
Chapter 10

Vectors and Tensors

In this chapter we explain how a vector space V gives rise to a family of
associated tensor spaces, and how mathematical objects such as linear maps
or quadratic forms should be understood as being elements of these spaces.
We then apply these ideas to physics. We make extensive use of notions and
notations from the appendix on linear algebra, so it may help to review that
material before we begin.

10.1 Covariant and contravariant vectors

When we have a vector space V over R, and {e1, e2, . . . , en} and {e′
1, e

′
2, . . . , e

′
n}

are both bases for V , then we may expand each of the basis vectors eµ in
terms of the e′

µ as
eν = aµνe

′
µ. (10.1)

We are here, as usual, using the Einstein summation convention that repeated
indices are to be summed over. Written out in full for a three-dimensional
space, the expansion would be

e1 = a1
1e

′
1 + a2

1e
′
2 + a3

1e
′
3,

e2 = a1
2e

′
1 + a2

2e
′
2 + a3

2e
′
3,

e3 = a1
3e

′
1 + a2

3e
′
2 + a3

3e
′
3.

We could also have expanded the e′
µ in terms of the eµ as

e′
ν = (a−1)µνe

′
µ. (10.2)
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As the notation implies, the matrices of coefficients aµν and (a−1)µν are inverses
of each other:

aµν (a
−1)νσ = (a−1)µνa

ν
σ = δµσ . (10.3)

If we know the components xµ of a vector x in the eµ basis then the compo-
nents x′µ of x in the e′

µ basis are obtained from

x = x′µe′
µ = xνeν = (xνaµν ) e′

µ (10.4)

by comparing the coefficients of e′
µ. We find that x′µ = aµνx

ν . Observe how
the eµ and the xµ transform in “opposite” directions. The components xµ

are therefore said to transform contravariantly .
Associated with the vector space V is its dual space V ∗, whose elements

are covectors, i.e. linear maps f : V → R. If f ∈ V ∗ and x = xµeµ, we use
the linearity property to evaluate f(x) as

f(x) = f(xµeµ) = xµf(eµ) = xµ fµ. (10.5)

Here, the set of numbers fµ = f(eµ) are the components of the covector f . If
we change basis so that eν = aµνe

′
µ then

fν = f(eν) = f(aµνe
′
µ) = aµν f(e

′
µ) = aµνf

′
µ. (10.6)

We conclude that fν = aµνf
′
µ. The fµ components transform in the same man-

ner as the basis. They are therefore said to transform covariantly . In physics
it is traditional to call the the set of numbers xµ with upstairs indices (the
components of) a contravariant vector . Similarly, the set of numbers fµ with
downstairs indices is called (the components of) a covariant vector . Thus,
contravariant vectors are elements of V and covariant vectors are elements
of V ∗.

The relationship between V and V ∗ is one of mutual duality, and to
mathematicians it is only a matter of convenience which space is V and
which space is V ∗. The evaluation of f ∈ V ∗ on x ∈ V is therefore often
written as a “pairing” (f ,x), which gives equal status to the objects being
put togther to get a number. A physics example of such a mutually dual pair
is provided by the space of displacements x and the space of wave-numbers
k. The units of x and k are different (meters versus meters−1). There is
therefore no meaning to “x + k,” and x and k are not elements of the same
vector space. The “dot” in expressions such as

ψ(x) = eik·x (10.7)
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cannot be a true inner product (which requires the objects it links to be in
the same vector space) but is instead a pairing

(k,x) ≡ k(x) = kµx
µ. (10.8)

In describing the physical world we usually give priority to the space in which
we live, breathe and move, and so treat it as being “V ”. The displacement
vector x then becomes the contravariant vector, and the Fourier-space wave-
number k, being the more abstract quantity, becomes the covariant covector.

Our vector space may come equipped with a metric that is derived from
a non-degenerate inner product. We regard the inner product as being a
bilinear form g : V × V → R, so the length ‖x‖ of a vector x is

√
g(x,x).

The set of numbers
gµν = g(eµ, eν) (10.9)

comprises the (components of) the metric tensor . In terms of them, the
inner of product 〈x,y〉 of pair of vectors x = xµeµ and y = yµeµ becomes

〈x,y〉 ≡ g(x,y) = gµνx
µyν. (10.10)

Real-valued inner products are always symmetric, so g(x,y) = g(y,x) and
gµν = gνµ. As the product is non-degenerate, the matrix gµν has an inverse,
which is traditionally written as gµν. Thus

gµνg
νλ = gλνgνµ = δλµ. (10.11)

The additional structure provided by the metric permits us to identify V
with V ∗. The identification is possible, because, given any f ∈ V ∗, we can
find a vector f̃ ∈ V such that

f(x) = 〈f̃ ,x〉. (10.12)

We obtain f̃ by solving the equation

fµ = gµν f̃
ν (10.13)

to get f̃ ν = gνµfµ. We may now drop the tilde and identify f with f̃ , and
hence V with V ∗. When we do this, we say that the covariant components
fµ are related to the contravariant components f µ by raising

fµ = gµνfν, (10.14)
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or lowering

fµ = gµνf
ν, (10.15)

the index µ using the metric tensor. Bear in mind that this V ∼= V ∗ identi-
fication depends crucially on the metric. A different metric will, in general,
identify an f ∈ V ∗ with a completely different f̃ ∈ V .

We may play this game in the Euclidean space En with its “dot” inner
product. Given a vector x and a basis eµ for which gµν = eµ · eν, we can
define two sets of components for the same vector. Firstly the coefficients xµ

appearing in the basis expansion

x = xµeµ, (10.16)

and secondly the “components”

xµ = eµ · x = g(eµ,x) = g(eµ, x
νeν) = g(eµ, eν)x

ν = gµνx
ν (10.17)

of x along the basis vectors. These two set of numbers are then respectively
called the contravariant and covariant components of the vector x. If the
eµ constitute an orthonormal basis, where gµν = δµν , then the two sets of
components (covariant and contravariant) are numerically coincident. In a
non-orthogonal basis they will be different, and we must take care never to
add contravariant components to covariant ones.

10.2 Tensors

We now introduce tensors in two ways: firstly as sets of numbers labelled by
indices and equipped with transformation laws that tell us how these numbers
change as we change basis; and secondly as basis-independent objects that
are elements of a vector space constructed by taking multiple tensor products
of the spaces V and V ∗.

10.2.1 Transformation rules

After we change basis eµ → e′
µ, where eν = aµνe

′
µ, the metric tensor will be

represented by a new set of components

g′µν = g(e′
µ, e

′
ν). (10.18)
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These are be related to the old components by

gµν = g(eµ, eν) = g(aρµe
′
ρ, a

σ
νe

′
σ) = aρµa

σ
νg(e′

ρ, e
′
σ) = aρµa

σ
ν g

′
ρσ. (10.19)

This transformation rule for gµν has both of its subscripts behaving like the
downstairs indices of a covector. We therefore say that gµν transforms as a
doubly covariant tensor . Written out in full, for a two-dimensional space,
the transformation law is

g11 = a1
1a

1
1g

′
11 + a1

1a
2
1g

′
12 + a2

1a
1
1g

′
21 + a2

1a
2
1g

′
22,

g12 = a1
1a

1
2g

′
11 + a1

1a
2
2g

′
12 + a2

1a
1
2g

′
21 + a2

1a
2
2g

′
22,

g21 = a1
2a

1
1g

′
11 + a1

2a
2
1g

′
12 + a2

2a
1
1g

′
21 + a2

2a
2
1g

′
22,

g22 = a1
2a

1
2g

′
11 + a1

2a
2
2g

′
12 + a2

2a
1
2g

′
21 + a2

2a
2
2g

′
22.

In three dimensions each row would have nine terms, and sixteen in four
dimensions.

A set of numbers Qαβ
γδε, whose indices range from 1 to the dimension of

the space and that transforms as

Qαβ
γδε = (a−1)αα′(a−1)ββ′ a

γ′

γ a
δ′

δ a
ε′

ε Q
′α′β′

γ′δ′ε′, (10.20)

or conversely as

Q′αβ
γδε = aαα′a

β
β′(a

−1)γ
′

γ (a−1)δ
′

δ (a−1)ε
′

ε Q
α′β′

γ′δ′ε′, (10.21)

comprises the components of a doubly contravariant, triply covariant tensor.
More compactly, the Qαβ

γδε are the components of a tensor of type (2, 3).
Tensors of type (p, q) are defined analogously. The total number of indices
p+ q is called the rank of the tensor.

Note how the indices are wired up in the transformation rules (10.20)
and (10.21): free (not summed over) upstairs indices on the left hand side
of the equations match to free upstairs indices on the right hand side, simi-
larly for the downstairs indices. Also upstairs indices are summed only with
downstairs ones.

Similar conditions apply to equations relating tensors in any particular
basis. If they are violated you do not have a valid tensor equation — meaning
that an equation valid in one basis will not be valid in another basis. Thus
an equation

Aµνλ = Bµτ
νλτ + Cµ

νλ (10.22)
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is fine, but

Aµνλ
?
= Bν

µλ + Cµ
νλσσ +Dµ

νλτ (10.23)

has something wrong in each term.
Incidentally, although not illegal, it is a good idea not to write tensor

indices directly underneath one another — i.e. do not write Qij
kjl — because

if you raise or lower indices using the metric tensor, and some pages later in
a calculation try to put them back where they were, they might end up in
the wrong order.

Tensor algebra

The sum of two tensors of a given type is also a tensor of that type. The sum
of two tensors of different types is not a tensor. Thus each particular type of
tensor constitutes a distinct vector space, but one derived from the common
underlying vector space whose change-of-basis formula is being utilized.

Tensors can be combined by multiplication: if Aµ
νλ and Bµ

νλτ are tensors
of type (1, 2) and (1, 3) respectively, then

Cαβ
νλρστ = AανλB

β
ρστ (10.24)

is a tensor of type (2, 5).
An important operation is contraction, which consists of setting one or

more contravariant index index equal to a covariant index and summing over
the repeated indices. This reduces the rank of the tensor. So, for example,

Dρστ = Cαβ
αβρστ (10.25)

is a tensor of type (0, 3). Similarly f(x) = fµx
µ is a type (0, 0) tensor, i.e. an

invariant — a number that takes the same value in all bases. Upper indices
can only be contracted with lower indices, and vice versa. For example, the
array of numbers Aα = Bαββ obtained from the type (0, 3) tensor Bαβγ is not
a tensor of type (0, 1).

The contraction procedure outputs a tensor because setting an upper
index and a lower index to a common value µ and summing over µ, leads to
the factor . . . (a−1)µαa

β
µ . . . appearing in the transformation rule. Now

(a−1)µαa
β
µ = δβα, (10.26)

and the Kronecker delta effects a summation over the corresponding pair of
indices in the transformed tensor.
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Although often associated with general relativity, tensors occur in many
places in physics. They are used, for example, in elasticity theory, where the
word “tensor” in its modern meaning was introduced by Woldemar Voigt
in 1898. Voigt, following Cauchy and Green, described the infinitesimal
deformation of an elastic body by the strain tensor eαβ, which is a tensor
of type (0,2). The forces to which the strain gives rise are described by the
stress tensor σλµ. A generalization of Hooke’s law relates stress to strain via
a tensor of elastic constants cαβγδ as

σαβ = cαβγδeγδ. (10.27)

We study stress and strain in more detail later in this chapter.

Exercise 10.1: Show that gµν , the matrix inverse of the metric tensor gµν , is
indeed a doubly contravariant tensor, as the position of its indices suggests.

10.2.2 Tensor character of linear maps and quadratic

forms

As an illustration of the tensor concept and of the need to distinguish be-
tween upstairs and downstairs indices, we contrast the properties of matrices
representing linear maps and those representing quadratic forms.

A linear map M : V → V is an object that exists independently of any
basis. Given a basis, however, it is represented by a matrix Mµ

ν obtained
by examining the action of the map on the basis elements:

M(eµ) = eνM
ν
µ. (10.28)

Acting on x we get a new vector y = M(x), where

yνeν = y = M(x) = M(xµeµ) = xµM(eµ) = xµMν
µeν = Mν

µx
µ eν. (10.29)

We therefore have
yν = Mν

µx
µ, (10.30)

which is the usual matrix multiplication y = Mx. When we change basis,
eν = aµνe

′
µ, then

eνM
ν
µ = M(eµ) = M(aρµe

′
ρ) = aρµM(e′

ρ) = aρµe
′
σM

′σ
ρ = aρµ(a

−1)νσeνM
′σ
ρ.

(10.31)
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Comparing coefficients of eν, we find

Mν
µ = aρµ(a

−1)νσM
′σ
ρ, (10.32)

or, conversely,
M ′ν

µ = (a−1)ρµa
ν
σM

σ
ρ. (10.33)

Thus a matrix representing a linear map has the tensor character suggested
by the position of its indices, i.e. it transforms as a type (1, 1) tensor. We can
derive the same formula in matrix notation. In the new basis the vectors x
and y have new components x′ = Ax, and y′ = Ay. Consequently y = Mx
becomes

y′ = Ay = AMx = AMA−1x′, (10.34)

and the matrix representing the map M has new components

M′ = AMA−1. (10.35)

Now consider the quadratic form Q : V → R that is obtained from a
symmetric bilinear form Q : V × V → R by setting Q(x) = Q(x,x). We can
write

Q(x) = Qµνx
µxν = xµQµν x

ν = xTQx, (10.36)

where Qµν ≡ Q(eµ, eν) are the entries in the symmetric matrix Q, the suffix T
denotes transposition, and xTQx is standard matrix-multiplication notation.
Just as does the metric tensor, the coefficients Qµν transform as a type (0, 2)
tensor:

Qµν = aαµa
β
νQ

′
αβ. (10.37)

In matrix notation the vector x again transforms to have new components
x′ = Ax, but x′T = xTAT . Consequently

x′TQ′x′ = xTATQ′Ax. (10.38)

Thus
Q = ATQ′A. (10.39)

The message is that linear maps and quadratic forms can both be represented
by matrices, but these matrices correspond to distinct types of tensor and
transform differently under a change of basis.

A matrix representing a linear map has a basis-independent determinant.
Similarly the trace of a matrix representing a linear map

trM
def
= Mµ

µ (10.40)
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is a tensor of type (0, 0), i.e. a scalar, and therefore basis independent. On
the other hand, while you can certainly compute the determinant or the trace
of the matrix representing a quadratic form in some particular basis, when
you change basis and calculate the determinant or trace of the transformed
matrix, you will get a different number.

It is possible to make a quadratic form out of a linear map, but this
requires using the metric to lower the contravariant index on the matrix
representing the map:

Q(x) = xµgµνQ
ν
λx

λ = x ·Qx. (10.41)

Be careful, therefore: the matrices “Q” in xTQx and in x·Qx are representing
different mathematical objects.

Exercise 10.2: In this problem we will use the distinction between the trans-
formation law of a quadratic form and that of a linear map to resolve the
following “paradox”:

• In quantum mechanics we are taught that the matrices representing two
operators can be simultaneously diagonalized only if they commute.

• In classical mechanics we are taught how, given the Lagrangian

L =
∑

ij

(
1

2
q̇iMij q̇j −

1

2
qiVijqj

)
,

to construct normal co-ordinates Qi such that L becomes

L =
∑

i

(
1

2
Q̇2
i −

1

2
ω2
iQ

2
i

)
.

We have apparantly managed to simultaneously diagonize the matrices Mij →
diag (1, . . . , 1) and Vij → diag (ω2

1 , . . . , ω
2
n), even though there is no reason for

them to commute with each other!

Show that when M and V are a pair of symmetric matrices, with M being
positive definite, then there exists an invertible matrix A such that ATMA

and ATVA are simultaneously diagonal. (Hint: Consider M as defining an
inner product, and use the Gramm-Schmidt procedure to first find a orthonor-
mal frame in which M ′

ij = δij . Then show that the matrix corresponding to
V in this frame can be diagonalized by a further transformation that does not
perturb the already diagonal M ′

ij.)
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10.2.3 Tensor product spaces

We may regard the set of numbers Qαβ
γδε as being the components of an

object Q that is element of the vector space of type (2, 3) tensors. We
denote this vector space by the symbol V ⊗ V ⊗ V ∗⊗ V ∗⊗ V ∗, the notation
indicating that it is derived from the original V and its dual V ∗ by taking
tensor products of these spaces. The tensor Q is to be thought of as existing
as an element of V ⊗V ⊗V ∗⊗V ∗⊗V ∗ independently of any basis, but given
a basis {eµ} for V , and the dual basis {e∗ν} for V ∗, we expand it as

Q = Qαβ
γδε eα ⊗ eβ ⊗ e∗γ ⊗ e∗δ ⊗ e∗ε. (10.42)

Here the tensor product symbol “⊗” is distributive

a⊗ (b + c) = a⊗ b + a⊗ c,

(a + b)⊗ c = a⊗ c + b⊗ c, (10.43)

and associative
(a⊗ b)⊗ c = a⊗ (b⊗ c), (10.44)

but is not commutative
a⊗ b 6= b⊗ a. (10.45)

Everything commutes with the field, however,

λ(a⊗ b) = (λa)⊗ b = a⊗ (λb). (10.46)

If we change basis eα = aβαe
′
β then these rules lead, for example, to

eα ⊗ eβ = aλαa
µ
β e′

λ ⊗ e′
µ. (10.47)

From this change-of-basis formula, we deduce that

T αβeα ⊗ eβ = T αβaλαa
µ
β e′

λ ⊗ e′
µ = T ′λµ e′

λ ⊗ e′
µ, (10.48)

where
T ′λµ = T αβaλαa

µ
β. (10.49)

The analogous formula for eα⊗ eβ ⊗ e∗γ ⊗ e∗δ ⊗ e∗ε reproduces the transfor-
mation rule for the components of Q.

The meaning of the tensor product of a collection of vector spaces should
now be clear: If eµ consititute a basis for V , the space V ⊗V is, for example,
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the space of all linear combinations1 of the abstract symbols eµ ⊗ eν, which
we declare by fiat to constitute a basis for this space. There is no geometric
significance (as there is with a vector product a× b) to the tensor product
a⊗ b, so the eµ ⊗ eν are simply useful place-keepers. Remember that these
are ordered pairs, eµ ⊗ eν 6= eν ⊗ eµ.

Although there is no geometric meaning, it is possible, however, to give
an algebraic meaning to a product like e∗λ ⊗ e∗µ ⊗ e∗ν by viewing it as a
multilinear form V × V × V :→ R. We define

e∗λ ⊗ e∗µ ⊗ e∗ν (eα, eβ, eγ) = δλα δ
µ
β δ

ν
γ . (10.50)

We may also regard it as a linear map V ⊗ V ⊗ V :→ R by defining

e∗λ ⊗ e∗µ ⊗ e∗ν (eα ⊗ eβ ⊗ eγ) = δλα δ
µ
β δ

ν
γ (10.51)

and extending the definition to general elements of V ⊗ V ⊗ V by linearity.
In this way we establish an isomorphism

V ∗ ⊗ V ∗ ⊗ V ∗ ∼= (V ⊗ V ⊗ V )∗. (10.52)

This multiple personality is typical of tensor spaces. We have already seen
that the metric tensor is simultaneously an element of V ∗ ⊗ V ∗ and a map
g : V → V ∗.

Tensor products and quantum mechanics

When we have two quantum-mechanical systems having Hilbert spaces H(1)

and H(2), the Hilbert space for the combined system is H(1)⊗H(2). Quantum
mechanics books usually denote the vectors in these spaces by the Dirac “bra-
ket” notation in which the basis vectors of the separate spaces are denoted
by2 |n1〉 and |n2〉, and that of the combined space by |n1, n2〉. In this notation,
a state in the combined system is a linear combination

|Ψ〉 =
∑

n1,n2

|n1, n2〉〈n1, n2|Ψ〉, (10.53)

1Do not confuse the tensor-product space V ⊗W with the Cartesian product V ×W .
The latter is the set of all ordered pairs (x,y), x ∈ V , y ∈W . The tensor product includes
also formal sums of such pairs. The Cartesian product of two vector spaces can be given
the structure of a vector space by defining an addition operation λ(x1,y1) + µ(x2,y2) =
(λx1 +µx2, λy1 +µy2), but this construction does not lead to the tensor product. Instead
it defines the direct sum V ⊕W .

2We assume for notational convenience that the Hilbert spaces are finite dimensional.
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This is the tensor product in disguise. To unmask it, we simply make the
notational translation

|Ψ〉 → Ψ

〈n1, n2|Ψ〉 → ψn1,n2

|n1〉 → e(1)
n1

|n2〉 → e(2)
n2

|n1, n2〉 → e(1)
n1
⊗ e(2)

n2
. (10.54)

Then (10.53) becomes

Ψ = ψn1,n2 e(1)
n1
⊗ e(2)

n2
. (10.55)

Entanglement: Suppose that H(1) has basis e
(1)
1 , . . . , e

(1)
m and H(2) has basis

e
(2)
1 , . . . , e

(2)
n . The Hilbert spaceH(1)⊗H(2) is then nm dimensional. Consider

a state

Ψ = ψije
(1)
i ⊗ e

(2)
j ∈ H(1) ⊗H(2). (10.56)

If we can find vectors

Φ ≡ φie
(1)
i ∈ H(1),

X ≡ χje
(2)
j ∈ H(2), (10.57)

such that

Ψ = Φ⊗X ≡ φiχje
(1)
i ⊗ e

(2)
j (10.58)

then the tensor Ψ is said to be decomposable and the two quantum systems
are said to be unentangled . If there are no such vectors then the two systems
are entangled in the sense of the Einstein-Podolski-Rosen (EPR) paradox.

Quantum states are really in one-to-one correspondence with rays in the
Hilbert space, rather than vectors. If we denote the n dimensional vector
space over the field of the complex numbers as Cn , the space of rays, in which
we do not distinguish between the vectors x and λx when λ 6= 0, is denoted
by CP n−1 and is called complex projective space. Complex projective space is
where algebraic geometry is studied. The set of decomposable states may be
thought of as a subset of the complex projective space CP nm−1, and, since,
as the following excercise shows, this subset is defined by a finite number of
homogeneous polynomial equations, it forms what algebraic geometers call a
variety . This particular subset is known as the Segre variety .
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Exercise 10.3: The Segre conditions for a state to be decomposable:

i) By counting the number of independent components that are at our dis-
posal in Ψ, and comparing that number with the number of free param-
eters in Φ⊗X, show that the coefficients ψij must satisfy (n−1)(m−1)
relations if the state is to be decomposable.

ii) If the state is decomposable, show that

0 =

∣∣∣∣
ψij ψil

ψkj ψkl

∣∣∣∣

for all sets of indices i, j, k, l.
iii) Assume that ψ11 is not zero. Using your count from part (i) as a guide,

find a subset of the relations from part (ii) that constitute a necessary and
sufficient set of conditions for the state Ψ to be decomposable. Include
a proof that your set is indeed sufficient.

10.2.4 Symmetric and skew-symmetric tensors

By examining the transformation rule you may see that if a pair of up-
stairs or downstairs indices is symmetric (say Qµν

ρστ = Qνµ
ρστ ) or skew-

symmetric (Qµν
ρστ = −Qνµ

ρστ ) in one basis, it remains so after the basis
has been changed. (This is not true of a pair composed of one upstairs
and one downstairs index.) It makes sense, therefore, to define symmetric
and skew-symmetric tensor product spaces. Thus skew-symmetric doubly-
contravariant tensors can be regarded as belonging to the space denoted by∧2 V and expanded as

A =
1

2
Aµν eµ ∧ eν, (10.59)

where the coefficients are skew-symmetric, Aµν = −Aνµ, and the wedge prod-
uct of the basis elements is associative and distributive, as is the tensor
product, but in addition obeys eµ ∧ eν = −eν ∧ eµ. The “1/2” (replaced
by 1/p! when there are p indices) is convenient in that each independent
component only appears once in the sum. For example, in three dimensions,

1

2
Aµν eµ ∧ eν = A12 e1 ∧ e2 + A23 e2 ∧ e3 + A31 e3 ∧ e1. (10.60)

Symmetric doubly-contravariant tensors can be regarded as belonging to
the space sym2V and expanded as

S = Sαβ eα � eβ (10.61)
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where eα � eβ = eβ � eα and Sαβ = Sβα. (We do not insert a “1/2” here
because including it leads to no particular simplification in any consequent
equations.)

We can treat these symmetric and skew-symmetric products as symmetric
or skew multilinear forms. Define, for example,

e∗α ∧ e∗β (eµ, eν) = δαµδ
β
ν − δαν δβµ , (10.62)

and
e∗α ∧ e∗β (eµ ∧ eν) = δαµδ

β
ν − δαν δβµ . (10.63)

We need two terms on the right-hand-side of these examples because the
skew-symmetry of e∗α ∧ e∗β( , ) in its slots does not allow us the luxury of
demanding that the eµ be inserted in the exact order of the e∗α to get a non-
zero answer. Because the p-th order analogue of (10.62) form has p! terms
on its right-hand side, some authors like to divide the right-hand-side by p!
in this definition. We prefer the one above, though. With our definition, and
with A = 1

2
Aµνe

∗µ ∧ e∗ν and B = 1
2
Bαβeα ∧ eβ, we have

A(B) =
1

2
AµνB

µν =
∑

µ<ν

AµνB
µν , (10.64)

so the sum is only over independent terms.
The wedge (∧) product notation is standard in mathematics wherever

skew-symmetry is implied.3 The “sym” and � are not. Different authors use
different notations for spaces of symmetric tensors. This reflects the fact that
skew-symmetric tensors are extremely useful and appear in many different
parts of mathematics, while symmetric ones have fewer special properties
(although they are common in physics). Compare the relative usefulness of
determinants and permanents.

Exercise 10.4: Show that in d dimensions:

i) the dimension of the space of skew-symmetric covariant tensors with p
indices is d!/p!(d − p)!;

ii) the dimension of the space of symmetric covariant tensors with p indices
is (d+ p− 1)!/p!(d − 1)!.

3Skew products and abstract vector spaces were introduced simultaneously in Hermann
Grassmann’s Ausdehnungslehre (1844). Grassmann’s mathematics was not appreciated in
his lifetime. In his disappointment he turned to other fields, making significant con-
tributions to the theory of colour mixtures (Grassmann’s law), and to the philology of
Indo-European languages (another Grassmann’s law).
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Bosons and fermions

Spaces of symmetric and skew-symmetric tensors appear whenever we deal
with the quantum mechanics of many indistinguishable particles possessing
Bose or Fermi statistics. If we have a Hilbert space H of single-particle states
with basis ei then the N -boson space is SymNH which consists of states

Φ = Φi1i2...iN ei1 � ei2 � · · · � eiN , (10.65)

and the N -fermion space is
∧NH, which contains states

Ψ =
1

N !
Ψi1i2...iN ei1 ∧ ei2 ∧ · · · ∧ eiN . (10.66)

The symmetry of the Bose wavefunction

Φi1...iα...iβ ...iN = Φi1...iβ ...iα...iN , (10.67)

and the skew-symmetry of the Fermion wavefunction

Ψi1...iα...iβ ...iN = −Ψi1...iβ ...iα...iN , (10.68)

under the interchange of the particle labels α, β is then natural.
Slater Determinants and the Plücker Relations: Some N -fermion states can
be decomposed into a product of single-particle states

Ψ = ψ1 ∧ ψ2 ∧ · · · ∧ψN

= ψi11 ψ
i2
2 · · ·ψiNN ei1 ∧ ei2 ∧ · · · ∧ eiN . (10.69)

Comparing the coefficients of ei1 ∧ei2 ∧· · ·∧eiN in (10.66) and (10.69) shows
that the many-body wavefunction can then be written as

Ψi1i2...iN =

∣∣∣∣∣∣∣∣

ψi11 ψi21 · · · ψiN1
ψi12 ψi22 · · · ψiN2
...

...
. . .

...
ψi1N ψi2N · · · ψiNN

∣∣∣∣∣∣∣∣
. (10.70)

The wavefunction is therefore given by a single Slater determinant . Such
wavefunctions correspond to a very special class of states. The general
many-fermion state is not decomposable, and its wavefunction can only be
expressed as a sum of many Slater determinants. The Hartree-Fock method
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of quantum chemistry is a variational approximation that takes such a single
Slater determinant as its trial wavefunction and varies only the one-particle
wavefunctions 〈i|ψa〉 ≡ ψia. It is a remarkably successful approximation,
given the very restricted class of wavefunctions it explores.

As with the Segre condition for two distinguishable quantum systems to
be unentangled, there is a set of necessary and sufficient conditions on the
Ψi1i2...iN for the state Ψ to be decomposable into single-particle states. The
conditions are that

Ψi1i2...iN−1[j1Ψj2j3...jN+1] = 0 (10.71)

for any choice of indices i1, . . . iN−1 and j1, . . . , jN+1. The square brackets
[. . .] indicate that the expression is to be antisymmetrized over the indices
enclosed in the brackets. For example, a three-particle state is decomposable
if and only if

Ψi1i2j1Ψj2j3j4 −Ψi1i2j2Ψj1j3j4 + Ψi1i2j3Ψj1j2j4 − Ψi1i2j4Ψj1j2j3 = 0. (10.72)

These conditions are called the Plücker relations after Julius Plücker who
discovered them long before before the advent of quantum mechanics.4 It is
easy to show that Plücker’s relations are necessary conditions for decompos-
ability. It takes more sophistication to show that they are sufficient. We will
therefore defer this task to the exercises as the end of the chapter. As far as
we are aware, the Plücker relations are not exploited by quantum chemists,
but, in disguise as the Hirota bilinear equations, they constitute the geometric
condition underpinning the many-soliton solutions of the Korteweg-de-Vries
and other soliton equations.

10.2.5 Kronecker and Levi-Civita tensors

Suppose the tensor δµν is defined, with respect to some basis, to be unity if
µ = ν and zero otherwise. In a new basis it will transform to

δ′µν = aµρ(a
−1)σνδ

ρ
σ = aµρ(a

−1)ρν = δµν . (10.73)

In other words the Kronecker delta symbol of type (1, 1) has the same numer-
ical components in all co-ordinate systems. This is not true of the Kronecker
delta symbol of type (0, 2), i.e. of δµν .

4As well as his extensive work in algebraic geometry, Plücker (1801-68) made important
discoveries in experimental physics. He was, for example, the first person to observe the
deflection of cathode rays — beams of electrons — by a magnetic field, and the first to
point out that each element had its characteristic emission spectrum.
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Now consider an n-dimensional space with a tensor ηµ1µ2...µn whose com-
ponents, in some basis, coincides with the Levi-Civita symbol εµ1µ2 ...µn . We
find that in a new frame the components are

η′µ1µ2...µn
= (a−1)ν1µ1

(a−1)ν2µ2
· · · (a−1)νn

µn
εν1ν2...νn

= εµ1µ2...µn (a−1)ν11 (a−1)ν22 · · · (a−1)νn
n εν1ν2...νn

= εµ1µ2...µn detA−1

= ηµ1µ2...µn detA−1. (10.74)

Thus, unlike the δµν , the Levi-Civita symbol is not quite a tensor.
Consider also the quantity

√
g

def
=
√

det [gµν ]. (10.75)

Here we assume that the metric is positive-definite, so that the square root
is real, and that we have taken the positive square root. Since

det [g′µν ] = det [(a−1)ρµ(a
−1)σνgρσ] = (detA)−2det [gµν ], (10.76)

we see that √
g′ = |detA|−1√g (10.77)

Thus
√
g is also not quite an invariant. This is only to be expected, because

g( , ) is a quadratic form and we know that there is no basis-independent
meaning to the determinant of such an object.

Now define

εµ1µ2...µn =
√
g εµ1µ2...µn , (10.78)

and assume that εµ1µ2...µn has the type (0, n) tensor character implied by
its indices. When we look at how this transforms, and restrict ourselves
to orientation preserving changes of of bases, i.e. ones for which detA is
positive, we see that factors of detA conspire to give

ε′µ1µ2...µn
=
√
g′ εµ1µ2...µn . (10.79)

A similar exercise indictes that if we define εµ1µ2...in to be numerically equal
to εi1i2...µn then

εµ1µ2...µn =
1√
g
εµ1µ2...µn (10.80)
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also transforms as a tensor — in this case a type (n, 0) contravariant one
— provided that the factor of 1/

√
g is always calculated with respect to the

current basis.
If the dimension n is even and we are given a skew-symmetric tensor Fµν,

we can therefore construct an invariant

εµ1µ2...µnFµ1µ2
· · ·Fµn−1µn =

1√
g
εµ1µ2...µnFµ1µ2

· · ·Fµn−1µn . (10.81)

Similarly, given an skew-symmetric covariant tensor Fµ1...µm with m (≤ n)
indices we can form its dual , denoted by F ∗, a (n−m)-contravariant tensor
with components

(F ∗)µm+1...µn =
1

m!
εµ1µ2...µnFµ1 ...µm =

1√
g

1

m!
εµ1µ2...µnFµ1...µm . (10.82)

We meet this “dual” tensor again, when we study differential forms.

10.3 Cartesian tensors

If we restrict ourselves to Cartesian co-ordinate systems having orthonormal
basis vectors, so that gij = δij, then there are considerable simplifications.
In particular, we do not have to make a distinction between co- and contra-
variant indices. We shall usually write their indices as roman-alphabet suf-
fixes.

A change of basis from one orthogonal n-dimensional basis ei to another
e′
i will set

e′
i = Oijej, (10.83)

where the numbers Oij are the entries in an orthogonal matrix O, i.e. a real
matrix obeying OTO = OOT = I, where T denotes the transpose. The set
of n-by-n orthogonal matrices constitutes the orthogonal group O(n).

10.3.1 Isotropic tensors

The Kronecker δij with both indices downstairs is unchanged by O(n) trans-
formations,

δ′ij = OikOjlδkl = OikOjk = OikO
T
kj = δij, (10.84)
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and has the same components in any Cartesian frame. We say that its
components are numerically invariant . A similar property holds for tensors
made up of products of δij, such as

Tijklmn = δijδklδmn. (10.85)

It is possible to show5 that any tensor whose components are numerically
invariant under all orthogonal transformations is a sum of products of this
form. The most general O(n) invariant tensor of rank four is, for example.

αδijδkl + βδikδlj + γδilδjk. (10.86)

The determinant of an orthogonal transformation must be ±1. If we only
allow orientation-preserving changes of basis then we restrict ourselves to
orthogonal transformations Oij with detO = 1. These are the proper or-
thogonal transformations. In n dimensions they constitute the group SO(n).
Under SO(n) transformations, both δij and εi1i2...in are numerically invariant
and the most general SO(n) invariant tensors consist of sums of products of
δij’s and εi1i2...in’s. The most general SO(4)-invariant rank-four tensor is, for
example,

αδijδkl + βδikδlj + γδilδjk + λεijkl. (10.87)

Tensors that are numerically invariant under SO(n) are known as isotropic
tensors.

As there is no longer any distinction between co- and contravariant in-
dices, we can now contract any pair of indices. In three dimensions, for
example,

Bijkl = εnijεnkl (10.88)

is a rank-four isotropic tensor. Now εi1...in is not invariant when we transform
via an orthogonal transformation with detO = −1, but the product of two
ε’s is invariant under such transformations. The tensor Bijkl is therefore
numerically invariant under the larger group O(3) and must be expressible
as

Bijkl = αδijδkl + βδikδlj + γδilδjk (10.89)

for some coefficients α, β and γ. The following exercise explores some con-
sequences of this and related facts.

5The proof is surprisingly complicated. See, for example, M. Spivak, A Comprehensive
Introduction to Differential Geometry (second edition) Vol. V, pp. 466-481.
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Exercise 10.5: We defined the n-dimensional Levi-Civita symbol by requiring
that εi1i2...in be antisymmetric in all pairs of indices, and ε12...n = 1.

a) Show that ε123 = ε231 = ε312, but that ε1234 = −ε2341 = ε3412 = −ε4123.
b) Show that

εijkεi′j′k′ = δii′δjj′δkk′ + five other terms,

where you should write out all six terms explicitly.
c) Show that εijkεij′k′ = δjj′δkk′ − δjk′δkj′.
d) For dimension n = 4, write out εijklεij′k′l′ as a sum of products of δ’s

similar to the one in part (c).

Exercise 10.6: Vector Products. The vector product of two three-vectors may
be written in Cartesian components as (a× b)i = εijkajbk. Use this and your
results about εijk from the previous exercise to show that

i) a · (b× c) = b · (c× a) = c · (a× b),
ii) a× (b× c) = (a · c)b− (a · b)c,
iii) (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).
iv) If we take a, b, c and d, with d ≡ b, to be unit vectors, show that

the identities (i) and (iii) become the sine and cosine rule, respectively,
of spherical trigonometry. (Hint: for the spherical sine rule, begin by
showing that a · [(a× b)× (a× c)] = a · (b× c).)

10.3.2 Stress and strain

As an illustration of the utility of Cartesian tensors, we consider their appli-
cation to elasticity.

Suppose that an elastic body is slightly deformed so that the particle that
was originally at the point with Cartesian co-ordinates xi is moved to xi+ηi.
We define the (infinitesimal) strain tensor eij by

eij =
1

2

(
∂ηj
∂xi

+
∂ηi
∂xj

)
. (10.90)

It is automatically symmetric: eij = eji. We will leave for later (exercise
11.3) a discussion of why this is the natural definition of strain, and also
the modifications necessary were we to employ a non-Cartesian co-ordinate
system.

To define the stress tensor σij we consider the portion Ω of the body in
figure 10.1, and an element of area dS = n d|S| on its boundary. Here, n is
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the unit normal vector pointing out of Ω. The force F exerted on this surface
element by the parts of the body exterior to Ω has components

Fi = σijnj d|S|. (10.91)

Ω

d

F

n
|S|

Figure 10.1: Stress forces.

That F is a linear function of n d|S| can be seen by considering the forces
on an small tetrahedron, three of whose sides coincide with the co-ordinate
planes, the fourth side having n as its normal. In the limit that the lengths
of the sides go to zero as ε, the mass of the body scales to zero as ε3, but
the forces are proprtional to the areas of the sides and go to zero only as ε2.
Only if the linear relation holds true can the acceleration of the tetrahedron
remain finite. A similar argument applied to torques and the moment of
inertia of a small cube shows that σij = σji.

A generalization of Hooke’s law,

σij = cijklekl, (10.92)

relates the stress to the strain via the tensor of elastic constants cijkl. This
rank-four tensor has the symmetry properties

cijkl = cklij = cjikl = cijlk. (10.93)

In other words, the tensor is symmetric under the interchange of the first
and second pairs of indices, and also under the interchange of the individual
indices in either pair.

For an isotropic material — a material whose properties are invariant
under the rotation group SO(3) — the tensor of elastic constants must be an



408 CHAPTER 10. VECTORS AND TENSORS

isotropic tensor. The most general such tensor with the required symmetries
is

cijkl = λδijδkl + µ(δikδjl + δilδjk). (10.94)

As isotropic material is therefore characterized by only two independent pa-
rameters, λ and µ. These are called the Lamé constants after the mathemat-
ical engineer Gabriel Lamé. In terms of them the generalized Hooke’s law
becomes

σij = λδijekk + 2µeij. (10.95)

By considering particular deformations, we can express the more directly
measurable bulk modulus, shear modulus, Young’s modulus and Poisson’s
ratio in terms of λ and µ.

The bulk modulus κ is defined by

dP = −κdV
V
, (10.96)

where an infinitesimal isotropic external pressure dP causes a change V →
V + dV in the volume of the material. This applied pressure corresponds to
a surface stress of σij = −δij dP . An isotropic expansion displaces points in
the material so that

ηi =
1

3

dV

V
xi. (10.97)

The strains are therefore given by

eij =
1

3
δij
dV

V
. (10.98)

Inserting this strain into the stress-strain relation gives

σij = δij(λ+
2

3
µ)
dV

V
= −δijdP. (10.99)

Thus

κ = λ+
2

3
µ. (10.100)

To define the shear modulus, we assume a deformation η1 = θx2, so
e12 = e21 = θ/2, with all other eij vanishing.
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σ21
σ21

σ12

σ12

θ

Figure 10.2: Shear strain. The arrows show the direction of the applied
stresses. The σ21 on the vertical faces are necessary to stop the body rotating.

The applied shear stress is σ12 = σ21. The shear modulus, is defined to be
σ12/θ. Inserting the strain components into the stress-strain relation gives

σ12 = µθ, (10.101)

and so the shear modulus is equal to the Lamé constant µ. We can therefore
write the generalized Hooke’s law as

σij = 2µ(eij − 1
3
δijekk) + κekkδij, (10.102)

which reveals that the shear modulus is associated with the traceless part of
the strain tensor, and the bulk modulus with the trace.

Young’s modulus Y is measured by stretching a wire of initial length L
and square cross section of side W under a tension T = σ33W

2.

L

σ 33σ
33

W

Figure 10.3: Forces on a stretched wire.

We define Y so that

σ33 = Y
dL

L
. (10.103)

At the same time as the wire stretches, its width changes W → W + dW .
Poisson’s ratio σ is defined by

dW

W
= −σdL

L
, (10.104)
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so that σ is positive if the wire gets thinner as it gets longer. The displace-
ments are

η3 = z

(
dL

L

)
,

η1 = x

(
dW

W

)
= −σx

(
dL

L

)
,

η2 = y

(
dW

W

)
= −σy

(
dL

L

)
, (10.105)

so the strain components are

e33 =
dL

L
, e11 = e22 =

dW

W
= −σe33. (10.106)

We therefore have

σ33 = (λ(1− 2σ) + 2µ)

(
dL

L

)
, (10.107)

leading to

Y = λ(1− 2σ) + 2µ. (10.108)

Now, the side of the wire is a free surface with no forces acting on it, so

0 = σ22 = σ11 = (λ(1− 2σ)− 2σµ)

(
dL

L

)
. (10.109)

This tells us that6

σ =
1

2

λ

λ+ µ
, (10.110)

and

Y = µ

(
3λ+ 2µ

λ+ µ

)
. (10.111)

Other relations, following from those above, are

Y = 3κ(1− 2σ),

= 2µ(1 + σ). (10.112)

6Poisson and Cauchy erroneously believed that λ = µ, and hence that σ = 1/4.
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Γ
z

x
y

O

Figure 10.4: Bent beam.

Exercise 10.7: Show that the symmetries

cijkl = cklij = cjikl = cijlk

imply that a general homogeneous material has 21 independent elastic con-
stants. (This result was originally obtained by George Green, of Green func-
tion fame.)

Exercise 10.8: A steel beam is forged so that its cross section has the shape
of a region Γ ∈ R2. When undeformed, it lies along the z axis. The centroid
O of each cross section is defined so that

∫

Γ
x dxdy =

∫

Γ
y dxdy = 0,

when the co-ordinates x, y are taken with the centroid O as the origin. The
beam is slightly bent away from the z axis so that the line of centroids remains
in the y, z plane. (See figure 10.4) At a particular cross section with centroid
O, the line of centroids has radius of curvature R.

Assume that the deformation in the vicinity of O is such that

ηx = − σ
R
xy,

ηy =
1

2R

{
σ(x2 − y2)− z2

}
,

ηz =
1

R
yz.

Observe that for this assumed deformation, and for a positive Poisson ratio,
the cross section deforms anticlastically — the sides bend up as the beam
bends down. This is shown in figure 10.5.

Compute the strain tensor resulting from the assumed deformation, and show
that its only non-zero components are

exx = − σ
R
y, eyy = − σ

R
y, ezz =

1

R
y.
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O

Γ

x

y

Figure 10.5: The original (dashed) and anticlastically deformed (full) cross-
section.

Next, show that

σzz =

(
Y

R

)
y,

and that all other components of the stress tensor vanish. Deduce from this
vanishing that the assumed deformation satisfies the free-surface boundary
condition, and so is indeed the way the beam responds when it is bent by
forces applied at its ends.

The work done in bending the beam

∫

beam

1

2
eijcijklekl d

3x

is stored as elastic energy. Show that for our bent rod this energy is equal to

∫
Y I

2

(
1

R2

)
ds ≈

∫
Y I

2
(y′′)2dz,

where s is the arc-length taken along the line of centroids of the beam,

I =

∫

Γ
y2 dxdy

is the moment of inertia of the region Γ about the x axis, and y ′′ denotes
the second derivative of the deflection of the beam with respect to z (which
approximates the arc-length). This last formula for the strain energy has been
used in a number of our calculus-of-variations problems.
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y

z

Figure 10.6: The distribution of forces σzz exerted on the left-hand part of
the bent rod by the material to its right.

10.3.3 Maxwell stress tensor

Consider a small cubical element of an elastic body. If the stress tensor were
position independent, the external forces on each pair of opposing faces of
the cube would be equal in magnitude but pointing in opposite directions.
There would therefore be no net external force on the cube. When σij is not
constant then we claim that the total force acting on an infinitesimal element
of volume dV is

Fi = ∂jσij dV. (10.113)

To see that this assertion is correct, consider a finite region Ω with boundary
∂Ω, and use the divergence theorem to write the total force on Ω as

F tot
i =

∫

∂Ω

σijnjd|S| =
∫

Ω

∂jσijdV. (10.114)

Whenever the force-per-unit-volume fi acting on a body can be written
in the form fi = ∂jσij, we refer to σij as a “stress tensor,” by analogy with
stress in an elastic solid. As an example, let E and B be electric and magnetic
fields. For simplicity, initially assume them to be static. The force per unit
volume exerted by these fields on a distribution of charge ρ and current j is

f = ρE + j×B. (10.115)

From Gauss’ law ρ = div D, and with D = ε0E, we find that the force per
unit volume due the electric field has components

ρEi = (∂jDj)Ei = ε0

(
∂j(EiEj)− Ej ∂jEi

)

= ε0

(
∂j(EiEj)− Ej ∂iEj

)

= ε0∂j

(
EiEj −

1

2
δij|E|2

)
. (10.116)
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Here, in passing from the first line to the second, we have used the fact that
curlE is zero for static fields, and so ∂jEi = ∂iEj. Similarly, using j = curlH,
together with B = µ0H and div B = 0, we find that the force per unit volume
due the magnetic field has components

(j×B)i = µ0∂j

(
HiHj −

1

2
δij|H|2

)
. (10.117)

The quantity

σij = ε0

(
EiEj −

1

2
δij|E|2

)
+ µ0

(
HiHj −

1

2
δij|H|2

)
(10.118)

is called the Maxwell stress tensor . Its utility lies in in the fact that the
total electromagnetic force on an isolated body is the integral of the Maxwell
stress over its surface. We do not need to know the fields within the body.

Michael Faraday was the first to intuit a picture of electromagnetic stresses
and attributed both a longitudinal tension and a mutual lateral repulsion to
the field lines. Maxwell’s tensor expresses this idea mathematically.

Exercise 10.9: Allow the fields in the preceding calculation to be time depen-
dent. Show that Maxwell’s equations

curlE = −∂B
∂t
, divB = 0,

curlH = j +
∂D

∂t
, divD = ρ,

with B = µ0H, D = ε0E, and c = 1/
√
µ0ε0, lead to

(ρE + j×B)i +
∂

∂t

{
1

c2
(E×H)i

}
= ∂jσij .

The left-hand side is the time rate of change of the mechanical (first term)
and electromagnetic (second term) momentum density. Observe that we can
equivalently write

∂

∂t

{
1

c2
(E×H)i

}
+ ∂j(−σij) = −(ρE + j×B)i,

and think of this a local field-momentum conservation law. In this interpre-
tation −σij is thought of as the momentum flux tensor, its entries being the
flux in direction j of the component of field momentum in direction i. The
term on the right-hand side is the rate at which momentum is being supplied
to the electro-magnetic field by the charges and currents.
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10.4 Further exercises and problems

Exercise 10.10: Quotient theorem. Suppose that you have come up with some
recipe for generating an array of numbers T ijk in any co-ordinate frame, and
want to know whether these numbers are the components of a triply con-
travariant tensor. Suppose further that you know that, given the components
aij of an arbitrary doubly covariant tensor, the numbers

T ijkajk = vi

transform as the components of a contravariant vector. Show that T ijk does
indeed transform as a triply contravariant tensor. (The natural generalization
of this result to arbitrary tensor types is known as the quotient theorem.)

Exercise 10.11: Let T ij be the 3-by-3 array of components of a tensor. Show
that the quantities

a = T ii, b = T ijT
j
i, c = T ijT

j
kT

k
i

are invariant. Further show that the eigenvalues of the linear map represented
by the matrix T ij can be found by solving the cubic equation

λ3 − aλ2 +
1

2
(a2 − b)λ− 1

6
(a3 − 3ab+ 2c) = 0.

Exercise 10.12: Let the covariant tensor Rijkl possess the following symme-
tries:

i) Rijkl = −Rjikl,
ii) Rijkl = −Rijlk,
iii) Rijkl +Riklj +Riljk = 0.

Use the properties i),ii), iii) to show that:

a) Rijkl = Rklij.
b) If Rijklx

iyjxkyl = 0 for all vectors xi, yi, then Rijkl = 0.
c) If Bij is a symmetric covariant tensor and set we Aijkl = BikBjl−BilBjk,

then Aijkl has the same symmetries as Rijkl.

Exercise 10.13: Write out Euler’s equation for fluid motion

v̇ + (v · ∇)v = −∇h

in Cartesian tensor notation. Transform it into

v̇ − v ×ω = −∇
(

1

2
v2 + h

)
,
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where ω = ∇×v is the vorticity. Deduce Bernoulli’s theorem, that for steady
(v̇ = 0) flow the quantity 1

2v
2 + h is constant along streamlines.

Exercise 10.14: The elastic properties of an infinite homogeneous and isotropic
solid of density ρ are described by Lamé constants λ and µ. Show that the
equation of motion for small-amplitude vibrations is

ρ
∂2ηi
∂t2

= (λ+ µ)
∂2ηj
∂xi∂xj

+ µ
∂2ηi
∂x2

j

.

Here ηi are the cartesian components of the displacement vector η(x, t) of the
particle initially at the point x. Seek plane wave solutions of the form

η = a exp{ik · x− iωt},

and deduce that there are two possible types of wave: longitudinal “P-waves,”
which have phase velocity

vP =

√
λ+ 2µ

ρ
,

and transverse “S-waves,” which have phase velocity

vS =

√
µ

ρ
.

Exercise 10.15: Symmetric integration. Show that the n-dimensional integral

Iαβγδ =

∫
dnk

(2π)n
(kαkβkγkδ) f(k2),

is equal to

A(δαβδγδ + δαγδβδ + δαδδβγ)

where

A =
1

n(n+ 2)

∫
dnk

(2π)n
(k2)2f(k2).

Similarly evaluate

Iαβγδε =

∫
dnk

(2π)n
(kαkβkγkδkε) f(k2).
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Exercise 10.16: Write down the most general three-dimensional isotropic ten-
sors of rank two and three.

In piezoelectric materials, the application of an electric field Ei induces a
mechanical strain that is described by a rank-two symmetric tensor

eij = dijkEk,

where dijk is a third-rank tensor that depends only on the material. Show
that eij can only be non-zero in an anisotropic material.

Exercise 10.17: In three dimensions, a rank-five isotropic tensor Tijklm is a
linear combination of expressions of the form εi1i2i3δi4i5 for some assignment
of the indices i, j, k, l,m to the i1, . . . , i5. Show that, on taking into account
the symmetries of the Kronecker and Levi-Civita symbols, we can construct
ten distinct products εi1i2i3δi4i5 . Only six of these are linearly independent,
however. Show, for example, that

εijkδlm − εjklδim + εkliδjm − εlijδkm = 0,

and find the three other independent relations of this sort.7

(Hint: Begin by showing that, in three dimensions,

δi1i2i3i4i5i6i7i8

def
=

∣∣∣∣∣∣∣∣

δi1i5 δi1i6 δi1i7 δi1i8
δi2i5 δi2i6 δi2i7 δi2i8
δi3i5 δi3i6 δi3i7 δi3i8
δi4i5 δi4i6 δi4i7 δi4i8

∣∣∣∣∣∣∣∣
= 0,

and contract with εi6i7i8 .)

Problem 10.18: The Plücker Relations. This problem provides a challenging
test of your understanding of linear algebra. It leads you through the task of
deriving the necessary and sufficient conditions for

A = Ai1...ik ei1 ∧ . . . ∧ eik ∈
∧

kV

to be decomposable as
A = f1 ∧ f2 ∧ . . . ∧ fk.

The trick is to introduce two subspaces of V ,

7Such relations are called syzygies . A recipe for constructing linearly independent basis
sets of isotropic tensors can be found in: G. F. Smith, Tensor , 19 (1968) 79-88.
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i) W , the smallest subspace of V such that A ∈ ∧kW ,
ii) W ′ = {v ∈ V : v ∧A = 0},

and explore their relationship.

a) Show that if {w1,w2, . . . ,wn} constitute a basis for W ′, then

A = w1 ∧w2 ∧ · · · ∧wn ∧ϕ

for some ϕ ∈ ∧k−n V . Conclude that that W ′ ⊆ W , and that equal-
ity holds if and only if A is decomposable, in which case W = W ′ =
span{f1 . . . fk}.

b) Now show that W is the image space of
∧k−1 V ∗ under the map that

takes
Ξ = Ξi1...ik−1

e∗i1 ∧ . . . ∧ e∗ik−1 ∈
∧

k−1V ∗

to
i(Ξ)A

def
= Ξi1...ik−1

Ai1...ik−1jej ∈ V
Deduce that the condition W ⊆W ′ is that

(
i(Ξ)A

)
∧A = 0, ∀Ξ ∈

∧
k−1V ∗.

c) By taking
Ξ = e∗i1 ∧ . . . ∧ e∗ik−1 ,

show that the condition in part b) can be written as

Ai1...ik−1j1Aj2j3...jk+1ej1 ∧ . . . ∧ ejk+1
= 0.

Deduce that the necessary and sufficient conditions for decomposibility
are that

Ai1...ik−1[j1Aj2j3...jk+1] = 0,

for all possible index sets i1, . . . , ik−1, j1, . . . jk+1. Here [. . .] denotes anti-
symmetrization of the enclosed indices.


