
Chapter 11

Differential Calculus on
Manifolds

In this section we will apply what we have learned about vectors and ten-
sors in linear algebra to vector and tensor fields in a general curvilinear
co-ordinate system. Our aim is to introduce the reader to the modern lan-
guage of advanced calculus, and in particular to the calculus of differential
forms on surfaces and manifolds.

11.1 Vector and covector fields

Vector fields — electric, magnetic, velocity fields, and so on — appear every-
where in physics. After perhaps struggling with it in introductory courses, we
rather take the field concept for granted. There remain subtleties, however.
Consider an electric field. It makes sense to add two field vectors at a single
point, but there is no physical meaning to the sum of field vectors E(x1) and
E(x2) at two distinct points. We should therefore regard all possible electric
fields at a single point as living in a vector space, but each different point in
space comes with its own field-vector space.

This view seems even more reasonable when we consider velocity vectors
describing motion on a curved surface. A velocity vector lives in the tangent
space to the surface at each point, and each of these spaces is a differently
oriented subspace of the higher-dimensional ambient space.

419
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Figure 11.1: Each point on a surface has its own vector space of tangents.

Mathematicians call such a collection of vector spaces — one for each of the
points in a surface — a vector bundle over the surface. Thus, the tangent
bundle over a surface is the totality of all vector spaces tangent to the surface.
Why a bundle? This word is used because the individual tangent spaces are
not completely independent, but are tied together in a rather non-obvious
way. Try to construct a smooth field of unit vectors tangent to the surface
of a sphere. However hard you work you will end up in trouble somewhere.
You cannot comb a hairy ball. On the surface of torus you will have no such
problems. You can comb a hairy doughnut. The tangent spaces collectively
know something about the surface they are tangent to.

Although we spoke in the previous paragraph of vectors tangent to a
curved surface, it is useful to generalize this idea to vectors lying in the
tangent space of an n-dimensional manifold , or n-manifold. A n-manifold M
is essentially a space that locally looks like a part of Rn. This means that
some open neighbourhood of each point x ∈ M can be parametrized by an
n-dimensional co-ordinate system. A co-ordinate parametrization is called a
chart . Unless M is Rn itself (or part of it), a chart will cover only part of
M , and more than one will be required for complete coverage. Where a pair
of charts overlap, we demand that the transformation formula giving one set
of co-ordinates as a function of the other be a smooth (C∞) function, and to
possess a smooth inverse.1 A collection of such smoothly related co-ordinate
charts covering all of M is called an atlas. The advantage of thinking in
terms of manifolds is that we do not have to understand their properties
as arising from some embedding in a higher dimensional space. Whatever
structure they have, they possess in, and of, themselves

1A formal definition of a manifold contains some further technical restrictions (that the
space be Hausdorff and paracompact) that are designed to eliminate pathologies. We are
more interested in doing calculus than in proving theorems, and so we will ignore these
niceties.



11.1. VECTOR AND COVECTOR FIELDS 421

Classical mechanics provides a familiar illustration of these ideas. Except
in pathological cases, the configuration space M of a mechanical system is
a manifold. When the system has n degrees of freedom we use generalized
co-ordinates qi, i = 1, . . . , n to parametrize M . The tangent bundle of M
then provides the setting for Lagrangian mechanics. This bundle, denoted
by TM , is the 2n-dimensional space each of whose whose points consists of a
point q = (q1, . . . , qn) in M paired with a tangent vector lying in the tangent
space TMq at that point. If we think of the tangent vector as a velocity, the
natural co-ordinates on TM become (q1, q2, . . . , qn ; q̇1, q̇2, . . . , q̇n), and these
are the variables that appear in the Lagrangian of the system.

If we consider a vector tangent to some curved surface, it will stick out
of it. If we have a vector tangent to a manifold, it is a straight arrow lying
atop bent co-ordinates. Should we restrict the length of the vector so that
it does not stick out too far? Are we restricted to only infinitesimal vectors?
It is best to avoid all this by adopting a clever notion of what a vector in
a tangent space is. The idea is to focus on a well-defined object such as
a derivative. Suppose that our space has co-ordinates xµ. (These are not
the contravariant components of some vector) A directional derivative is an
object such asXµ∂µ, where ∂µ is shorthand for ∂/∂xµ. When the components
Xµ are functions of the co-ordinates xσ, this object is called a tangent-vector
field, and we write2

X = Xµ∂µ. (11.1)

We regard the ∂µ at a point x as a basis for TMx, the tangent-vector space at
x, and the Xµ(x) as the (contravariant) components of the vector X at that
point. Although they are not little arrows, what the ∂µ are is mathematically
clear, and so we know perfectly well how to deal with them.

When we change co-ordinate system from xµ to zν by regarding the xµ’s
as invertable functions of the zν ’s, i.e.

x1 = x1(z1, z2, . . . , zn),

x2 = x2(z1, z2, . . . , zn),
...

xn = xn(z1, z2, . . . , zn), (11.2)

2We are going to stop using bold symbols to distinguish between intrinsic objects and
their components, because from now on almost everything will be something other than a
number, and too much black ink would just be confusing.
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then the chain rule for partial differentiation gives

∂µ ≡
∂

∂xµ
=
∂zν

∂xµ
∂

∂zν
=

(
∂zν

∂xµ

)
∂′ν , (11.3)

where ∂′ν is shorthand for ∂/∂zν . By demanding that

X = Xµ∂µ = X ′ν∂′ν (11.4)

we find the components in the zν co-ordinate frame to be

X ′ν =

(
∂zν

∂xµ

)
Xµ. (11.5)

Conversely, using
∂xσ

∂zν
∂zν

∂xµ
=
∂xσ

∂xµ
= δσµ , (11.6)

we have

Xν =

(
∂xν

∂zµ

)
X ′µ. (11.7)

This, then, is the transformation law for a contravariant vector.
It is worth pointing out that the basis vectors ∂µ are not unit vectors. As

we have no metric, and therefore no notion of length anyway, we cannot try
to normalize them. If you insist on drawing (small?) arrows, think of ∂1 as
starting at a point (x1, x2, . . . , xn) and with its head at (x1 + 1, x2, . . . , xn).
Of course this is only a good picture if the co-ordinates are not too “curvy.”

x =2 x =3 x =4

x =5

x =4

x =6
1 1 1

2

2

2

2

1

Figure 11.2: Approximate picture of the vectors ∂1 and ∂2 at the point
(x1, x2) = (2, 4).

Example: The surface of the unit sphere is a manifold. It is usually denoted
by S2. We may label its points with spherical polar co-ordinates, θ mea-
suring the co-latitude and φ measuring the longitude. These will be useful
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everywhere except at the north and south poles, where they become singular
because at θ = 0 or π all values of of the longitude φ correspond to the same
point. In this co-ordinate basis, the tangent vector representing the velocity
field due to a rigid rotation of one radian per second about the z axis is

Vz = ∂φ. (11.8)

Similarly

Vx = − sinφ ∂θ − cot θ cosφ ∂φ,

Vy = cosφ ∂θ − cot θ sinφ∂φ, (11.9)

respectively represent rigid rotations about the x and y axes.
We now know how to think about vectors. What about their dual-space

partners, the covectors? These live in the cotangent bundle T ∗M , and for
them a cute notational game, due to Élie Cartan, is played. We write the
basis vectors dual to the ∂µ as dxµ( ). Thus

dxµ(∂ν) = δµν . (11.10)

When evaluated on a vector field X = Xµ∂µ, the basis covectors dxµ return
its components:

dxµ(X) = dxµ(Xν∂ν) = Xνdxµ(∂ν) = Xνδµν = Xµ. (11.11)

Now, any smooth function f ∈ C∞(M) will give rise to a field of covectors
in T ∗M . This is because a vector field X acts on the scalar function f as

Xf = Xµ∂µf (11.12)

and Xf is another scalar function. This new function gives a number — and
thus an element of the field R — at each point x ∈ M . But this is exactly
what a covector does: it takes in a vector at a point and returns a number.
We will call this covector field “df .” It is essentially the gradient of f . Thus

df(X)
def
= Xf = Xµ ∂f

∂xµ
. (11.13)

If we take f to be the co-ordinate xν , we have

dxν(X) = Xµ ∂x
ν

∂xµ
= Xµδνµ = Xν, (11.14)
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so this viewpoint is consistent with our previous definition of dxν. Thus

df(X) =
∂f

∂xµ
Xµ =

∂f

∂xµ
dxµ(X) (11.15)

for any vector field X. In other words, we can expand df as

df =
∂f

∂xµ
dxµ. (11.16)

This is not some approximation to a change in f , but is an exact expansion
of the covector field df in terms of the basis covectors dxµ.

We may retain something of the notion that dxµ represents the (con-
travariant) components of a small displacement in x provided that we think
of dxµ as a machine into which we insert the small displacement (a vector)
and have it spit out the numerical components δxµ. This is the same dis-
tinction that we make between sin( ) as a function into which one can plug
x, and sin x, the number that results from inserting in this particular value
of x. Although seemingly innocent, we know that it is a distinction of great
power.

The change of co-ordinates transformation law for a covector field fµ is
found from

fµ dx
µ = f ′

ν dz
ν, (11.17)

by using

dxµ =

(
∂xµ

∂zν

)
dzν . (11.18)

We find

f ′
ν =

(
∂xµ

∂zν

)
fµ. (11.19)

A general tensor such as Qλµ
ρστ transforms as

Q′λµ
ρστ (z) =

∂zλ

∂xα
∂zµ

∂xβ
∂xγ

∂zρ
∂xδ

∂zσ
∂xε

∂zτ
Qαβ

γδε(x). (11.20)

Observe how the indices are wired up: Those for the new tensor coefficients
in the new co-ordinates, z, are attached to the new z’s, and those for the old
coefficients are attached to the old x’s. Upstairs indices go in the numerator
of each partial derivative, and downstairs ones are in the denominator.



11.2. DIFFERENTIATING TENSORS 425

The language of bundles and sections

At the beginning of this section, we introduced the notion of a vector bundle.
This is a particular example of the more general concept of a fibre bundle,
where the vector space at each point in the manifold is replaced by a “fibre”
over that point. The fibre can be any mathematical object, such as a set,
tensor space, or another manifold. Mathematicians visualize the bundle as
a collection of fibres growing out of the manifold, much as stalks of wheat
grow out the soil. When one slices through a patch of wheat with a scythe,
the blade exposes a cross-section of the stalks. By analogy, a choice of an
element of the the fibre over each point in the manifold is called a cross-
section, or, more commonly, a section of the bundle. In this language, a
tangent-vector field becomes a section of the tangent bundle, and a field of
covectors becomes a section of the cotangent bundle.

We provide a more detailed account of bundles in Chapter 16.

11.2 Differentiating tensors

If f is a function then ∂µf are components of the covariant vector df . Suppose
that aµ is a contravariant vector. Are ∂νa

µ the components of a type (1, 1)
tensor? The answer is no! In general, differentiating the components of a
tensor does not give rise to another tensor. One can see why at two levels:

a) Consider the transformation laws. They contain expressions of the form
∂xµ/∂zν . If we differentiate both sides of the transformation law of a
tensor, these factors are also differentiated, but tensor transformation
laws never contain second derivatives, such as ∂2xµ/∂zν∂zσ .

b) Differentiation requires subtracting vectors or tensors at different points
— but vectors at different points are in different vector spaces, so their
difference is not defined.

These two reasons are really one and the same. We need to be cleverer to
get new tensors by differentiating old ones.

11.2.1 Lie bracket

One way to proceed is to note that the vector field X is an operator . It makes
sense, therefore, to try to compose two of them to make another. Look at
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XY , for example:

XY = Xµ∂µ(Y
ν∂ν) = XµY ν∂2

µν +Xµ

(
∂Y ν

∂xµ

)
∂ν . (11.21)

What are we to make of this? Not much! There is no particular interpretation
for the second derivative, and as we saw above, it does not transform nicely.
But suppose we take a commutator :

[X, Y ] = XY − Y X = (Xµ(∂µY
ν)− Y µ(∂µX

ν)) ∂ν. (11.22)

The second derivatives have cancelled, and what remains is a directional
derivative and so a bona-fide vector field. The components

[X, Y ]ν ≡ Xµ(∂µY
ν)− Y µ(∂µX

ν) (11.23)

are the components of a new contravariant vector field made from the two
old vector fields. This new vector field is called the Lie bracket of the two
fields, and has a geometric interpretation.

To understand the geometry of the Lie bracket, we first define the flow
associated with a tangent-vector field X. This is the map that takes a point
x0 and maps it to x(t) by solving the family of equations

dxµ

dt
= Xµ(x1, x2, . . .), (11.24)

with initial condition xµ(0) = xµ0 . In words, we regard X as the velocity field
of a flowing fluid, and let x ride along with the fluid.

Now envisage X and Y as two velocity fields. Suppose we flow along X
for a brief time t, then along Y for another brief interval s. Next we switch
back to X, but with a minus sign, for time t, and then to −Y for a final
interval of s. We have tried to retrace our path, but a short exercise with
Taylor’s theorem shows that we will fail to return to our exact starting point.
We will miss by δxµ = st[X, Y ]µ, plus corrections of cubic order in s and t.
(See figure 11.3)
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−sY tX

sY

−tX

X,Y[      ]st

Figure 11.3: We try to retrace our steps but fail to return by a distance
proportional to the Lie bracket.

Example: Let

Vx = − sinφ ∂θ − cot θ cosφ ∂φ,

Vy = cosφ ∂θ − cot θ sinφ ∂φ,

be two vector fields in T (S2). We find that

[Vx, Vy] = −Vz,

where Vz = ∂φ.

Frobenius’ theorem

Suppose that in some region of a d-dimensional manifold M we are given
n < d linearly independent tangent-vector fields Xi. Such a set is called a
distribution by differential geometers. (The concept has nothing to do with
probability, or with objects like “δ(x)” which are also called “distributions.”)
At each point x, the span 〈Xi(x)〉 of the field vectors forms a subspace of
the tangent space TMx, and we can picture this subspace as a fragment of
an n-dimensional surface passing through x. It is possible that these surface
fragments fit together to make a stack of smooth surfaces — called a foliation
— that fill out the d-dimensional space, and have the givenXi as their tangent
vectors.
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X 1
X 2

x

N

Figure 11.4: A local foliation.

If this is the case then starting from x and taking steps only along the Xi

we find ourselves restricted to the n-surface, or n-submanifold , N passing
though the original point x.

Alternatively, the surface fragments may form such an incoherent jumble
that starting from x and moving only along the Xi we can find our way to any
point in the neighbourhood of x. It is also possible that some intermediate
case applies, so that moving along the Xi restricts us to an m-surface, where
d > m > n. The Lie bracket provides us with the appropriate tool with
which to investigate these possibilities.

First a definition: If there are functions c k
ij (x) such that

[Xi, Xj] = c k
ij (x)Xk, (11.25)

i.e. the Lie brackets close within the set {Xi} at each point x, then the
distribution is said to be involutive. and the vector fields are said to be “in
involution” with each other. When our given distribution is involutive, then
the first case holds, and, at least locally, there is a foliation by n-submanifolds
N . A formal statement of this is:
Theorem (Frobenius): A smooth (C∞) involutive distribution is completely
integrable: locally, there are co-ordinates xµ, µ = 1, . . . , d such that Xi =∑n

µ=1X
µ
i ∂µ, and the surfaces N through each point are in the form xµ =

const. for µ = n + 1, . . . , d. Conversely, if such co-ordinates exist then the
distribution is involutive.
A half-proof : If such co-ordinates exist then it is obvious that the Lie bracket
of any pair of vectors in the form Xi =

∑n
µ=1 X

µ
i ∂µ can also be expanded in

terms of the first n basis vectors. A logically equivalent statement exploits the
geometric interpretation of the Lie bracket: If the Lie brackets of the fields
Xi do not close within the n-dimensional span of the Xi, then a sequence
of back-and-forth manœvres along the Xi allows us to escape into a new
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direction, and so the Xi cannot be tangent to an n-surface. Establishing the
converse — that closure implies the existence of the foliation — is rather
more technical, and we will not attempt it.

Involutive and non-involutive distributions appear in classical mechanics
under the guise of holonomic and anholonomic constraints. In mechanics,
constraints are not usually given as a list of the directions (vector fields) in
which we are free to move, but instead as a list of restrictions imposed on the
permitted motion. In a d-dimensional mechanical system we might have set
of m independent constraints of the form ωiµ(q)q̇

µ = 0, i = 1, . . . , m. Such
restrictions are most naturally expressed in terms of the covector fields

ωi =
d∑

µ=1

ωiµ(q)dq
µ, i = 1 ≤ i ≤ m. (11.26)

We can write the constraints as the m conditions ωi(q̇) = 0 that must be
satisfied if q̇ ≡ q̇µ∂µ is to be an allowed motion. The list of constraints is
known a Pfaffian system of equations. These equations indirectly determine
an n = d −m dimensional distribution of permitted motions. The Pfaffian
system is said to be integrable if this distribution is involutive, and hence
integrable. In this case there is a set of m functions gi(q) and an invertible
m-by-m matrix f ij(q) such that

ωi =

m∑

j=1

f ij(q)dg
j. (11.27)

The functions gi(q) can, for example, be taken to be the co-ordinate functions
xµ, µ = n + 1, . . . , d, that label the foliating surfaces N in the statement of
Frobenius’ theorem. The system of integrable constraints ωi(q̇) = 0 thus
restricts us to the surfaces gi(q) = constant.

For example, consider a particle moving in three dimensions. If we are
told that the velocity vector is constrained by ω(q̇) = 0, where

ω = x dx + y dy + z dz (11.28)

we realize that the particle is being forced to move on a sphere passing
through the initial point. In spherical co-ordinates the associated distribution
is the set {∂θ, ∂φ}, which is clearly involutive because [∂θ, ∂φ] = 0. The
functions f(x, y, z) and g(x, y, z) from the previous paragraph can be taken
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to be r =
√
x2 + y2 + z2, and the constraint covector written as ω = f dg =

r dr.
The foliation is the family of nested spheres whose centre is the origin.

(The foliation is not global because it becomes singular at r = 0.) Constraints
like this, which restrict the motion to a surface, are said to be holonomic.

Suppose, on the other hand, we have a ball rolling on a table. Here, we
have a five-dimensional configuration manifold M = R2 × S3, parametrized
by the centre of mass (x, y) ∈ R2 of the ball and the three Euler angles
(θ, φ, ψ) ∈ S3 defining its orientation. Three no-slip rolling conditions

ẋ = ψ̇ sin θ sinφ+ θ̇ cosφ,

ẏ = −ψ̇ sin θ cosφ+ θ̇ sin φ,

0 = ψ̇ cos θ + φ̇, (11.29)

(see exercise 11.17) link the rate of change of the Euler angles to the velocity
of the centre of mass. At each point in this five-dimensional manifold we
are free to roll the ball in two directions, and so we might expect that the
reachable configurations constitute a two-dimensional surface embedded in
the full five-dimensional space. The two vector fields

rollx = ∂x − sinφ cot θ ∂φ + cosφ ∂θ + cosec θ sin φ ∂ψ,

rolly = ∂y + cosφ cot θ ∂φ + sin φ ∂θ − cosec θ cosφ ∂ψ, (11.30)

describing the permitted x- and y-direction rolling motion are not in invo-
lution, however. By calculating enough Lie brackets we eventually obtain
five linearly independent velocity vector fields, and starting from one con-
figuration we can reach any other. The no-slip rolling condition is said to
be non-integrable, or anholonomic. Such systems are tricky to deal with in
Lagrangian dynamics.

The following exercise provides a familiar example of the utility of non-
holonomic constraints:

Exercise 11.1: Parallel Parking using Lie Brackets. The configuration space
of a car is four dimensional, and parameterized by co-ordinates (x, y, θ, φ), as
shown in figure 11.5. Define the following vector fields:

a) (front wheel) drive = cosφ(cos θ ∂x + sin θ ∂y) + sinφ∂θ.
b) steer = ∂φ.
c) (front wheel) skid = − sinφ(cos θ ∂x + sin θ ∂y) + cosφ∂θ.
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θ

(x,y)

drive

park

φ

Figure 11.5: Co-ordinates for car parking

d) park = − sin θ ∂x + cos θ ∂y.

Explain why these are apt names for the vector fields, and compute the six
Lie brackets:

[steer,drive], [steer, skid], [skid,drive],

[park,drive], [park,park], [park, skid].

The driver can use only the operations (±)drive and (±) steer to manœvre
the car. Use the geometric interpretation of the Lie bracket to explain how a
suitable sequence of motions (forward, reverse, and turning the steering wheel)
can be used to manoeuvre a car sideways into a parking space.

11.2.2 Lie derivative

Another derivative that we can define is the Lie derivative along a vector
field X. It is defined by its action on a scalar function f as

LXf def
= Xf, (11.31)

on a vector field by

LXY def
= [X, Y ], (11.32)

and on anything else by requiring it to be a derivation, meaning that it obeys
Leibniz’ rule. For example, let us compute the Lie derivative of a covector
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F . We first introduce an arbitrary vector field Y and plug it into F to get
the scalar function F (Y ). Leibniz’ rule is then the statement that

LXF (Y ) = (LXF )(Y ) + F (LXY ). (11.33)

Since F (Y ) is a function and Y is a vector, both of whose derivatives we
know how to compute, we know the first and third of the three terms in this
equation. From LXF (Y ) = XF (Y ) and F (LXY ) = F ([X, Y ]), we have

XF (Y ) = (LXF )(Y ) + F ([X, Y ]), (11.34)

and so
(LXF )(Y ) = XF (Y )− F ([X, Y ]). (11.35)

In components, this becomes

(LXF )(Y ) = Xν∂ν(FµY
µ)− Fν(Xµ∂µY

ν − Y µ∂µX
ν)

= (Xν∂νFµ + Fν∂µX
ν)Y µ. (11.36)

Note how all the derivatives of Y µ have cancelled, so LXF ( ) depends only
on the local value of Y . The Lie derivative of F is therefore still a covector
field. This is true in general: the Lie derivative does not change the tensor
character of the objects on which it acts. Dropping the passive spectator
field Y ν , we have a formula for LXF in components:

(LXF )µ = Xν∂νFµ + Fν∂µX
ν. (11.37)

Another example is provided by the Lie derivative of a type (0, 2) tensor,
such as a metric tensor. This is

(LXg)µν = Xα∂αgµν + gµα∂νX
α + gαν∂µX

α. (11.38)

The Lie derivative of a metric measures the extent to which the displacement
xα → xα + εXα(x) deforms the geometry. If we write the metric as

g( , ) = gµν(x) dx
µ ⊗ dxν, (11.39)

we can understand both this geometric interpretation and the origin of the
three terms appearing in the Lie derivative. We simply make the displace-
ment xα → xα + εXα in the coefficients gµν(x) and in the two dxα. In the
latter we write

d(xα + εXα) = dxα + ε
∂Xα

∂xβ
dxβ. (11.40)
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Then we see that

gµν(x) dx
µ ⊗ dxν → [gµν(x) + ε(Xα∂αgµν + gµα∂νX

α + gαν∂µX
α)] dxµ ⊗ dxν

= [gµν + ε(LXg)µν] dxµ ⊗ dxν. (11.41)

A displacement fieldX that does not change distances between points, i.e. one
that gives rise to an isometry , must therefore satisfy LXg = 0. Such an X is
said to be a Killing field after Wilhelm Killing who introduced them in his
study of non-euclidean geometries.

The geometric interpretation of the Lie derivative of a vector field is as
follows: In order to compute the X directional derivative of a vector field Y ,
we need to be able to subtract the vector Y (x) from the vector Y (x + εX),
divide by ε, and take the limit ε→ 0. To do this we have somehow to get the
vector Y (x) from the point x, where it normally resides, to the new point
x + εX, so both vectors are elements of the same vector space. The Lie
derivative achieves this by carrying the old vector to the new point along the
field X.

Xε
x

Lε
Xε

YX

Y(x+εX)

Y(x)

Figure 11.6: Computing the Lie derivative of a vector.

Imagine the vector Y as drawn in ink in a flowing fluid whose velocity field
is X. Initially the tail of Y is at x and its head is at x + Y . After flowing
for a time ε, its tail is at x + εX — i.e exactly where the tail of Y (x + εX)
lies. Where the head of transported vector ends up depends how the flow has
stretched and rotated the ink, but it is this distorted vector that is subtracted
from Y (x+ εX) to get εLXY = ε[X, Y ].

Exercise 11.2: The metric on the unit sphere equipped with polar co-ordinates
is

g( , ) = dθ ⊗ dθ + sin2 θ dφ⊗ dφ.
Consider

Vx = − sinφ∂θ − cot θ cosφ∂φ,
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which is the vector field of a rigid rotation about the x axis. Compute the Lie
derivative LVxg, and show that it is zero.

Exercise 11.3: Suppose we have an unstrained block of material in real space.
A co-ordinate system ξ1, ξ2, ξ3, is attached to the material of the body. The
point with co-ordinate ξ is located at (x1(ξ), x2(ξ), x3(ξ)) where x1, x2, x3 are
the usual R3 Cartesian co-ordinates.

a) Show that the induced metric in the ξ co-ordinate system is

gµν(ξ) =
3∑

a=1

∂xa

∂ξµ
∂xa

∂ξν
.

b) The body is now deformed by an infinitesimal strain vector field η(ξ).
The atom with co-ordinate ξµ is moved to what was ξµ+ηµ(ξ), or equiv-
alently, the atom initially at Cartesian co-ordinate xa(ξ) is moved to
xa + ηµ∂xa/∂ξµ. Show that the new induced metric is

gµν + δgµν = gµν + Lηgµν .

c) Define the strain tensor to be 1/2 of the Lie derivative of the metric
with respect to the deformation. If the original ξ co-ordinate system
coincided with the Cartesian one, show that this definition reduces to
the familiar form

eab =
1

2

(
∂ηa
∂xb

+
∂ηb
∂xa

)
,

all tensors being Cartesian.
d) Part c) gave us the geometric definitition of infinitesimal strain. If the

body is deformed substantially, the Cauchy-Green finite strain tensor is
defined as

Eµν(ξ) =
1

2

(
gµν − g(0)

µν

)
,

where g
(0)
µν is the metric in the undeformed body and gµν the metric in

the deformed body. Explain why this is a reasonable definition.

11.3 Exterior calculus

11.3.1 Differential forms

The objects we introduced in section 11.1, the dxµ, are called one-forms, or
differential one-forms. They are fields living in the cotangent bundle T ∗M
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of M . More precisely, they are sections of the cotangent bundle. Sections
of the bundle whose fibre above x ∈ M is the p-th skew-symmetric tensor
power

∧p(T ∗Mx) of the cotangent space are known as p-forms.
For example,

A = Aµdx
µ = A1dx

1 + A2dx
2 + A3dx

3, (11.42)

is a 1-form,

F =
1

2
Fµνdx

µ ∧ dxν = F12dx
1 ∧ dx2 + F23dx

2 ∧ dx3 + F31dx
3 ∧ dx1, (11.43)

is a 2-form, and

Ω =
1

3!
Ωµνσ dx

µ ∧ dxν ∧ dxσ = Ω123 dx
1 ∧ dx2 ∧ dx3, (11.44)

is a 3-form. All the coefficients are skew-symmetric tensors, so, for example,

Ωµνσ = Ωνσµ = Ωσµν = −Ωνµσ = −Ωµσν = −Ωσνµ. (11.45)

In each example we have explicitly written out all the independent terms for
the case of three dimensions. Note how the p! disappears when we do this
and keep only distinct components. In d dimensions the space of p-forms is
d!/p!(d− p)! dimensional, and all p-forms with p > d vanish identically.

As with the wedge products in chapter one, we regard a p-form as a p-
linear skew-symetric function with p slots into which we can drop vectors to
get a number. For example the basis two-forms give

dxµ ∧ dxν(∂α, ∂β) = δµαδ
ν
β − δµβδνα. (11.46)

The analogous expression for a p-form would have p! terms. We can define
an algebra of differential forms by “wedging” them together in the obvious
way, so that the product of a p-form with a q-form is a (p + q)-form. The
wedge product is associative and distributive but not, of course, commuta-
tive. Instead, if a is a p-form and b a q-form, then

a ∧ b = (−1)pq b ∧ a. (11.47)

Actually it is customary in this game to suppress the “∧” and simply write
F = 1

2
Fµν dx

µdxν , it being assumed that you know that dxµdxν = −dxνdxµ
— what else could it be?
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11.3.2 The exterior derivative

These p-forms may seem rather complicated, so it is perhaps surprising that
all the vector calculus (div, grad, curl, the divergence theorem and Stokes’
theorem, etc.) that you have learned in the past reduce, in terms of them,
to two simple formulæ! Indeed Élie Cartan’s calculus of p-forms is slowly
supplanting traditional vector calculus, much as Willard Gibbs’ and Oliver
Heaviside’s vector calculus supplanted the tedious component-by-component
formulæ you find in Maxwell’s Treatise on Electricity and Magnetism.

The basic tool is the exterior derivative “d”, which we now define ax-
iomatically:

i) If f is a function (0-form), then df coincides with the previous defini-
tion, i.e. df(X) = Xf for any vector field X.

ii) d is an anti-derivation: If a is a p-form and b a q-form then

d(a ∧ b) = da ∧ b + (−1)pa ∧ db. (11.48)

iii) Poincaré’s lemma: d2 = 0, meaning that d(da) = 0 for any p-form a.
iv) d is linear. That d(αa) = αda, for constant α follows already from i)

and ii), so the new fact is that d(a+ b) = da+ db.

It is not immediately obvious that axioms i), ii) and iii) are compatible
with one another. If we use axiom i), ii) and d(dxi) = 0 to compute the d of
Ω = 1

p!
Ωi1 ,...,ipdx

i1 · · ·dxip , we find

dΩ =
1

p!
(dΩi1,...,ip) dx

i1 · · ·dxip

=
1

p!
∂kΩi1,...,ip dx

kdxi1 · · ·dxip . (11.49)

Now compute

d(dΩ) =
1

p!

(
∂l∂kΩi1,...,ip

)
dxldxkdxi1 · · ·dxip. (11.50)

Fortunately this is zero because ∂l∂kΩ = ∂k∂lΩ, while dxldxk = −dxkdxl.
As another example let A = A1dx

1 + A2dx
2 + A3dx

3, then

dA =

(
∂A2

∂x1
− ∂A1

∂x2

)
dx1dx2 +

(
∂A1

∂x3
− ∂A3

∂x1

)
dx3dx1 +

(
∂A3

∂x2
− ∂A2

∂x3

)
dx2dx3

=
1

2
Fµνdx

µdxν, (11.51)
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where

Fµν = ∂µAν − ∂νAµ. (11.52)

You will recognize the components of curlA hiding in here.
Again, if F = F12dx

1dx2 + F23dx
2dx3 + F31dx

3dx1 then

dF =

(
∂F23

∂x1
+
∂F31

∂x2
+
∂F12

∂x3

)
dx1dx2dx3. (11.53)

This looks like a divergence.
The axiom d2 = 0 encompasses both “curl grad = 0” and “div curl =

0”, together with an infinite number of higher-dimensional analogues. The
familiar “curl =∇×”, meanwhile, is only defined in three dimensional space.

The exterior derivative takes p-forms to (p+1)-forms i.e. skew-symmetric
type (0, p) tensors to skew-symmetric (0, p + 1) tensors. How does “d” get
around the fact that the derivative of a tensor is not a tensor? Well, if
you apply the transformation law for Aµ, and the chain rule to ∂

∂xµ to find
the transformation law for Fµν = ∂µAν − ∂νAµ, you will see why: all the
derivatives of the ∂zν

∂xµ cancel, and Fµν is a bona-fide tensor of type (0, 2). This
sort of cancellation is why skew-symmetric objects are useful, and symmetric
ones less so.

Exercise 11.4: Use axiom ii) to compute d(d(a∧b)) and confirm that it is zero.

Closed and exact forms

The Poincaré lemma, d2 = 0, leads to some important terminology:
i) A p-form ω is said to be closed if dω = 0.
ii) A p-form ω is said to exact if ω = dη for some (p− 1)-form η.

An exact form is necessarily closed, but a closed form is not necessarily exact.
The question of when closed ⇒ exact is one involving the global topology of
the space in which the forms are defined, and will be subject of chapter 13.

Cartan’s formulæ

It is sometimes useful to have expressions for the action of d coupled with
the evaluation of the subsequent (p+ 1) forms.

If f, η, ω, are 0, 1, 2-forms, respectively, then df, dη, dω, are 1, 2, 3-forms.
When we plug in the appropriate number of vector fields X, Y, Z, then, after
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some labour, we will find

df(X) = Xf. (11.54)

dη(X, Y ) = Xη(Y )− Y η(X)− η([X, Y ]). (11.55)

dω(X, Y, Z) = Xω(Y, Z) + Y ω(Z,X) + Zω(X, Y )

−ω([X, Y ], Z)− ω([Y, Z], X)− ω([Z,X], Y ).(11.56)

These formulæ, and their higher-p analogues, express d in terms of geometric
objects, and so make it clear that the exterior derivative is itself a geometric
object, independent of any particular co-ordinate choice.

Let us demonstate the correctness of the second formula. With η = ηµdx
µ,

the left-hand side, dη(X, Y ), is equal to

∂µην dx
µdxν(X, Y ) = ∂µην(X

µY ν −XνY µ). (11.57)

The right hand side is equal to

Xµ∂µ(ηνY
ν)− Y µ∂µ(ηνX

ν)− ην(Xµ∂µY
ν − Y µ∂µX

ν). (11.58)

On using the product rule for the derivatives in the first two terms, we find
that all derivatives of the components of X and Y cancel, and are left with
exactly those terms appearing on left.

Exercise 11.5: Let ωi, i = 1, . . . , r, be a linearly independent set of one-forms
defining a Pfaffian system (see sec. 11.2.1) in d dimensions.

i) Use Cartan’s formulæ to show that the corresponding (d−r)-dimensional
distribution is involutive if and only if there is an r-by-r matrix of 1-forms
θij such that

dωi =

r∑

j=1

θij ∧ ωj.

ii) Show that the conditions in part i) are satisfied if there are r functions
gi and an invertible r-by-r matrix of functions f ij such that

ωi =
r∑

j=1

f ijdg
i.

In this case foliation surfaces are given by the conditions g i(x) = const.,
i = 1, . . . , r.
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It is also possible, but considerably harder, to show that i) ⇒ ii). Doing so
would constitute a proof of Frobenius’ theorem.

Exercise 11.6: Let ω be a closed two-form, and let Null(ω) be the space of
vector fields X such that ω(X, ) = 0. Use the Cartan formulæ to show that
if X,Y ∈ Null(ω), then [X,Y ] ∈ Null(ω).

Lie derivative of forms

Given a p-form ω and a vector field X, we can form a (p − 1)-form called
iXω by writing

iXω( . . . . . .︸ ︷︷ ︸
p−1 slots

) = ω(

p slots︷ ︸︸ ︷
X, . . . . . .︸ ︷︷ ︸

p−1 slots

). (11.59)

Acting on a 0-form, iX is defined to be 0. This procedure is called the interior
multiplication by X. It is simply a contraction

ωjij2...jp → ωkj2...jpX
k, (11.60)

but it is convenient to have a special symbol for this operation. It is perhaps
surprising that iX turns out to be an anti-derivation, just as is d. If η and ω
are p and q forms respectively, then

iX(η ∧ ω) = (iXη) ∧ ω + (−1)pη ∧ (iXω), (11.61)

even though iX involves no differentiation. For example, if X = Xµ∂µ, then

iX(dxµ ∧ dxν) = dxµ ∧ dxν(Xα∂α, ),

= Xµdxν − dxµXν,

= (iXdx
µ) ∧ (dxν)− dxµ ∧ (iXdx

ν). (11.62)

One reason for introducing iX is that there is a nice (and profound)
formula for the Lie derivative of a p-form in terms of iX . The formula is
called the infinitesimal homotopy relation. It reads

LXω = (d iX + iXd)ω. (11.63)

This formula is proved by verifying that it is true for functions and one-
forms, and then showing that it is a derivation – in other words that it



440 CHAPTER 11. DIFFERENTIAL CALCULUS ON MANIFOLDS

satisfies Leibniz’ rule. From the derivation property of the Lie derivative, we
immediately deduce that that the formula works for any p-form.

That the formula is true for functions should be obvious: Since iXf = 0
by definition, we have

(d iX + iXd)f = iXdf = df(X) = Xf = LXf. (11.64)

To show that the formula works for one forms, we evaluate

(d iX + iXd)(fν dx
ν) = d(fνX

ν) + iX(∂µfν dx
µdxν)

= ∂µ(fνX
ν)dxµ + ∂µfν(X

µdxν −Xνdxµ)

= (Xν∂νfµ + fν∂µX
ν)dxµ. (11.65)

In going from the second to the third line, we have interchanged the dummy
labels µ ↔ ν in the term containing dxν. We recognize that the 1-form in
the last line is indeed LXf .

To show that diX + iXd is a derivation we must apply d iX + iXd to a∧ b
and use the anti-derivation property of ix and d. This is straightforward once
we recall that d takes a p-form to a (p + 1)-form while iX takes a p-form to
a (p− 1)-form.

Exercise 11.7: Let

ω =
1

p!
ωi1...ip dx

i1 · · · dxip .

Use the anti-derivation property of iX to show that

iXω =
1

(p− 1)!
ωαi2...ipX

αdxi2 · · · dxip ,

and so verify the equivalence of (11.59) and (11.60).

Exercise 11.8: Use the infinitesimal homotopy relation to show that L and d
commute, i.e. for ω a p-form, we have

d (LXω) = LX(dω).
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11.4 Physical applications

11.4.1 Maxwell’s equations

In relativistic3 four-dimensional tensor notation the two source-free Maxwell’s
equations

curlE = −∂B
∂t
,

divB = 0, (11.66)

reduce to the single equation

∂Fµν
∂xλ

+
∂Fνλ
∂xµ

+
∂Fλµ
∂xν

= 0. (11.67)

where

Fµν =




0 −Ex −Ey −Ez
Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


 . (11.68)

The “F” is traditional, for Michael Faraday. In form language, the relativistic
equation becomes the even more compact expression dF = 0, where

F ≡ 1

2
Fµνdx

µdxν

= Bxdydz +Bydzdx +Bzdxdy + Exdxdt+ Eydydt+ Ezdzdt,

(11.69)

is a Minkowski-space 2-form.

Exercise 11.9: Verify that the source-free Maxwell equations are indeed equiv-
alent to dF = 0.

The equation dF = 0 is automatically satisfied if we introduce a 4-vector
1-form potential A = −φdt+ Axdx + Aydy + Azdz and set F = dA.

The two Maxwell equations with sources

divD = ρ,

curlH = j +
∂D

∂t
, (11.70)

3In this section we will use units in which c = ε0 = µ0 = 1. We take the Minkowski
metric to be gµν = diag (−1, 1, 1, 1) where x0 = t, x1 = x , etc.
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reduce in 4-tensor notation to the single equation

∂µF
µν = Jν. (11.71)

Here Jµ = (ρ, j) is the current 4-vector.
This source equation takes a little more work to express in form language,

but it can be done. We need a new concept: the Hodge “star” dual of a form.
In d dimensions the “?” map takes a p-form to a (d − p)-form. It depends
on both the metric and the orientation. The latter means a canonical choice
of the order in which to write our basis forms, with orderings that differ
by an even permutation being counted as the same. The full d-dimensional
definition involves the Levi-Civita duality operation of chapter 10 , combined
with the use of the metric tensor to raise indices. Recall that

√
g =

√
det gµν.

(In Minkowski-signature metrics we should replace
√
g by

√−g.) We define
“?” to be a linear map

? :

p∧
(T ∗M)→

(d−p)∧
(T ∗M) (11.72)

such that

? dxi1 . . . dxip
def
=

1

(d− p)!
√
ggi1j1 . . . gipjpεj1···jpjp+1···jddx

jp+1 . . . dxjd. (11.73)

Although this definition looks a trifle involved, computations involving it are
not so intimidating. The trick is to work, whenever possible, with oriented
orthonormal frames. If we are in euclidean space and {e∗i1 , e∗i2, . . . , e∗id} is an
ordering of the orthonormal basis for (T ∗M)x whose orientation is equivalent
to {e∗1, e∗2, . . . , e∗d} then

? (e∗i1 ∧ e∗i2 ∧ · · · ∧ e∗ip) = e∗ip+1 ∧ e∗ip+2 ∧ · · · ∧ e∗id. (11.74)

For example, in three dimensions, and with x, y, z, our usual Cartesian co-
ordinates, we have

? dx = dydz,

? dy = dzdx,

? dz = dxdy. (11.75)

An analogous method works for Minkowski-signature (−,+,+,+) metrics,
except that now we must include a minus sign for each negatively normed
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dt factor in the form being “starred.” Taking {dt, dx, dy, dz} as our oriented
basis, we therefore find4

? dxdy = −dzdt,
? dydz = −dxdt,
? dzdx = −dydt,
? dxdt = dydz,

? dydt = dzdx,

? dzdt = dxdy. (11.76)

For example, the first of these equations is derived by observing that (dxdy)(−dzdt) =
dtdxdydz, and that there is no “dt” in the product dxdy. The fourth fol-
lows from observing that that (dxdt)(−dydx) = dtdxdydz, but there is a
negative-normed “dt” in the product dxdt.

The ? map is constructed so that if

α =
1

p!
αi1i2...ipdx

i1dxi2 · · ·dxip , (11.77)

and

β =
1

p!
βi1i2...ipdx

i1dxi2 · · ·dxip, (11.78)

then
α ∧ (?β) = β ∧ (?α) = 〈α, β〉σ, (11.79)

where the inner product 〈α, β〉 is defined to be the invariant

〈α, β〉 =
1

p!
gi1j1gi2j2 · · · gipjpαi1i2...ipβj1j2...jp, (11.80)

and σ is the volume form

σ =
√
g dx1dx2 · · ·dxd. (11.81)

In future we will write α ? β for α ∧ (?β). Bear in mind that the “?” in this
expression is acting β and is not some new kind of binary operation.

We now apply these ideas to Maxwell. From the field-strength 2-form

F = Bxdydz +Bydzdx +Bzdxdy + Exdxdt+ Eydydt+ Ezdzdt, (11.82)

4See for example: Misner, Thorn and Wheeler, Gravitation, (MTW) page 108.
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we get a dual 2-form

?F = −Bxdxdt− Bydydt− Bzdzdt+ Exdydz + Eydzdx+ Ezdxdy. (11.83)

We can check that we have correctly computed the Hodge star of F by taking
the wedge product, for which we find

F ? F =
1

2
(FµνF

µν)σ = (B2
x +B2

y +B2
z − E2

x − E2
y − E2

z )dtdxdydz. (11.84)

Observe that the expression B2−E2 is a Lorentz scalar. Similarly, from the
current 1-form

J ≡ Jµdx
µ = −ρ dt+ jxdx + jydy + jzdz, (11.85)

we derive the dual current 3-form

?J = ρ dxdydz − jxdtdydz − jydtdzdx− jzdtdxdy, (11.86)

and check that

J ? J = (JµJ
µ)σ = (−ρ2 + j2

x + j2
y + j2

z )dtdxdydz. (11.87)

Observe that

d ? J =

(
∂ρ

∂t
+ div j

)
dtdxdydz = 0, (11.88)

expresses the charge conservation law.
Writing out the terms explicitly shows that the source-containing Maxwell

equations reduce to d?F = ?J. All four Maxwell equations are therefore very
compactly expressed as

dF = 0, d ? F = ?J.

Observe that current conservation d?J = 0 follows from the second Maxwell
equation as a consequence of d2 = 0.

Exercise 11.10: Show that for a p-form ω in d euclidean dimensions we have

? ? ω = (−1)p(d−p)ω.

Show, further, that for a Minkowski metric an additional minus sign has to be
inserted. (For example, ? ? F = −F , even though (−1)2(4−2) = +1.)
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11.4.2 Hamilton’s equations

Hamiltonian dynamics takes place in phase space, a manifold with co-ordinates
(q1, . . . , qn, p1, . . . , pn). Since momentum is a naturally covariant vector,5

phase space is usually the co-tangent bundle T ∗M of the configuration man-
ifold M . We are writing the indices on the p’s upstairs though, because we
are considering them as co-ordinates in T ∗M .

We expect that you are familiar with Hamilton’s equation in their q, p
setting. Here, we shall describe them as they appear in a modern book on
Mechanics, such as Abrahams and Marsden’s Foundations of Mechanics, or
V. I. Arnold’s Mathematical Methods of Classical Mechanics.

Phase space is an example of a symplectic manifold, a manifold equipped
with a symplectic form — a closed, non-degenerate, 2-form field

ω =
1

2
ωijdx

idxj. (11.89)

Recall that the word closed means that dω = 0. Non-degenerate means that
for any point x the statement that ω(X, Y ) = 0 for all vectors Y ∈ TMx

implies that X = 0 at that point (or equivalently that for all x the matrix
ωij(x) has an inverse ωij(x)).

Given a Hamiltonian function H on our symplectic manifold, we define
a velocity vector-field vH by solving

dH = −ivH
ω = −ω(vH , ) (11.90)

for vH . If the symplectic form is ω = dp1dq1 + dp2dq2 + · · ·+ dpndqn, this is
nothing but a fancy form of Hamilton’s equations. To see this, we write

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi (11.91)

and use the customary notation (q̇i, ṗi) for the velocity-in-phase-space com-
ponents, so that

vH = q̇i
∂

∂qi
+ ṗi

∂

∂pi
. (11.92)

Now we work out

ivH
ω = dpidqi(q̇j∂qj + ṗj∂pj , )

= ṗidqi − q̇idpi, (11.93)

5To convince yourself of this, remember that in quantum mechanics p̂µ = −i~ ∂
∂xµ , and

the gradient of a function is a covector.
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so, comparing coefficients of dpi and dqi on the two sides of dH = −ivH
ω, we

read off

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (11.94)

Darboux’ theorem, which we will not try to prove, says that for any point x
we can always find co-ordinates p, q, valid in some neigbourhood of x, such
that ω = dp1dq1 +dp2dq2 + · · ·dpndqn. Given this fact, it is not unreasonable
to think that there is little to gained by using the abstract differential-form
language. In simple cases this is so, and the traditional methods are fine.
It may be, however, that the neigbourhood of x where the Darboux co-
ordinates work is not the entire phase space, and we need to cover the space
with overlapping p, q co-ordinate charts. Then, what is a p in one chart
will usually be a combination of p’s and q’s in another. In this case, the
traditional form of Hamilton’s equations loses its appeal in comparison to
the co-ordinate-free dH = −ivH

ω.
Given two functions H1, H2 we can define their Poisson bracket {H1, H2}.

Its importance lies in Dirac’s observation that the passage from classical
mechanics to quantum mechanics is accomplished by replacing the Poisson
bracket of two quantities, A and B, with the commutator of the correspond-
ing operators Â, and B̂:

i[Â, B̂] ←→ ~{A,B}+O
(
~2
)
. (11.95)

We define the Poisson bracket by6

{H1, H2} def
=

dH2

dt

∣∣∣∣
H1

= vH1
H2. (11.96)

Now, vH1
H2 = dH2(vH1

), and Hamilton’s equations say that dH2(vH1
) =

ω(vH1
, vH2

). Thus,
{H1, H2} = ω(vH1

, vH2
). (11.97)

The skew symmetry of ω(vH1
, vH2

) shows that despite the asymmetrical ap-
pearance of the definition we have skew symmetry: {H1, H2} = −{H2, H1}.

Moreover, since

vH1
(H2H3) = (vH1

H2)H3 +H2(vH1
H3), (11.98)

6Our definition differs in sign from the traditional one, but has the advantage of mini-
mizing the number of minus signs in subsequent equations.
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the Poisson bracket is a derivation:

{H1, H2H3} = {H1, H2}H3 +H2{H1, H3}. (11.99)

Neither the skew symmetry nor the derivation property require the con-
dition that dω = 0. What does need ω to be closed is the Jacobi identity :

{{H1, H2}, H3}+ {{H2, H3}, H1}+ {{H3, H1}, H2} = 0. (11.100)

We establish Jacobi by using Cartan’s formula in the form

dω(vH1
, vH2

, vH3
) = vH1

ω(vH2
, vH3

) + vH2
ω(vH3

, vH1
) + vH3

ω(vH1
, vH2

)

−ω([vH1
, vH2

], vH3
)− ω([vH2

, vH3
], vH1

)− ω([vH3
, vH1

], vH2
).

(11.101)

It is relatively straight-forward to interpret each term in the first of these
lines as Poisson brackets. For example,

vH1
ω(vH2

, vH3
) = vH1

{H2, H3} = {H1, {H2, H3}}. (11.102)

Relating the terms in the second line to Poisson brackets requires a little
more effort. We proceed as follows:

ω([vH1
, vH2

], vH3
) = −ω(vH3

, [vH1
, vH2

])

= dH3([vH1
, vH2

])

= [vH1
, vH2

]H3

= vH1
(vH2

H3)− vH2
(vH1

H3)

= {H1, {H2, H3}} − {H2, {H1, H3}}
= {H1, {H2, H3}}+ {H2, {H3, H1}}. (11.103)

Adding everything togther now shows that

0 = dω(vH1
, vH2

, vH3
)

= −{{H1, H2}, H3} − {{H2, H3}, H1} − {{H3, H1}, H2}.(11.104)

If we rearrange the Jacobi identity as

{H1, {H2, H3}} − {H2, {H1, H3}} = {{H1, H2}, H3}, (11.105)
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we see that it is equivalent to

[vH1
, vH2

] = v{H1,H2}.

The algebra of Poisson brackets is therefore homomorphic to the algebra of
the Lie brackets. The correspondence is not an isomorphism, however: the
assignment H 7→ vH fails to be one-to-one because constant functions map
to the zero vector field.

Exercise 11.11: Use the infinitesimal homotopy relation, to show that LvH
ω =

0, where vH is the vector field corresponding toH. Suppose now that the phase
space is 2n dimensional. Show that in local Darboux co-ordinates the 2n-form
ωn/n! is, up to a sign, the phase-space volume element dnp dnq. Show that
LvH

ωn/n! = 0 and that this result is Liouville’s theorem on the conservation
of phase-space volume.

The classical mechanics of spin

It is sometimes said in books on quantum mechanics that the spin of an elec-
tron, or other elementary particle, is a purely quantum concept and cannot
be described by classical mechanics. This statement is false, but spin is the
simplest system in which traditional physicist’s methods become ugly and it
helps to use the modern symplectic language. A “spin” S can be regarded
as a fixed length vector that can point in any direction in R3. We will take
it to be of unit length so that its components are

Sx = sin θ cosφ,

Sy = sin θ sinφ,

Sz = cos θ, (11.106)

where θ and φ are polar co-ordinates on the two-sphere S2.
The surface of the sphere turns out to be both the configuration space

and the phase space. In particular the phase space for a spin is not the
cotangent bundle of the configuration space. This has to be so: we learned
from Niels Bohr that a 2n-dimensional phase space contains roughly one
quantum state for every ~n of phase-space volume. A cotangent bundle
always has infinite volume, so its corresponding Hilbert space is necessarily
infinite dimensional. A quantum spin, however, has a finite-dimensional
Hilbert space so its classical phase space must have a finite total volume.
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This finite-volume phase space seems un-natural in the traditional view of
mechanics, but it fits comfortably into the modern symplectic picture.

We want to treat all points on the sphere alike, and so it is natural to
take the symplectic 2-form to be proportional to the element of area. Suppose
that ω = sin θ dθdφ. We could write ω = −d cos θ dφ and regard φ as “q”
and − cos θ as “p” (Darboux’ theorem in action!), but this identification is
singular at the north and south poles of the sphere, and, besides, it obscures
the spherical symmetry of the problem, which is manifest when we think of
ω as d(area).

Let us take our hamiltonian to be H = BSx, corresponding to an applied
magnetic field in the x direction, and see what Hamilton’s equations give for
the motion. First we take the exterior derivative

d(BSx) = B(cos θ cosφdθ − sin θ sinφdφ). (11.107)

This is to be set equal to

−ω(vBSx, ) = vθ(− sin θ)dφ+ vφ sin θdθ. (11.108)

Comparing coefficients of dθ and dφ, we get

v(BSx) = vθ∂θ + vφ∂φ = B(sin φ∂θ + cosφ cot θ∂φ), (11.109)

i.e. B times the velocity vector for a rotation about the x axis. This velocity
field therefore describes a steady Larmor precession of the spin about the
applied field. This is exactly the motion predicted by quantum mechanics.
Similarly, setting B = 1, we find

vSy = − cosφ∂θ + sin φ cot θ∂φ,

vSz = −∂φ. (11.110)

From these velocity fields we can compute the Poisson brackets:

{Sx, Sy} = ω(vSx, vSy)

= sin θdθdφ(sinφ∂θ + cos φ cot θ∂φ,− cosφ∂θ + sinφ cot θ∂φ)

= sin θ(sin2 φ cot θ + cos2 φ cot θ)

= cos θ = Sz.

Repeating the exercise leads to

{Sx, Sy} = Sz,

{Sy, Sz} = Sx,

{Sz, Sx} = Sy. (11.111)
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These Poisson brackets for our classical “spin” are to be compared with the
commutation relations [Ŝx, Ŝy] = i~Ŝz etc. for the quantum spin operators

Ŝi.

11.5 Covariant derivatives

Covariant derivatives are a general class of derivatives that act on sections
of a vector or tensor bundle over a manifold. We will begin by considering
derivatives on the tangent bundle, and in the exercises indicate how the idea
generalizes to other bundles.

11.5.1 Connections

The Lie and exterior derivatives require no structure beyond that which
comes for free with our manifold. Another type of derivative that can act on
tangent-space vectors and tensors is the covariant derivative ∇X ≡ Xµ∇µ.
This requires an additional mathematical object called an affine connection.

The covariant derivative is defined by:
i) Its action on scalar functions as

∇Xf = Xf. (11.112)

ii) Its action a basis set of tangent-vector fields ea(x) = eµa(x)∂µ (a local
frame, or vielbein7) by introducing a set of functions ωijk(x) and setting

∇ek
ej = eiω

i
jk. (11.113)

ii) Extending this definition to any other type of tensor by requiring ∇X

to be a derivation.
iii) Requiring that the result of applying ∇X to a tensor is a tensor of the

same type.
The set of functions ωijk(x) is the connection. In any local co-ordinate chart
we can choose them at will, and different choices define different covariant
derivatives. (There may be global compatibility constraints, however, which
appear when we assemble the charts into an atlas.)

7In practice viel , “many”, is replaced by the appropriate German numeral: ein-, zwei-,
drei-, vier-, fünf-, . . ., indicating the dimension. The word bein means “leg.”
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Warning: Despite having the appearance of one, ωijk is not a tensor. It
transforms inhomogeneously under a change of frame or co-ordinates — see
equation (11.132).

We can, of course, take as our basis vectors the co-ordinate vectors eµ ≡
∂µ. When we do this it is traditional to use the symbol Γ for the co-ordinate
frame connection instead of ω. Thus,

∇µeν ≡ ∇eµeν = eλΓ
λ
νµ. (11.114)

The numbers Γλνµ are often called Christoffel symbols.
As an example consider the covariant derivative of a vector f νeν. Using

the derivation property we have

∇µ(f
νeν) = (∂µf

ν)eν + f ν∇µeν

= (∂µf
ν)eν + f νeλΓ

λ
νµ

= eν
{
∂µf

ν + fλΓνλµ
}
. (11.115)

In the first line we have used the defining property that ∇eµ acts on the
functions f ν as ∂µ, and in the last line we interchanged the dummy indices
ν and λ. We often abuse the notation by writing only the components, and
set

∇µf
ν = ∂µf

ν + fλΓνλµ. (11.116)

Similarly, acting on the components of a mixed tensor, we would write

∇µA
α
βγ = ∂µA

α
βγ + ΓαλµA

λ
βγ − ΓλβµA

α
λγ − ΓλγµA

α
βλ. (11.117)

When we use this notation, we are no longer regarding the tensor components
as “functions.”

Observe that the plus and minus signs in (11.117) are required so that,
for example, the covariant derivative of the scalar function fαg

α is

∇µ (fαg
α) = ∂µ (fαg

α)

= (∂µfα) g
α + fα (∂µg

α)

=
(
∂µfα − fλΓλαµ

)
gα + fα

(
∂µg

α + gλΓαλµ
)

= (∇µfα) g
α + fα (∇µg

α) , (11.118)

and so satisfies the derivation property.
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Parallel transport

We have defined the covariant derivative via its formal calculus properties.
It has, however, a geometrical interpretation. As with the Lie derivative, in
order to compute the derivative along X of the vector field Y , we have to
somehow carry the vector Y (x) from the tangent space TMx to the tangent
space TMx+εX , where we can subtract it from Y (x+εX) . The Lie derivative
carries Y along with the X flow. The covariant derivative implicitly carries
Y by “parallel transport”. If γ : s 7→ xµ(s) is a parameterized curve with
tangent vector Xµ∂µ, where

Xµ =
dxµ

ds
, (11.119)

then we say that the vector field Y (xµ(s)) is parallel transported along the
curve γ if

∇XY = 0, (11.120)

at each point xµ(s). Thus, a vector that in the vielbein frame ei at x has
components Y i will, after being parallel transported to x+ εX, end up com-
ponents

Y i − εωijkY jXk. (11.121)

In a co-ordinate frame, after parallel transport through an infinitesimal dis-
placement δxµ, the vector Y ν∂ν will have components

Y ν → Y ν − ΓνλµY
λδxµ, (11.122)

and so

δxµ∇µY
ν = Y ν(xµ + δxµ)− {Y ν(x)− ΓνλµY

λδxµ}
= δxµ{∂µY ν + ΓνλµY

λ}. (11.123)

Curvature and torsion

As we said earlier, the connection ωijk(x) is not itself a tensor. Two important
quantities which are tensors, are associated with ∇X :

i) The torsion
T (X, Y ) = ∇XY −∇YX − [X, Y ]. (11.124)

The quantity T (X, Y ) is a vector depending linearly on X, Y , so T at
the point x is a map TMx × TMx → TMx, and so a tensor of type
(1,2). In a co-ordinate frame it has components

T λµν = Γλµν − Γλνµ. (11.125)
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ii) The Riemann curvature tensor

R(X, Y )Z = ∇X∇YZ −∇Y∇ZZ −∇[X,Y ]Z. (11.126)

The quantity R(X, Y )Z is also a vector, so R(X, Y ) is a linear map
TMx → TMx, and thus R itself is a tensor of type (1,3). Written out
in a co-ordinate frame, we have

Rα
βµν = ∂µΓ

α
βν − ∂νΓαβµ + ΓαλµΓ

λ
βν − ΓαλνΓ

λ
βµ. (11.127)

If our manifold comes equipped with a metric tensor gµν (and is thus
a Riemann manifold), and if we require both that T = 0 and ∇µgαβ = 0,
then the connection is uniquely determined, and is called the Riemann, or
Levi-Civita, connection. In a co-ordinate frame it is given by

Γαµν =
1

2
gαλ (∂µgλν + ∂νgµλ − ∂λgµν) . (11.128)

This is the connection that appears in General Relativity.
The curvature tensor measures the degree of path dependence in parallel

transport: if Y ν(x) is parallel transported along a path γ : s 7→ xµ(s) from
a to b, and if we deform γ so that xµ(s)→ xµ(s) + δxµ(s) while keeping the
endpoints a, b fixed, then

δY α(b) = −
∫ b

a

Rα
βµν(x)Y

β(x)δxµ dxν . (11.129)

If Rα
βµν ≡ 0 then the effect of parallel transport from a to b will be indepen-

dent of the route taken.
The geometric interpretation of Tµν is less transparent. On a two-dimensional

surface a connection is torsion free when the tangent space “rolls without
slipping” along the curve γ.

Exercise 11.12: Metric compatibility . Show that the Riemann connection

Γαµν =
1

2
gαλ (∂µgλν + ∂νgµλ − ∂λgµν) .

follows from the torsion-free condition Γαµν = Γανµ together with the metric
compatibility condition

∇µgαβ ≡ ∂µ gαβ − Γναµ gνβ − Γναµ gαν = 0.

Show that “metric compatibility” means that that the operation of raising or
lowering indices commutes with covariant derivation.
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Exercise 11.13: Geodesic equation. Let γ : s 7→ xµ(s) be a parametrized
path from a to b. Show that the Euler-Lagrange equation that follows from
minimizing the distance functional

S(γ) =

∫ b

a

√
gµν ẋµẋν ds,

where the dots denote differentiation with respect to the parameter s, is

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0.

Here Γµαβ is the Riemann connection (11.128).

Exercise 11.14: Show that if Aµ is a vector field then, for the Riemann con-
nection,

∇µAµ =
1√
g

∂
√
gAµ

∂xµ
.

In other words, show that

Γααµ =
1√
g

∂
√
g

∂xµ
.

Deduce that the Laplacian acting on a scalar field φ can be defined by setting
either

∇2φ = gµν∇µ∇νφ,
or

∇2φ =
1√
g

∂

∂xµ

(√
ggµν

∂φ

∂xν

)
,

the two definitions being equivalent.

11.5.2 Cartan’s form viewpoint

Let e∗j(x) = e∗jµ(x)dx
µ be the basis of one-forms dual to the vielbein frame

ei(x) = eµi (x)∂µ. Since
δij = e∗i(ej) = e∗jµe

µ
i , (11.130)

the matrices e∗jµ and eµi are inverses of one-another. We can use them to
change from roman vielbein indices to greek co-ordinate frame indices. For
example:

gij = g(ei, ej) = eµi gµνe
ν
j , (11.131)
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and
ωijk = e∗iν(∂µe

ν
j )e

µ
k + e∗iλe

ν
j e
µ
k Γλνµ. (11.132)

Cartan regards the connection as being a matrix Ω of one-forms with
matrix entries ωij = ωijµdx

µ. In this language equation (11.113) becomes

∇Xej = eiω
i
j(X). (11.133)

Cartan’s viewpoint separates off the index µ, which refers to the direction
δxµ ∝ Xµ in which we are differentiating, from the matrix indices i and
j that act on the components of the vector or tensor being differentiated.
This separation becomes very natural when the vector space spanned by the
ei(x) is no longer the tangent space, but some other “internal” vector space
attached to the point x. Such internal spaces are common in physics, an im-
portant example being the “colour space” of gauge field theories. Physicists,
following Hermann Weyl, call a connection on an internal space a “gauge po-
tential.” To mathematicians it is simply a connection on the vector bundle
that has the internal spaces as its fibres.

Cartan also regards the torsion T and curvature R as forms; in this case
vector- and matrix-valued two-forms, respectively, with entries

T i =
1

2
T iµνdx

µdxν, (11.134)

Ri
k =

1

2
Ri

kµνdx
µdxν. (11.135)

In his form language the equations defining the torsion and curvature become
Cartan’s structure equations:

de∗i + ωij ∧ e∗j = T i, (11.136)

and
dωik + ωij ∧ ωjk = Ri

k. (11.137)

The last equation can be written more compactly as

dΩ + Ω ∧Ω = R. (11.138)

From this, by taking the exterior derivative, we obtain the Bianchi identity

dR−R ∧Ω + Ω ∧R = 0. (11.139)
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On a Riemann manifold, we can take the vielbein frame ei to be orthonor-
mal. In this case the roman-index metric gij = g(ei, ej) becomes δij. There
is then no distinction between covariant and contravariant roman indices,
and the connection and curvature forms, Ω, R, being infinitesimal rotations,
become skew symmetric matrices:

ωij = −ωji, Rij = −Rji. (11.140)

11.6 Further exercises and problems

Exercise 11.15: Consider the vector fields X = y∂x, Y = ∂y in R2. Find the
flows associated with these fields, and use them to verify the statements made
in section 11.2.1 about the geometric interpretation of the Lie bracket.

Exercise 11.16: Show that the pair of vector fields Lz = x∂y − y∂x and Ly =
z∂x−x∂z in R3 is in involution wherever they are both non-zero. Show further
that the general solution of the system of partial differential equations

(x∂y − y∂x)f = 0,

(x∂z − z∂x)f = 0,

in R3 is f(x, y, z) = F (x2 + y2 + z2), where F is an arbitrary function.

Exercise 11.17: In the rolling conditions (11.29) we are using the “Y ” conven-
tion for Euler angles. In this convention θ and φ are the usual spherical polar
co-ordinate angles with respect to the space-fixed xyz axes. They specify the
direction of the body-fixed Z axis about which we make the final ψ rotation
— see figure 11.7.

a) Show that (11.29) are indeed the no-slip rolling conditions

ẋ = ωy,

ẏ = −ωx,
0 = ωz,

where (ωx, ωy, ωz) are the components of the ball’s angular velocity in
the xyz space-fixed frame.

b) Solve the three constraints in (11.29) so as to obtain the vector fields
rollx, rolly of (11.30).
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θ

φ

z
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x

Z

Y

YX

ψ

Figure 11.7: The “Y” convention for Euler angles. The XY Z axes are fixed
to the ball, and the the xyz axes are fixed in space. We first rotate the ball
through an angle φ about the z axis, thus taking y → Y ′, then through θ
about Y ′, and finally through ψ about Z, so taking Y ′ → Y .

c) Show that

[rollx, rolly] = −spinz,

where spinz ≡ ∂φ, corresponds to a rotation about a vertical axis through
the point of contact. This is a new motion, being forbidden by the ωz = 0
condition.

d) Show that

[spinz, rollx] = spinx,

[spinz, rolly] = spiny,

where the new vector fields

spinx ≡ −(rolly − ∂y),
spiny ≡ (rollx − ∂x),

correspond to rotations of the ball about the space-fixed x and y axes
through its centre, and with the centre of mass held fixed.

We have generated five independent vector fields from the original two. There-
fore, by sufficient rolling to-and-fro, we can position the ball anywhere on the
table, and in any orientation.
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Exercise 11.18: The semi-classical dynamics of charge −e electrons in a mag-
netic solid are governed by the equations8

ṙ =
∂ε(k)

∂k
− k̇×Ω,

k̇ = −∂V
∂r
− eṙ×B.

Here k is the Bloch momentum of the electron, r is its position, ε(k) its band
energy (in the extended-zone scheme), and B(r) is the external magnetic field.
The components Ωi of the Berry curvature Ω(k) are given in terms of the
periodic part |u(k)〉 of the Bloch wavefunctions of the band by

Ωi = iεijk
1

2

(〈
∂u

∂kj

∣∣∣∣∣
∂u

∂kk

〉
−
〈
∂u

∂kk

∣∣∣∣∣
∂u

∂kj

〉)
.

The only property of Ω(k) needed for the present problem, however, is that
divkΩ = 0.

a) Show that these equations are Hamiltonian, with

H(r,k) = ε(k) + V (r)

and with

ω = dkidxi −
e

2
εijkBi(r)dxjdxk +

1

2
εijkΩi(k)dkjdkk.

as the symplectic form.9

b) Confirm that the ω defined in part b) is closed, and that the Poisson
brackets are given by

{xi, xj} = − εijkΩk

(1 + eB ·Ω)
,

{xi, kj} = − δij + eBiΩj

(1 + eB ·Ω)
,

{ki, kj} =
εijkeBk

(1 + eB ·Ω)
.

c) Show that the conserved phase-space volume ω3/3! is equal to

(1 + eB ·Ω)d3kd3x,

instead of the näıvely expected d3kd3x.

8M. C. Chang, Q. Niu, Phys. Rev. Lett. 75 (1995) 1348.
9C. Duval, Z. Horváth, P. A. Horváthy, L. Martina, P. C. Stichel, Modern Physics

Letters B 20 (2006) 373.
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The following pair of exercises show that Cartan’s expression for the curva-
ture tensor remains valid for covariant differentiation in “internal” spaces.
There is, however, no natural concept analogous to the torsion tensor for
internal spaces.

Exercise 11.19: Non-abelian gauge fields as matrix-valued forms. In a non-
abelian Yang-Mills gauge theory, such as QCD, the vector potential

A = Aµdx
µ

is matrix-valued, meaning that the components Aµ are matrices which do not
necessarily commute with each other. (These matrices are elements of the Lie
algebra of the gauge group, but we won’t need this fact here.) The matrix-
valued curvature, or field-strength, 2-form F is defined by

F = dA+A2 =
1

2
Fµνdx

µdxν .

Here a combined matrix and wedge product is to be understood:

(A2)ab ≡ Aac ∧Acb = AacµA
c
bν dx

µdxν .

i) Show that A2 = 1
2 [Aµ, Aν ]dx

µdxν , and hence show that

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].

ii) Define the gauge-covariant derivatives

∇µ = ∂µ +Aµ,

and show that the commutator [∇µ,∇ν ] of two of these is equal to Fµν .
Show further that if X, Y are two vector fields with Lie bracket [X,Y ]
and ∇X ≡ Xµ∇µ, then

F (X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

iii) Show that F obeys the Bianchi identity

dF − FA+AF = 0.

Again wedge and matrix products are to be understood. This equation
is the non-abelian version of the source-free Maxwell equation dF = 0.
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iv) Show that, in any number of dimensions, the Bianchi identity implies
that the 4-form tr (F 2) is closed, i.e. that d tr (F 2) = 0. Similarly show
that the 2n-form tr (F n) is closed. (Here the “tr” means a trace over the
roman matrix indices, and not over the greek space-time indices.)

v) Show that,

tr (F 2) = d

{
tr

(
AdA+

2

3
A3

)}
.

The 3-form tr (AdA+ 2
3A

3) is called a Chern-Simons form.

Exercise 11.20: Gauge transformations. Here we consider how the matrix-
valued vector potential transforms when we make a change of gauge. In other
words, we seek the non-abelian version of Aµ → Aµ + ∂µφ.

i) Let g be an invertable matrix, and δg a matrix describing a small change
in g. Show that the corresponding change in the inverse matrix is given
by δ(g−1) = −g−1(δg)g−1.

ii) Show that under the gauge transformation

A→ Ag ≡ g−1Ag + g−1dg,

we have F → g−1Fg. (Hint: The labour is minimized by exploiting the
covariant derivative identity in part ii) of the previous exercise).

iii) Deduce that tr (F n) is gauge invariant .
iv) Show that a necessary condition for the matrix-valued gauge field A to

be “pure gauge”, i.e. for there to be a position dependent matrix g(x)
such that A = g−1dg, is that F = 0, where F is the curvature two-form
of the previous exercise. (If we are working in a simply connected region,
then F = 0 is also a sufficient condition for there to be a g such that
A = g−1dg, but this is a little harder to prove.)

In a gauge theory based on a Lie group G, the matrices g will be elements of
the group, or, more generally, they will form a matrix representation of the
group.


