetries is the origin of much confusion
involving “wave momentum.”

Maxwell’s equations

Michael Faraday and and James Clerk Maxwell’s description of electromag-
netism in terms of dynamical vector fields gave us the first modern field
theory. D’Alembert and Maupertuis would have been delighted to discover
that the famous equations of Maxwell’s A Treatise on Electricity and Mag-
netism (1873) follow from an action principle. There is a slight complication
stemming from gauge invariance but, as long as we are not interested in ex-
hibiting the covariance of Maxwell under Lorentz transformations, we can
sweep this under the rug by working in the axial gauge, where the scalar
electric potential does not appear.

We will start from Maxwell’s equations

div B = 0,

curl E = −∂B
∂t
,

curlH = J +
∂D

∂t
,

div D = ρ, (1.101)

and show that they can be obtained from an action principle. For convenience
we shall use natural units in which µ0 = ε0 = 1, and so c = 1 and D ≡ E
and B ≡ H.

The first equation div B = 0 contains no time derivatives. It is a con-
straint which we satisfy by introducing a vector potential A such that B =curl A.
If we set

E = −∂A
∂t

, (1.102)

then this automatically implies Faraday’s law of induction

curlE = −∂B
∂t
. (1.103)
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We now guess that the Lagrangian is

L =

∫
d3x

[
1

2

{
E2 −B2

}
+ J ·A

]
. (1.104)

The motivation is that L looks very like T − V if we regard 1
2
E2 ≡ 1

2
Ȧ2 as

being the kinetic energy and 1
2
B2 = 1

2
(curlA)2 as being the potential energy.

The term in J represents the interaction of the fields with an external current
source. In the axial gauge the electric charge density ρ does not appear in
the Lagrangian. The corresponding action is therefore

S =

∫
Ldt =

∫∫
d3x

[
1

2
Ȧ2 − 1

2
(curlA)2 + J ·A

]
dt. (1.105)

Now vary A to A + δA, whence

δS =

∫∫
d3x

[
−Ä · δA− (curlA) · (curl δA) + J · δA

]
dt. (1.106)

Here, we have already removed the time derivative from δA by integrating
by parts in the time direction. Now we do the integration by parts in the
space directions by using the identity

div (δA× (curl A)) = (curlA) · (curl δA)− δA · (curl (curlA)) (1.107)

and taking δA to vanish at spatial infinity, so the surface term, which would
come from the integral of the total divergence, is zero. We end up with

δS =

∫∫
d3x

{
δA ·

[
−Ä− curl (curlA) + J

]}
dt. (1.108)

Demanding that the variation of S be zero thus requires

∂2A

∂t2
= −curl (curlA) + J, (1.109)

or, in terms of the physical fields,

curlB = J +
∂E

∂t
. (1.110)

This is Ampère’s law, as modified by Maxwell so as to include the displace-
ment current.



26 CHAPTER 1. CALCULUS OF VARIATIONS

How do we deal with the last Maxwell equation, Gauss’ law, which asserts
that div E = ρ? If ρ were equal to zero, this equation would hold if div A = 0,
i.e. if A were solenoidal. In this case we might be tempted to impose the
constraint div A = 0 on the vector potential, but doing so would undo all
our good work, as we have been assuming that we can vary A freely.

We notice, however, that the three Maxwell equations we already possess
tell us that

∂

∂t
(div E− ρ) = div (curlB)−

(
div J +

∂ρ

∂t

)
. (1.111)

Now div (curlB) = 0, so the left-hand side is zero provided charge is con-
served, i.e. provided

ρ̇+ div J = 0. (1.112)

We assume that this is so. Thus, if Gauss’ law holds initially, it holds eter-
nally. We arrange for it to hold at t = 0 by imposing initial conditions on
A. We first choose A|t=0 by requiring it to satisfy

B|t=0 = curl (A|t=0) . (1.113)

The solution is not unique, because may we add any ∇φ to A|t=0, but this
does not affect the physical E and B fields. The initial “velocities” Ȧ|t=0

are then fixed uniquely by Ȧ|t=0 = −E|t=0, where the initial E satisfies
Gauss’ law. The subsequent evolution of A is then uniquely determined by
integrating the second-order equation (1.109).

The first integral for Maxwell is

E =
3∑

i=1

∫
d3x

{
Ȧi

δL

δȦi

}
− L

=

∫
d3x

[
1

2

{
E2 + B2

}
− J ·A

]
. (1.114)

This will be conserved if J is time independent. If J = 0, it is the total field
energy.

Suppose J is neither zero nor time independent. Then, looking back at
the derivation of the time-independence of the first integral, we see that if L
does depend on time, we instead have

dE

dt
= −∂L

∂t
. (1.115)
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In the present case we have

−∂L
∂t

= −
∫

J̇ ·A d3x, (1.116)

so that

−
∫

J̇ ·A d3x =
dE

dt
=

d

dt
(Field Energy)−

∫ {
J · Ȧ + J̇ ·A

}
d3x. (1.117)

Thus, cancelling the duplicated term and using E = −Ȧ, we find

d

dt
(Field Energy) = −

∫
J ·E d3x. (1.118)

Now
∫

J · (−E) d3x is the rate at which the power source driving the current
is doing work against the field. The result is therefore physically sensible.

Continuum mechanics

Because the mechanics of discrete objects can be derived from an action
principle, it seems obvious that so must the mechanics of continua. This is
certainly true if we use the Lagrangian description where we follow the his-
tory of each particle composing the continuous material as it moves through
space. In fluid mechanics it is more natural to describe the motion by using
the Eulerian description in which we focus on what is going on at a partic-
ular point in space by introducing a velocity field v(r, t). Eulerian action
principles can still be found, but they seem to be logically distinct from the
Lagrangian mechanics action principle, and mostly were not discovered until
the 20th century.

We begin by showing that Euler’s equation for the irrotational motion
of an inviscid compressible fluid can be obtained by applying the action
principle to a functional

S[φ, ρ] =

∫
dt d3x

{
ρ
∂φ

∂t
+

1

2
ρ(∇φ)2 + u(ρ)

}
, (1.119)

where ρ is the mass density and the flow velocity is determined from the
velocity potential φ by v = ∇φ. The function u(ρ) is the internal energy
density.
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Varying S[φ, ρ] with respect to ρ is straightforward, and gives a time
dependent generalization of (Daniel) Bernoulli’s equation

∂φ

∂t
+

1

2
v2 + h(ρ) = 0. (1.120)

Here h(ρ) ≡ du/dρ, is the specific enthalpy.1 Varying with respect to φ
requires an integration by parts, based on

div (ρ δφ∇φ) = ρ(∇δφ) · (∇φ) + δφ div (ρ∇φ), (1.121)

and gives the equation of mass conservation

∂ρ

∂t
+ div (ρv) = 0. (1.122)

Taking the gradient of Bernoulli’s equation, and using the fact that for po-
tential flow the vorticity ω ≡ curlv is zero and so ∂ivj = ∂jvi, we find that

∂v

∂t
+ (v · ∇)v = −∇h. (1.123)

We now introduce the pressure P , which is related to h by

h(P ) =

∫ P

0

dP

ρ(P )
. (1.124)

We see that ρ∇h = ∇P , and so obtain Euler’s equation

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇P. (1.125)

For future reference, we observe that combining the mass-conservation equa-
tion

∂tρ+ ∂j {ρvj} = 0 (1.126)

with Euler’s equation
ρ(∂tvi + vj∂jvi) = −∂iP (1.127)

1The enthalpy H = U + PV per unit mass. In general u and h will be functions of
both the density and the specific entropy. By taking u to depend only on ρ we are tacitly
assuming that specific entropy is constant. This makes the resultant flow barotropic,
meaning that the pressure is a function of the density only.
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yields

∂t {ρvi}+ ∂j {ρvivj + δijP} = 0, (1.128)

which expresses the local conservation of momentum. The quantity

Πij = ρvivj + δijP (1.129)

is the momentum-flux tensor , and is the j-th component of the flux of the
i-th component pi = ρvi of momentum density.

The relations h = du/dρ and ρ = dP/dh show that P and u are related
by a Legendre transformation: P = ρh− u(ρ). From this, and the Bernoulli
equation, we see that the integrand in the action (1.119) is equal to minus
the pressure:

−P = ρ
∂φ

∂t
+

1

2
ρ(∇φ)2 + u(ρ). (1.130)

This Eulerian formulation cannot be a “follow the particle” action prin-
ciple in a clever disguise. The mass conservation law is only a consequence
of the equation of motion, and is not built in from the beginning as a con-
straint. Our variations in φ are therefore conjuring up new matter rather
than merely moving it around.

1.4 Variable endpoints

We now relax our previous assumption that all boundary or surface terms
arising from integrations by parts may be ignored. We will find that variation
principles can be very useful for working out what boundary conditions we
should impose on our differential equations.

Consider the problem of building a railway across a parallel sided isthmus.
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)y(x1
y(x2)

x

y

Figure 1.9: Railway across isthmus.

Suppose that the cost of construction is proportional to the length of the
track, but the cost of sea transport being negligeable, we may locate the
terminal seaports wherever we like. We therefore wish to minimize the length

L[y] =

∫ x2

x1

√
1 + (y′)2dx, (1.131)

by allowing both the path y(x) and the endpoints y(x1) and y(x2) to vary.
Then

L[y + δy]− L[y] =

∫ x2

x1

(δy′)
y′√

1 + (y′)2
dx

=

∫ x2

x1

{
d

dx

(
δy

y′√
1 + (y′)2

)
− δy d

dx

(
y′√

1 + (y′)2

)}
dx

= δy(x2)
y′(x2)√
1 + (y′)2

− δy(x1)
y′(x1)√
1 + (y′)2

−
∫ x2

x1

δy
d

dx

(
y′√

1 + (y′)2

)
dx. (1.132)

We have stationarity when both
i) the coefficient of δy(x) in the integral,

− d

dx

(
y′√

1 + (y′)2

)
, (1.133)

is zero. This requires that y′ =const., i.e. the track should be straight.
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ii) The coefficients of δy(x1) and δy(x2) vanish. For this we need

0 =
y′(x1)√
1 + (y′)2

=
y′(x2)√
1 + (y′)2

. (1.134)

This in turn requires that y′(x1) = y′(x2) = 0.
The integrated-out bits have determined the boundary conditions that are to
be imposed on the solution of the differential equation. In the present case
they require us to build perpendicular to the coastline, and so we go straight
across the isthmus. When boundary conditions are obtained from endpoint
variations in this way, they are called natural boundary conditions.
Example: Sliding String . A massive string of linear density ρ is stretched
between two smooth posts separated by distance 2L. The string is under
tension T , and is free to slide up and down the posts. We consider only a
small deviations of the string from the horizontal.

x

y

+L−L

Figure 1.10: Sliding string.

As we saw earlier, the Lagrangian for a stretched string is

L =

∫ L

−L

{
1

2
ρẏ2 − 1

2
T (y′)2

}
dx. (1.135)

Now, Lagrange’s principle says that the equation of motion is found by re-
quiring the action

S =

∫ tf

ti

Ldt (1.136)

to be stationary under variations of y(x, t) that vanish at the initial and final
times, ti and tf . It does not demand that δy vanish at ends of the string,
x = ±L. So, when we make the variation, we must not assume this. Taking
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care not to discard the results of the integration by parts in the x direction,
we find

δS =

∫ tf

ti

∫ L

−L
δy(x, t) {−ρÿ + Ty′′} dxdt−

∫ tf

ti

δy(L, t)Ty′(L) dt

+

∫ tf

ti

δy(−L, t)Ty′(−L) dt. (1.137)

The equation of motion, which arises from the variation within the interval,
is therefore the wave equation

ρÿ − Ty′′ = 0. (1.138)

The boundary conditions, which come from the variations at the endpoints,
are

y′(L, t) = y′(−L, t) = 0, (1.139)

at all times t. These are the physically correct boundary conditions, because
any up-or-down component of the tension would provide a finite force on an
infinitesimal mass. The string must therefore be horizontal at its endpoints.

Example: Bead and String . Suppose now that a bead of mass M is free to
slide up and down the y axis,

x

y

y(0)

0 L

Figure 1.11: A bead connected to a string.

and is is attached to the x = 0 end of our string. The Lagrangian for the
string-bead contraption is

L =
1

2
M [ẏ(0)]2 +

∫ L

0

{
1

2
ρẏ2 − 1

2
Ty′2

}
dx. (1.140)



1.4. VARIABLE ENDPOINTS 33

Here, as before, ρ is the mass per unit length of the string and T is its tension.
The end of the string at x = L is fixed. By varying the action S =

∫
Ldt,

and taking care not to throw away the boundary part at x = 0 we find that

δS =

∫ tf

ti

[Ty′ −Mÿ]x=0 δy(0, t) dt+

∫ tf

ti

∫ L

0

{Ty′′ − ρÿ} δy(x, t) dxdt.
(1.141)

The Euler-Lagrange equations are therefore

ρÿ(x)− Ty′′(x) = 0, 0 < x < L,

Mÿ(0)− Ty′(0) = 0, y(L) = 0. (1.142)

The boundary condition at x = 0 is the equation of motion for the bead. It
is clearly correct, because Ty′(0) is the vertical component of the force that
the string tension exerts on the bead.

These examples led to boundary conditions that we could easily have
figured out for ourselves without the variational principle. The next exam-
ple shows that a variational formulation can be exploited to obtain a set of
boundary conditions that might be difficult to write down by purely “physi-
cal” reasoning.

y

x
0

0
P

h(x,t)

ρ

g

Figure 1.12: Gravity waves on water.

Harder example: Gravity waves on the surface of water. An action suitable
for describing water waves is given by2 S[φ, h] =

∫
Ldt, where

L =

∫
dx

∫ h(x,t)

0

ρ0

{
∂φ

∂t
+

1

2
(∇φ)2 + gy

}
dy. (1.143)

2J. C. Luke, J. Fluid Dynamics, 27 (1967) 395.



34 CHAPTER 1. CALCULUS OF VARIATIONS

Here φ is the velocity potential and ρ0 is the density of the water. The density
will not be varied because the water is being treated as incompressible. As
before, the flow velocity is given by v = ∇φ. By varying φ(x, y, t) and the
depth h(x, t), and taking care not to throw away any integrated-out parts of
the variation at the physical boundaries, we obtain:

∇2φ = 0, within the fluid.
∂φ

∂t
+

1

2
(∇φ)2 + gy = 0, on the free surface.

∂φ

∂y
= 0, on y = 0.

∂h

∂t
− ∂φ

∂y
+
∂h

∂x

∂φ

∂x
= 0, on the free surface. (1.144)

The first equation comes from varying φ within the fluid, and it simply
confirms that the flow is incompressible, i.e. obeys div v = 0. The second
comes from varying h, and is the Bernoulli equation stating that we have
P = P0 (atmospheric pressure) everywhere on the free surface. The third,
from the variation of φ at y = 0, states that no fluid escapes through the
lower boundary.

Obtaining and interpreting the last equation, involving ∂h/∂t, is some-
what trickier. It comes from the variation of φ on the upper boundary. The
variation of S due to δφ is

δS =

∫
ρ0

{
∂

∂t
δφ+

∂

∂x

(
δφ
∂φ

∂x

)
+

∂

∂y

(
δφ
∂φ

∂y

)
− δφ∇2φ

}
dtdxdy.

(1.145)
The first three terms in the integrand constitute the three-dimensional di-
vergence div (δφΦ), where, listing components in the order t, x, y,

Φ =

[
1,
∂φ

∂x
,
∂φ

∂y

]
. (1.146)

The integrated-out part on the upper surface is therefore
∫

(Φ · n)δφ d|S|.
Here, the outward normal is

n =

(
1 +

(
∂h

∂t

)2

+

(
∂h

∂x

)2
)−1/2 [

−∂h
∂t
,−∂h

∂x
, 1

]
, (1.147)
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and the element of area

d|S| =
(

1 +

(
∂h

∂t

)2

+

(
∂h

∂x

)2
)1/2

dtdx. (1.148)

The boundary variation is thus

δS|y=h = −
∫ {

∂h

∂t
− ∂φ

∂y
+
∂h

∂x

∂φ

∂x

}
δφ
(
x, h(x, t), t

)
dxdt. (1.149)

Requiring this variation to be zero for arbitrary δφ
(
x, h(x, t), t

)
leads to

∂h

∂t
− ∂φ

∂y
+
∂h

∂x

∂φ

∂x
= 0. (1.150)

This last boundary condition expresses the geometrical constraint that the
surface moves with the fluid it bounds, or, in other words, that a fluid particle
initially on the surface stays on the surface. To see that this is so, define
f(x, y, t) = h(x, t) − y. The free surface is then determined by f(x, y, t) =
0. Because the surface particles are carried with the flow, the convective
derivative of f ,

df

dt
≡ ∂f

∂t
+ (v · ∇)f, (1.151)

must vanish on the free surface. Using v = ∇φ and the definition of f , this
reduces to

∂h

∂t
+
∂φ

∂x

∂h

∂x
− ∂φ

∂y
= 0, (1.152)

which is indeed the last boundary condition.
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1.5 Lagrange multipliers

y

x

Figure 1.13: Road on hill.

Figure 1.13 shows the contour map of a hill of height h = f(x, y). The
hill traversed by a road whose points satisfy the equation g(x, y) = 0. Our
challenge is to use the data h(x, y) and g(x, y) to find the highest point on
the road.

When r changes by dr = (dx, dy), the height f changes by

df = ∇f · dr, (1.153)

where ∇f = (∂xf, ∂yf). The highest point, being a stationary point, will
have df = 0 for all displacements dr that stay on the road — that is for
all dr such that dg = 0. Thus ∇f · dr must be zero for those dr such that
0 = ∇g · dr. In other words, at the highest point ∇f will be orthogonal to
all vectors that are orthogonal to ∇g. This is possible only if the vectors ∇f
and ∇g are parallel, and so ∇f = λ∇g for some λ.

To find the stationary point, therefore, we solve the equations

∇f − λ∇g = 0,

g(x, y) = 0, (1.154)

simultaneously.
Example: Let f = x2 + y2 and g = x + y − 1. Then ∇f = 2(x, y) and
∇g = (1, 1). So

2(x, y)− λ(1, 1) = 0, ⇒ (x, y) =
λ

2
(1, 1)
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x + y = 1, ⇒ λ = 1, =⇒ (x, y) = (
1

2
,
1

2
).

When there are n constraints, g1 = g2 = · · · = gn = 0, we want ∇f to lie
in

(< ∇gi >⊥)⊥ =< ∇gi >, (1.155)

where < ei > denotes the space spanned by the vectors ei and < ei >
⊥ is

the its orthogonal complement. Thus ∇f lies in the space spanned by the
vectors ∇gi, so there must exist n numbers λi such that

∇f =
n∑

i=1

λi∇gi. (1.156)

The numbers λi are called Lagrange multipliers. We can therefore regard our
problem as one of finding the stationary points of an auxilliary function

F = f −
∑

i

λigi, (1.157)

with the n undetermined multipliers λi, i = 1, . . . , n, subsequently being fixed
by imposing the n requirements that gi = 0, i = 1, . . . , n.
Example: Find the stationary points of

F (x) =
1

2
x ·Ax =

1

2
xiAijxj (1.158)

on the surface x · x = 1. Here Aij is a symmetric matrix.
Solution: We look for stationary points of

G(x) = F (x)− 1

2
λ|x|2. (1.159)

The derivatives we need are

∂F

∂xk
=

1

2
δkiAijxj +

1

2
xiAijδjk

= Akjxj, (1.160)

and
∂

∂xk

(
λ

2
xjxj

)
= λxk. (1.161)
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Thus, the stationary points must satisfy

Akjxj = λxk,

xixi = 1, (1.162)

and so are the normalized eigenvectors of the matrix A. The Lagrange
multiplier at each stationary point is the corresponding eigenvalue.
Example: Statistical Mechanics. Let Γ denote the classical phase space of
a mechanical system of n particles governed by Hamiltonian H(p, q). Let
dΓ be the Liouville measure d3np d3nq. In statistical mechanics we work
with a probability density ρ(p, q) such that ρ(p, q)dΓ is the probability of
the system being in a state in the small region dΓ. The entropy associated
with the probability distribution is the functional

S[ρ] = −
∫

Γ

ρ ln ρ dΓ. (1.163)

We wish to find the ρ(p, q) that maximizes the entropy for a given energy

〈E〉 =

∫

Γ

ρH dΓ. (1.164)

We cannot vary ρ freely as we should preserve both the energy and the
normalization condition ∫

Γ

ρ dΓ = 1 (1.165)

that is required of any probability distribution. We therefore introduce two
Lagrange multipliers, 1 + α and β, to enforce the normalization and energy
conditions, and look for stationary points of

F [ρ] =

∫

Γ

{−ρ ln ρ + (α + 1)ρ− βρH} dΓ. (1.166)

Now we can vary ρ freely, and hence find that

δF =

∫

Γ

{− ln ρ+ α− βH} δρ dΓ. (1.167)

Requiring this to be zero gives us

ρ(p, q) = eα−βH(p,q), (1.168)
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where α, β are determined by imposing the normalization and energy con-
straints. This probability density is known as the canonical distribution, and
the parameter β is the inverse temperature β = 1/T .
Example: The Catenary. At last we have the tools to solve the problem of
the hanging chain of fixed length. We wish to minimize the potential energy

E[y] =

∫ L

−L
y
√

1 + (y′)2dx, (1.169)

subject to the constraint

l[y] =

∫ L

−L

√
1 + (y′)2dx = const., (1.170)

where the constant is the length of the chain. We introduce a Lagrange
multiplier λ and find the stationary points of

F [y] =

∫ L

−L
(y − λ)

√
1 + (y′)2dx, (1.171)

so, following our earlier methods, we find

y = λ+ κ cosh
(x+ a)

κ
. (1.172)

We choose κ, λ, a to fix the two endpoints (two conditions) and the length
(one condition).
Example: Sturm-Liouville Problem. We wish to find the stationary points
of the quadratic functional

J [y] =

∫ x2

x1

1

2

{
p(x)(y′)2 + q(x)y2

}
dx, (1.173)

subject to the boundary conditions y(x) = 0 at the endpoints x1, x2 and the
normalization

K[y] =

∫ x2

x1

y2 dx = 1. (1.174)

Taking the variation of J − (λ/2)K, we find

δJ =

∫ x2

x1

{−(py′)′ + qy − λy} δy dx. (1.175)
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Stationarity therefore requires

−(py′)′ + qy = λy, y(x1) = y(x2) = 0. (1.176)

This is the Sturm-Liouville eigenvalue problem. It is an infinite dimensional
analogue of the F (x) = 1

2
x ·Ax problem.

Example: Irrotational Flow Again. Consider the action functional

S[v, φ, ρ] =

∫ {
1

2
ρv2 − u(ρ) + φ

(
∂ρ

∂t
+ div ρv

)}
dtd3x (1.177)

This is similar to our previous action for the irrotational barotropic flow of an
inviscid fluid, but here v is an independent variable and we have introduced
infinitely many Lagrange multipliers φ(x, t), one for each point of space-time,
so as to enforce the equation of mass conservation ρ̇+div ρv = 0 everywhere,
and at all times. Equating δS/δv to zero gives v = ∇φ, and so these Lagrange
multipliers become the velocity potential as a consequence of the equations
of motion. The Bernoulli and Euler equations now follow almost as before.
Because the equation v = ∇φ does not involve time derivatives, this is
one of the cases where it is legitimate to substitute a consequence of the
action principle back into the action. If we do this, we recover our previous
formulation.

1.6 Maximum or minimum?

We have provided many examples of stationary points in function space. We
have said almost nothing about whether these stationary points are maxima
or minima. There is a reason for this: investigating the character of the
stationary point requires the computation of the second functional derivative.

δ2J

δy(x1)δy(x2)

and the use of the functional version of Taylor’s theorem to expand about
the stationary point y(x):

J [y + εη] = J [y] + ε

∫
η(x)

δJ

δy(x)

∣∣∣∣
y

dx

+
ε2

2

∫
η(x1)η(x2)

δ2J

δy(x1)δy(x2)

∣∣∣∣
y

dx1dx2 + · · · .

(1.178)
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Since y(x) is a stationary point, the term with δJ/δy(x)|y vanishes. Whether
y(x) is a maximum, a minimum, or a saddle therefore depends on the number
of positive and negative eigenvalues of δ2J/δ(y(x1))δ(y(x2)), a matrix with
a continuous infinity of rows and columns—these being labeled by x1 and
x2 repectively. It is not easy to diagonalize a continuously infinite matrix!
Consider, for example, the functional

J [y] =

∫ b

a

1

2

{
p(x)(y′)2 + q(x)y2

}
dx, (1.179)

with y(a) = y(b) = 0. Here, as we already know,

δJ

δy(x)
= Ly ≡ − d

dx

(
p(x)

d

dx
y(x)

)
+ q(x)y(x), (1.180)

and, except in special cases, this will be zero only if y(x) ≡ 0. We might
reasonably expect the second derivative to be

δ

δy
(Ly)

?
= L, (1.181)

where L is the Sturm-Liouville differential operator

L = − d

dx

(
p(x)

d

dx

)
+ q(x). (1.182)

How can a differential operator be a matrix like δ2J/δ(y(x1))δ(y(x2))?
We can formally compute the second derivative by exploiting the Dirac

delta “function” δ(x) which has the property that

y(x2) =

∫
δ(x2 − x1)y(x1) dx1. (1.183)

Thus

δy(x2) =

∫
δ(x2 − x1)δy(x1) dx1, (1.184)

from which we read off that

δy(x2)

δy(x1)
= δ(x2 − x1). (1.185)
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Using (1.185), we find that

δ

δy(x1)

(
δJ

δy(x2)

)
= − d

dx2

(
p(x2)

d

dx2
δ(x2 − x1)

)
+q(x2)δ(x2−x1). (1.186)

How are we to make sense of this expression? We begin in the next chapter
where we explain what it means to differentiate δ(x), and show that (1.186)
does indeed correspond to the differential operator L. In subsequent chap-
ters we explore the manner in which differential operators and matrices are
related. We will learn that just as some matrices can be diagonalized so can
some differential operators, and that the class of diagonalizable operators
includes (1.182).

If all the eigenvalues of L are positive, our stationary point was a min-
imum. For each negative eigenvalue, there is direction in function space in
which J [y] decreases as we move away from the stationary point.

1.7 Further exercises and problems

Here is a collection of problems relating to the calculus of variations. Some
date back to the 16th century, others are quite recent in origin.

Exercise 1.1: A smooth path in the x-y plane is given by r(t) = (x(t), y(t))
with r(0) = a, and r(1) = b. The length of the path from a to b is therefore.

S[r] =

∫ 1

0

√
ẋ2 + ẏ2 dt,

where ẋ ≡ dx/dt, ẏ ≡ dy/dt. Write down the Euler-Lagrange conditions for
S[r] to be stationary under small variations of the path that keep the endpoints
fixed, and hence show that the shortest path between two points is a straight
line.

Exercise 1.2: Fermat’s principle. A medium is characterised optically by
its refractive index n, such that the speed of light in the medium is c/n.
According to Fermat (1657), the path taken by a ray of light between any
two points makes stationary the travel time between those points. Assume
that the ray propagates in the x, y plane in a layered medium with refractive
index n(x). Use Fermat’s principle to establish Snell’s law in its general form
n(x) sinψ = constant by finding the equation giving the stationary paths y(x)
for

F1[y] =

∫
n(x)

√
1 + y′2dx.
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(Here the prime denotes differentiation with respect to x.) Repeat this exercise
for the case that n depends only on y and find a similar equation for the
stationary paths of

F2[y] =

∫
n(y)

√
1 + y′2dx.

By using suitable definitions of the angle of incidence ψ in each case, show
that the two formulations of the problem give physically equivalent answers.
In the second formulation you will find it easiest to use the first integral of
Euler’s equation.

Problem 1.3: Hyperbolic Geometry. This problem introduces a version of the
Poincaré model for the non-Euclidean geometry of Lobachevski.

a) Show that the stationary paths for the functional

F3[y] =

∫
1

y

√
1 + y′2dx,

with y(x) restricted to lying in the upper half plane are semi-circles of
arbitrary radius and with centres on the x axis. These paths are the
geodesics, or minimum length paths, in a space with Riemann metric

ds2 =
1

y2
(dx2 + dy2), y > 0.

b) Show that if we call these geodesics “lines”, then one and only one line
can be drawn though two given points.

c) Two lines are said to be parallel if, and only if, they meet at “infinity”,
i.e. on the x axis. (Verify that the x axis is indeed infinitely far from any
point with y > 0.) Show that given a line q and a point A not lying on
that line, that there are two lines passing through A that are parallel to
q, and that between these two lines lies a pencil of lines passing through
A that never meet q.

Problem 1.4: Elastic Rods. The elastic energy per unit length of a bent steel
rod is given by 1

2Y I/R
2. Here R is the radius of curvature due to the bending,

Y is the Young’s modulus of the steel and I =
∫∫
y2dxdy is the moment

of inertia of the rod’s cross section about an axis through its centroid and
perpendicular to the plane in which the rod is bent. If the rod is only slightly
bent into the yz plane and lies close to the z axis, show that this elastic energy
can be approximated as

U [y] =

∫ L

0

1

2
Y I
(
y′′
)2
dz,
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where the prime denotes differentiation with respect to z and L is the length
of the rod. We will use this approximate energy functional to discuss two
practical problems.

L

Mg

�����������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������

Mg
a) b)

Figure 1.14: A rod used as: a) a column, b) a cantilever.

a) Euler’s problem: the buckling of a slender column. The rod is used as
a column which supports a compressive load Mg directed along the z
axis (which is vertical). Show that when the rod buckles slighly (i.e.
deforms with both ends remaining on the z axis) the total energy, in-
cluding the gravitational potential energy of the loading mass M , can be
approximated by

U [y] =

∫ L

0

{
Y I

2

(
y′′
)2 − Mg

2

(
y′
)2
}
dz.

By considering small deformations of the form

y(z) =

∞∑

n=1

an sin
nπz

L

show that the column is unstable to buckling and collapse if Mg ≥
π2Y I/L2.

b) Leonardo da Vinci’s problem: the light cantilever. Here we take the z
axis as horizontal and the y axis as being vertical. The rod is used as
a beam or cantilever and is fixed into a wall so that y(0) = 0 = y ′(0).
A weight Mg is hung from the end z = L and the beam sags in the −y
direction. We wish to find y(z) for 0 < z < L. We will ignore the weight
of the beam itself.
• Write down the complete expression for the energy, including the

gravitational potential energy of the weight.
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• Find the differential equation and boundary conditions at z = 0, L
that arise from minimizing the total energy. In doing this take care
not to throw away any term arising from the integration by parts.
You may find the following identity to be of use:

d

dz
(f ′g′′ − fg′′′) = f ′′g′′ − fg′′′′.

• Solve the equation. You should find that the displacement of the
end of the beam is y(L) = − 1

3MgL3/Y I.

Exercise 1.5: Suppose that an elastic body Ω of density ρ is slightly deformed
so that the point that was at cartesian co-ordinate xi is moved to xi + ηi(x).
We define the resulting strain tensor eij by

eij =
1

2

(
∂ηj
∂xi

+
∂ηi
∂xj

)
.

It is automatically symmetric in its indices. The Lagrangian for small-amplitude
elastic motion of the body is

L[η] =

∫

Ω

{
1

2
ρη̇2

i −
1

2
eijcijklekl

}
d3x.

Here, cijkl is the tensor of elastic constants, which has the symmetries

cijkl = cklij = cjikl = cijlk.

By varying the ηi, show that the equation of motion for the body is

ρ
∂2ηi
∂t2
− ∂

∂xj
σji = 0,

where

σij = cijklekl

is the stress tensor . Show that variations of ηi on the boundary ∂Ω give as
boundary conditions

σijnj = 0,

where ni are the components of the outward normal on ∂Ω.



46 CHAPTER 1. CALCULUS OF VARIATIONS

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
ψ

ψ

s

a
π
4

Figure 1.15: Weighted line.

Problem 1.6:The catenary revisited. We can describe a catenary curve in
parametric form as x(s), y(s), where s is the arc-length. The potential en-

ergy is then simply
∫ L
0 ρgy(s)ds where ρ is the mass per unit length of the

hanging chain. The x, y are not independent functions of s, however, because
ẋ2 + ẏ2 = 1 at every point on the curve. Here a dot denotes a derivative with
respect to s.

a) Introduce infinitely many Lagrange multipliers λ(s) to enforce the ẋ2 + ẏ2

constraint, one for each point s on the curve. From the resulting func-
tional derive two coupled equations describing the catenary, one for x(s)
and one for y(s). By thinking about the forces acting on a small section
of the cable, and perhaps by introducing the angle ψ where ẋ = cosψ and
ẏ = sinψ, so that s and ψ are intrinsic coordinates for the curve, inter-
pret these equations and show that λ(s) is proportional to the position-
dependent tension T (s) in the chain.

b) You are provided with a light-weight line of length πa/2 and some lead
shot of total mass M . By using equations from the previous part (suit-
ably modified to take into account the position dependent ρ(s)) or oth-
erwise, determine how the lead should be distributed along the line if the
loaded line is to hang in an arc of a circle of radius a (see figure 1.15)
when its ends are attached to two points at the same height.

Problem 1.7: Another model for Lobachevski geometry (see exercise 1.3)
is the Poincaré disc. This space consists of the interior of the unit disc
D2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1} equipped with Riemann metric

ds2 =
dx2 + dy2

(1− x2 − y2)2
.
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The geodesic paths are found by minimizing the arc-length functional

s[r] ≡
∫
ds =

∫ {
1

1− x2 − y2

√
ẋ2 + ẏ2

}
dt,

where r(t) = (x(t), y(t)) and a dot indicates a derivative with respect to the
parameter t.

y

xO

D2

P

R

Q X

r

Figure 1.16: The Poincaré disc of exercise 1.7. The radius OP of the Poincare
disc is unity, while the radius of the geodesic arc PQR is PX = QX = RX =
R. The distance between the centres of the disc and arc is OX = x0. Your
task in part c) is to show that ∠OPX = ∠ORX = 90◦.

a) Either by manipulating the two Euler-Lagrange equations that give the
conditions for s[r] to be stationary under variations in r(t), or, more effi-
ciently, by observing that s[r] is invariant under the infinitesimal rotation

δx = εy

δy = −εx

and applying Noether’s theorem, show that the parameterised geodesics
obey

d

dt

(
1

1− x2 − y2

xẏ − yẋ√
ẋ2 + ẏ2

)
= 0.

b) Given a point (a, b) within D2, and a direction through it, show that
the equation you derived in part a) determines a unique geodesic curve
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passing through (a, b) in the given direction, but does not determine the
parametrization of the curve.

c) Show that there exists a solution to the equation in part a) in the form

x(t) = R cos t+ x0

y(t) = R sin t.

Find a relation between x0 and R, and from it deduce that the geodesics
are circular arcs that cut the bounding unit circle (which plays the role
of the line at infinity in the Lobachevski plane) at right angles.

Exercise 1.8: The Lagrangian for a particle of charge q is

L[x, ẋ] =
1

2
mẋ2 − qφ(x) + qẋ ·A(x).

Show that Lagrange’s equation leads to

mẍ = q(E + ẋ×B),

where

E = −∇φ− ∂A

∂t
, B = curlA.

Exercise 1.9: Consider the action functional

S[ω,p, r] =

∫ (
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3 + p · (ṙ + ω × r)

}
dt,

where r and p are time-dependent three-vectors, as is ω = (ω1, ω2, ω3), Apply
the action principle to obtain the equations of motion for r,p,ω and show
that they lead to Euler’s equations

I1ω̇1 − (I2 − I3)ω2ω3 = 0,

I2ω̇2 − (I3 − I1)ω3ω1 = 0,

I3ω̇3 − (I1 − I2)ω1ω2 = 0.

governing the angular velocity of a freely-rotating rigid body.

Problem 1.10: Piano String . A elastic piano string can vibrate both trans-
versely and longitudinally, and the two vibrations influence one another. A
Lagrangian that takes into account the lowest-order effect of stretching on the
local string tension, and can therefore model this coupled motion, is

L[ξ, η] =

∫
dx





1

2
ρ0

[(
∂ξ

∂t

)2

+

(
∂η

∂t

)2
]
− λ

2

[
τ0
λ

+
∂ξ

∂x
+

1

2

(
∂η

∂x

)2
]2


 .
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η

ξ

x

y

Figure 1.17: Vibrating piano string.

Here ξ(x, t) is the longitudinal displacement and η(x, t) the transverse dis-
placement of the string. Thus, the point that in the undisturbed string had
co-ordinates [x, 0] is moved to the point with co-ordinates [x+ ξ(x, t), η(x, t)].
The parameter τ0 represents the tension in the undisturbed string, λ is the
product of Young’s modulus and the cross-sectional area of the string, and ρ0

is the mass per unit length.

a) Use the action principle to derive the two coupled equations of motion,

one involving
∂2ξ

∂t2
and one involving

∂2η

∂t2
.

b) Show that when we linearize these two equations of motion, the longi-
tudinal and transverse motions decouple. Find expressions for the lon-
gitudinal (cL) and transverse (cT ) wave velocities in terms of τ0, ρ0 and
λ.

c) Assume that a given transverse pulse η(x, t) = η0(x − cT t) propagates
along the string. Show that this induces a concurrent longitudinal pulse
of the form ξ(x − cT t). Show further that the longitudinal Newtonian
momentum density in this concurrent pulse is given by

ρo
∂ξ

∂t
=

1

2

c2L
c2L − c2T

T 0
1

where

T 0
1 ≡ −ρ0

∂η

∂x

∂η

∂t

is the associated pseudo-momentum density.

The forces that created the transverse pulse will also have created other lon-
gitudinal waves that travel at cL. Consequently the Newtonian x-momentum
moving at cT is not the only x-momentum on the string, and the total “true”
longitudinal momentum density is not simply proportional to the pseudo-
momentum density.
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Exercise 1.11: Obtain the canonical energy-momentum tensor T νµ for the
barotropic fluid described by (1.119). Show that its conservation leads to both
the momentum conservation equation (1.128), and to the energy conservation
equation

∂tE + ∂i{vi(E + P )},
where the energy density is

E =
1

2
ρ(∇φ)2 + u(ρ).

Interpret the energy flux as being the sum of the convective transport of energy
together with the rate of working by an element of fluid on its neighbours.

Problem 1.12: Consider the action functional3

S[v, ρ, φ, β, γ] =

∫
d4x

{
−1

2
ρv2 − φ

(
∂ρ

∂t
+ div (ρv)

)
+ ρβ

(
∂γ

∂t
+ (v · ∇)γ

)
+ u(ρ)

}
,

which is a generalization of (1.177) to include two new scalar fields β and γ.
Show that varying v leads to

v = ∇φ+ β∇γ.

This is the Clebsch representation of the velocity field. It allows for flows with
non-zero vorticity

ω ≡ curlv = ∇β ×∇γ.
Show that the equations that arise from varying the remaining fields ρ, φ, β,
γ, together imply the mass conservation equation

∂ρ

∂t
+ div (ρv) = 0,

and Bernoulli’s equation in the form

∂v

∂t
+ ω × v = −∇

(
1

2
v2 + h

)
.

(Recall that h = du/dρ.) Show that this form of Bernoulli’s equation is
equivalent to Euler’s equation

∂v

∂t
+ (v · ∇)v = −∇h.

Consequently S provides an action principle for a general inviscid barotropic
flow.

3H. Bateman, Proc. Roy. Soc. Lond. A 125 (1929) 598-618; C. C. Lin, Liquid Helium
in Proc. Int. Sch. Phys. “Enrico Fermi”, Course XXI (Academic Press 1965).



1.7. FURTHER EXERCISES AND PROBLEMS 51

Exercise 1.13: Drums and Membranes. The shape of a distorted drumskin is
described by the function h(x, y), which gives the height to which the point
(x, y) of the flat undistorted drumskin is displaced.

a) Show that the area of the distorted drumskin is equal to

Area[h] =

∫
dx dy

√

1 +

(
∂h

∂x

)2

+

(
∂h

∂y

)2

,

where the integral is taken over the area of the flat drumskin.
b) Show that for small distortions, the area reduces to

A[h] = const.+
1

2

∫
dx dy |∇h|2.

c) Show that if h satisfies the two-dimensional Laplace equation then A is
stationary with respect to variations that vanish at the boundary.

d) Suppose the drumskin has mass ρ0 per unit area, and surface tension T .
Write down the Lagrangian controlling the motion of the drumskin, and
derive the equation of motion that follows from it.

Problem 1.14: The Wulff construction. The surface-area functional of the
previous exercise can be generalized so as to find the equilibrium shape of a
crystal. We describe the crystal surface by giving its height z(x, y) above the
x-y plane, and introduce the direction-dependent surface tension (the surface
free-energy per unit area) α(p, q), where

p =
∂z

∂x
, q =

∂z

∂y
. (?)

We seek to minimize the total surface free energy

F [z] =

∫
dxdy

{
α(p, q)

√
1 + p2 + q2

}
,

subject to the constraint that the volume of the crystal

V [z] =

∫
z dxdy

remains constant.

a) Enforce the volume constraint by introducing a Lagrange multiplier 2λ−1,
and so obtain the Euler-Lagrange equation

∂

∂x

(
∂f

∂p

)
+

∂

∂y

(
∂f

∂q

)
= 2λ−1.
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Here

f(p, q) = α(p.q)
√

1 + p2 + q2.

b) Show in the isotropic case, where α is constant, that

z(x, y) =
√

(αλ)2 − (x− a)2 − (y − b)2 + const.

is a solution of the Euler-Lagrange equation. In this case, therefore, the
equilibrium shape is a sphere.

An obvious way to satisfy the Euler-Lagrange equation in the general anisotropic
case would be to arrange things so that

x = λ
∂f

∂p
, y = λ

∂f

∂q
. (??)

c) Show that (??) is exactly the relationship we would have if z(x, y) and
λf(p, q) were Legendre transforms of each other—i.e. if

λf(p, q) = px+ qy − z(x, y),

where the x and y on the right-hand side are functions of p q obtained
by solving (?). Do this by showing that the inverse relation is

z(x, y) = px+ qy − λf(p, q)

where now the p, q on the right-hand side become functions of x and y,
and are obtained by solving (??).

For real crystals, α(p, q) can have the property of a being a continuous-but-
nowhere-differentiable function, and so the differential calculus used in deriv-
ing the Euler-Lagrange equation is inapplicable. The Legendre transformation,
however, has a geometric interpretation that is more robust than its calculus-
based derivation.

Recall that if we have a two-parameter family of surfaces in R3 given by
F (x, y, z; p, q) = 0, then the equation of the envelope of the surfaces is found
by solving the equations

0 = F =
∂F

∂p
=
∂F

∂q

so as to eliminate the parameters p, q.
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d) Show that the equation

F (x, y, z; p, q) ≡ px+ qy − z − λα(p, q)
√

1 + p2 + q2 = 0

describes a family of planes perpendicular to the unit vectors

n =
(p, q,−1)√
1 + p2 + q2

and at a distance λα(p, q) away from the origin.
e) Show that the equations to be solved for the envelope of this family of

planes are exactly those that determine z(x, y). Deduce that, for smooth
α(p, q), the profile z(x, y) is this envelope.

αn b)a)

Figure 1.18: Two-dimensional Wulff crystal. a) Polar plot of surface tension
α as a function of the normal n to a crystal face, together with a line per-
pendicular to n at distance α from the origin. b) Wulff’s construction of the
corresponding crystal surface as the envelope of the family of perpendicular
lines. In this case, the minimum-energy crystal has curved faces, but sharp
corners. The envelope continues beyond the corners, but these parts are
unphysical.

Wulff conjectured4 that, even for non-smooth α(p, q), the minimum-energy
shape is given by an equivalent geometric construction: erect the planes from
part d) and, for each plane, discard the half-space of R3 that lies on the far side
of the plane from the origin. The convex region consisting of the intersection
of the retained half-spaces is the crystal. When α(p, q) is smooth this “Wulff

4G. Wulff, “Zur frage der geschwindigkeit des wachsturms under auflosung der
kristallflachen,” Zeitschrift für Kristallografie, 34 (1901) 449-530.
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body” is bounded by part of the envelope of the planes. (The parts of the
envelope not bounding the convex body—the “swallowtails” visible in figure
1.18—are unphysical.) When α(p.q) has cusps, these singularities can give
rise to flat facets which are often joined by rounded edges. A proof of Wulff’s
claim had to wait until 43 years until 1944, when it was established by use of
the Brunn-Minkowski inequality.5

5A. Dinghas, “Uber einen geometrischen Satz von Wulff für die Gleichgewichtsform
von Kristallen, Zeitshrift für Kristallografie, 105 (1944) 304-314. For a readable modern
account see: R. Gardner, “The Brunn-Minkowski inequality,” Bulletin Amer. Math. Soc.
39 (2002) 355-405.




