
Chapter 4

Linear Differential Operators

In this chapter we will begin to take a more sophisticated approach to dif-
ferential equations. We will define, with some care, the notion of a linear
differential operator, and explore the analogy between such operators and
matrices. In particular, we will investigate what is required for a linear dif-
ferential operator to have a complete set of eigenfunctions.

4.1 Formal vs. concrete operators

We will call the object

L = p0(x)
dn

dxn
+ p1(x)

dn−1

dxn−1
+ · · ·+ pn(x), (4.1)

which we also write as

p0(x)∂
n
x + p1(x)∂

n−1
x + · · ·+ pn(x), (4.2)

a formal linear differential operator . The word “formal” refers to the fact
that we are not yet worrying about what sort of functions the operator is
applied to.

4.1.1 The algebra of formal operators

Even though they are not acting on anything in particular, we can still form
products of operators. For example if v and w are smooth functions of x we
can define the operators ∂x + v(x) and ∂x + w(x) and find

(∂x + v)(∂x + w) = ∂2
x + w′ + (w + v)∂x + vw, (4.3)
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112 CHAPTER 4. LINEAR DIFFERENTIAL OPERATORS

or
(∂x + w)(∂x + v) = ∂2

x + v′ + (w + v)∂x + vw, (4.4)

We see from this example that the operator algebra is not usually commuta-
tive.

The algebra of formal operators has some deep applications. Consider,
for example, the operators

L = −∂2
x + q(x) (4.5)

and
P = ∂3

x + a(x)∂x + ∂xa(x). (4.6)

In the last expression, the combination ∂xa(x) means “first multiply by a(x),
and then differentiate the result,” so we could also write

∂xa = a∂x + a′. (4.7)

We can now form the commutator [P, L] ≡ PL − LP . After a little effort,
we find

[P, L] = (3q′ + 4a′)∂2
x + (3q′′ + 4a′′)∂x + q′′′ + 2aq′ + a′′′. (4.8)

If we choose a = − 3
4
q, the commutator becomes a pure multiplication oper-

ator, with no differential part:

[P, L] =
1

4
q′′′ − 3

2
qq′. (4.9)

The equation
dL

dt
= [P, L], (4.10)

or, equivalently,

q̇ =
1

4
q′′′ − 3

2
qq′, (4.11)

has a formal solution
L(t) = etPL(0)e−tP , (4.12)

showing that the time evolution of L is given by a similarity transformation,
which (again formally) does not change its eigenvalues. The partial differen-
tial equation (4.11) is the famous Korteweg de Vries (KdV) equation, which
has “soliton” solutions whose existence is intimately connected with the fact
that it can be written as (4.10). The operators P and L are called a Lax
pair , after Peter Lax who uncovered much of the structure.
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4.1.2 Concrete operators

We want to explore the analogies between linear differential operators and
matrices acting on a finite-dimensional vector space. Because the theory of
matrix operators makes much use of inner products and orthogonality, the
analogy is closest if we work with a function space equipped with these same
notions. We therefore let our differential operators act on L2[a, b], the Hilbert
space of square-integrable functions on [a, b]. Now a differential operator
cannot act on every function in the Hilbert space because not all of them
are differentiable. Even though we will relax our notion of differentiability
and permit weak derivatives, we must at least demand that the domain D,
the subset of functions on which we allow the operator to act, contain only
functions that are sufficiently differentiable that the function resulting from
applying the operator remains an element of L2[a, b]. We will usually restrict
the set of functions even further, by imposing boundary conditions at the
endpoints of the interval. A linear differential operator is now defined as a
formal linear differential operator, together with a specification of its domain
D.

The boundary conditions that we will impose will always be linear and
homogeneous. This is so that the domain of definition is a vector space.
In other words, if y1 and y2 obey the boundary conditions then so should
λy1 + µy2. Thus, for a second-order operator

L = p0∂
2
x + p1∂x + p2 (4.13)

on the interval [a, b], we might impose

B1[y] = α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = 0,

B2[y] = α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = 0, (4.14)

but we will not, in defining the differential operator , impose inhomogeneous
conditions, such as

B1[y] = α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = A,

B2[y] = α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = B, (4.15)

with non-zero A,B — even though we will solve differential equations with
such boundary conditions.
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Also, for an n-th order operator, we will not constrain derivatives of order
higher than n−1. This is reasonable1: If we seek solutions of Ly = f with L
a second-order operator, for example, then the values of y ′′ at the endpoints
are already determined in terms of y′ and y by the differential equation. We
cannot choose to impose some other value. By differentiating the equation
enough times, we can similarly determine all higher endpoint derivatives in
terms of y and y′. These two derivatives, therefore, are all we can fix by fiat.

The boundary and differentiability conditions that we impose make D a
subset of the entire Hilbert space. This subset will always be dense: any
element of the Hilbert space can be obtained as an L2 limit of functions in
D. In particular, there will never be a function in L2[a, b] that is orthogonal
to all functions in D.

4.2 The adjoint operator

One of the important properties of matrices, established in the appendix,
is that a matrix that is self-adjoint, or Hermitian, may be diagonalized . In
other words, the matrix has sufficiently many eigenvectors for them to form
a basis for the space on which it acts. A similar property holds for self-
adjoint differential operators, but we must be careful in our definition of
self-adjointness.

Before reading this section, We suggest you review the material on adjoint
operators on finite-dimensional spaces that appears in the appendix.

4.2.1 The formal adjoint

Given a formal differential operator

L = p0(x)
dn

dxn
+ p1(x)

dn−1

dxn−1
+ · · ·+ pn(x), (4.16)

and a weight function w(x), real and positive on the interval (a, b), we can
find another such operator L†, such that, for any sufficiently differentiable
u(x) and v(x), we have

w
(
u∗Lv − v(L†u)∗

)
=

d

dx
Q[u, v], (4.17)

1There is a deeper reason which we will explain in section 9.7.2.
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for some function Q, which depends bilinearly on u and v and their first n−1
derivatives. We call L† the formal adjoint of L with respect to the weight w.
The equation (4.17) is called Lagrange’s identity. The reason for the name
“adjoint” is that if we define an inner product

〈u, v〉w =

∫ b

a

wu∗v dx, (4.18)

and if the functions u and v have boundary conditions that make Q[u, v]|ba =
0, then

〈u, Lv〉w = 〈L†u, v〉w, (4.19)

which is the defining property of the adjoint operator on a vector space. The
word “formal” means, as before, that we are not yet specifying the domain
of the operator.

The method for finding the formal adjoint is straightforward: integrate
by parts enough times to get all the derivatives off v and on to u.
Example: If

L = −i d
dx

(4.20)

then let us find the adjoint L† with respect to the weight w ≡ 1. We start
from

u∗(Lv) = u∗
(
−i d
dx
v

)
,

and use the integration-by-parts technique once to get the derivative off v
and onto u∗:

u∗
(
−i d
dx
v

)
=

(
i
d

dx
u∗
)
v − i d

dx
(u∗v)

=

(
−i d
dx
u

)∗
v − i d

dx
(u∗v)

≡ v(L†u)∗ +
d

dx
Q[u, v]. (4.21)

We have ended up with the Lagrange identity

u∗
(
−i d
dx
v

)
− v

(
−i d
dx
u

)∗
=

d

dx
(−iu∗v), (4.22)
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and found that

L† = −i d
dx
, Q[u, v] = −iu∗v. (4.23)

The operator −id/dx (which you should recognize as the “momentum” op-
erator from quantum mechanics) obeys L = L†, and is therefore, formally
self-adjoint , or Hermitian.
Example: Let

L = p0
d2

dx2
+ p1

d

dx
+ p2, (4.24)

with the pi all real. Again let us find the adjoint L† with respect to the inner
product with w ≡ 1. Now, proceeding as above, but integrating by parts
twice, we find

u∗ [p0v
′′ + p1v

′ + p2v]− v [(p0u)
′′ − (p1u)

′ + p2u]
∗

=
d

dx

[
p0(u

∗v′ − vu∗′) + (p1 − p′0)u∗v
]
. (4.25)

From this we read off that

L† =
d2

dx2
p0 −

d

dx
p1 + p2

= p0
d2

dx2
+ (2p′0 − p1)

d

dx
+ (p′′0 − p′1 + p2). (4.26)

What conditions do we need to impose on p0,1,2 for this L to be formally
self-adjoint with respect to the inner product with w ≡ 1? For L = L† we
need

p0 = p0

2p′0 − p1 = p1 ⇒ p′0 = p1

p′′0 − p′1 + p2 = p2 ⇒ p′′0 = p′1. (4.27)

We therefore require that p1 = p′0, and so

L =
d

dx

(
p0

d

dx

)
+ p2, (4.28)

which we recognize as a Sturm-Liouville operator.
Example: Reduction to Sturm-Liouville form. Another way to make the
operator

L = p0
d2

dx2
+ p1

d

dx
+ p2, (4.29)
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self-adjoint is by a suitable choice of weight function w. Suppose that p0 is
positive on the interval (a, b), and that p0, p1, p2 are all real. Then we may
define

w =
1

p0
exp

{∫ x

a

(
p1

p0

)
dx′
}

(4.30)

and observe that it is positive on (a, b), and that

Ly =
1

w
(wp0y

′)′ + p2y. (4.31)

Now

〈u, Lv〉w − 〈Lu, v〉w = [wp0(u
∗v′ − u∗′v)]ba, (4.32)

where

〈u, v〉w =

∫ b

a

wu∗v dx. (4.33)

Thus, provided p0 does not vanish, there is always some inner product with
respect to which a real second-order differential operator is formally self-
adjoint.

Note that with

Ly =
1

w
(wp0y

′)′ + p2y, (4.34)

the eigenvalue equation

Ly = λy (4.35)

can be written

(wp0y
′)′ + p2wy = λwy. (4.36)

When you come across a differential equation where, in the term containing
the eigenvalue λ, the eigenfunction is being multiplied by some other function,
you should immediately suspect that the operator will turn out to be self-
adjoint with respect to the inner product having this other function as its
weight.
Illustration (Bargmann-Fock space): This is a more exotic example of a
formal adjoint. You may have met with it in quantum mechanics. Consider
the space of polynomials P (z) in the complex variable z = x+ iy. Define an
inner product by

〈P,Q〉 =
1

π

∫
d2z e−z

∗z [P (z)]∗Q(z),
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where d2z ≡ dx dy and the integration is over the entire x, y plane. With
this inner product, we have

〈zn, zm〉 = n!δnm.

If we define

â =
d

dz
,

then

〈P, âQ〉 =
1

π

∫
d2z e−z

∗z [P (z)]∗
d

dz
Q(z)

= − 1

π

∫
d2z

(
d

dz
e−z

∗z [P (z)]∗
)
Q(z)

=
1

π

∫
d2z e−z

∗zz∗ [P (z)]∗Q(z)

=
1

π

∫
d2z e−z

∗z [zP (z)]∗Q(z)

= 〈â†P, Q̂〉

where â† = z, i.e. the operation of multiplication by z. In this case, the
adjoint is not even a differential operator.2

Exercise 4.1: Consider the differential operator L̂ = id/dx. Find the formal
adjoint of L with respect to the inner product 〈u, v〉 =

∫
wu∗v dx, and find

the corresponding surface term Q[u, v].

2In deriving this result we have used the Wirtinger calculus where z and z∗ are treated
as independent variables so that

d

dz
e−z∗z = −z∗e−z∗z,

and observed that, because [P (z)]
∗
is a function of z∗ only,

d

dz
[P (z)]

∗
= 0.

If you are uneasy at regarding z, z∗, as independent, you should confirm these formulae
by expressing z and z∗ in terms of x and y, and using

d

dz
≡ 1

2

(
∂

∂x
− i ∂

∂y

)
,

d

dz∗
≡ 1

2

(
∂

∂x
+ i

∂

∂y

)
.
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Exercise 4.2:Sturm-Liouville forms. By constructing appropriate weight func-
tions w(x) convert the following common operators into Sturm-Liouville form:

a) L̂ = (1− x2) d2/dx2 + [(µ− ν)− (µ+ ν + 2)x] d/dx.
b) L̂ = (1− x2) d2/dx2 − 3x d/dx.
c) L̂ = d2/dx2 − 2x(1− x2)−1 d/dx −m2 (1− x2)−1.

4.2.2 A simple eigenvalue problem

A finite Hermitian matrix has a complete set of orthonormal eigenvectors.
Does the same property hold for a Hermitian differential operator?

Consider the differential operator

T = −∂2
x, D(T ) = {y, Ty ∈ L2[0, 1] : y(0) = y(1) = 0}. (4.37)

With the inner product

〈y1, y2〉 =

∫ 1

0

y∗1y2 dx (4.38)

we have
〈y1, T y2〉 − 〈Ty1, y2〉 = [y′1

∗
y2 − y∗1y′2]10 = 0. (4.39)

The integrated-out part is zero because both y1 and y2 satisfy the boundary
conditions. We see that

〈y1, T y2〉 = 〈Ty1, y2〉 (4.40)

and so T is Hermitian or symmetric.
The eigenfunctions and eigenvalues of T are

yn(x) = sin nπx
λn = n2π2

}
n = 1, 2, . . . . (4.41)

We see that:
i) the eigenvalues are real ;
ii) the eigenfunctions for different λn are orthogonal ,

2

∫ 1

0

sin nπx sinmπxdx = δnm, n = 1, 2, . . . (4.42)
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iii) the normalized eigenfunctions ϕn(x) =
√

2 sin nπx are complete: any
function in L2[0, 1] has an (L2) convergent expansion as

y(x) =

∞∑

n=1

an
√

2 sinnπx (4.43)

where

an =

∫ 1

0

y(x)
√

2 sin nπx dx. (4.44)

This all looks very good — exactly the properties we expect for finite Her-
mitian matrices. Can we carry over all the results of finite matrix theory to
these Hermitian operators? The answer sadly is no! Here is a counterexam-
ple:

Let

T = −i∂x, D(T ) = {y, Ty ∈ L2[0, 1] : y(0) = y(1) = 0}. (4.45)

Again

〈y1, T y2〉 − 〈Ty1, y2〉 =

∫ 1

0

dx {y∗1(−i∂xy2)− (−i∂xy1)
∗y2}

= −i[y∗1y2]
1
0 = 0. (4.46)

Once more, the integrated out part vanishes due to the boundary conditions
satisfied by y1 and y2, so T is nicely Hermitian. Unfortunately, T with these
boundary conditions has no eigenfunctions at all — never mind a complete
set! Any function satisfying Ty = λy will be proportional to eiλx, but an ex-
ponential function is never zero, and cannot satisfy the boundary conditions.

It seems clear that the boundary conditions are the problem. We need
a better definition of “adjoint” than the formal one — one that pays more
attention to boundary conditions. We will then be forced to distinguish
between mere Hermiticity, or symmetry , and true self-adjointness.

Exercise 4.3: Another disconcerting example. Let p = −i∂x. Show that the
following operator on the infinite real line is formally self-adjoint:

H = x3p+ px3. (4.47)

Now let

ψλ(x) = |x|−3/2 exp

{
− λ

4x2

}
, (4.48)
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where λ is real and positive. Show that

Hψλ = −iλψλ, (4.49)

so ψλ is an eigenfunction with a purely imaginary eigenvalue. Examine the
proof that Hermitian operators have real eigenvalues, and identify at which
point it fails. (Hint: H is formally self adjoint because it is of the form T +T †.
Now ψλ is square-integrable, and so an element of L2(R). Is Tψλ an element
of L2(R)?)

4.2.3 Adjoint boundary conditions

The usual definition of the adjoint operator in linear algebra is as follows:
Given the operator T : V → V and an inner product 〈 , 〉, we look at
〈u, Tv〉, and ask if there is a w such that 〈w, v〉 = 〈u, Tv〉 for all v. If there
is, then u is in the domain of T †, and we set T †u = w.

For finite-dimensional vector spaces V there always is such a w, and so
the domain of T † is the entire space. In an infinite dimensional Hilbert space,
however, not all 〈u, Tv〉 can be written as 〈w, v〉with w a finite-length element
of L2. In particular δ-functions are not allowed — but these are exactly what
we would need if we were to express the boundary values appearing in the
integrated out part, Q(u, v), as an inner-product integral. We must therefore
ensure that u is such that Q(u, v) vanishes, but then accept any u with this
property into the domain of T †. What this means in practice is that we look
at the integrated out term Q(u, v) and see what is required of u to make
Q(u, v) zero for any v satisfying the boundary conditions appearing in D(T ).
These conditions on u are the adjoint boundary conditions, and define the
domain of T †.
Example: Consider

T = −i∂x, D(T ) = {y, Ty ∈ L2[0, 1] : y(1) = 0}. (4.50)

Now,

∫ 1

0

dx u∗(−i∂xv) = −i[u∗(1)v(1)− u∗(0)v(0)] +

∫ 1

0

dx(−i∂xu)∗v

= −i[u∗(1)v(1)− u∗(0)v(0)] + 〈w, v〉, (4.51)

where w = −i∂xu. Since v(x) is in the domain of T , we have v(1) = 0, and
so the first term in the integrated out bit vanishes whatever value we take
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for u(1). On the other hand, v(0) could be anything, so to be sure that the
second term vanishes we must demand that u(0) = 0. This, then, is the
adjoint boundary condition. It defines the domain of T †:

T † = −i∂x, D(T †) = {y, Ty ∈ L2[0, 1] : y(0) = 0}. (4.52)

For our problematic operator

T = −i∂x, D(T ) = {y, Ty ∈ L2[0, 1] : y(0) = y(1) = 0}, (4.53)

we have
∫ 1

0

dx u∗(−i∂xv) = −i[u∗v]10 +

∫ 1

0

dx(−i∂xu)∗v

= 0 + 〈w, v〉, (4.54)

where again w = −i∂xu. This time no boundary conditions need be imposed
on u to make the integrated out part vanish. Thus

T † = −i∂x, D(T †) = {y, Ty ∈ L2[0, 1]}. (4.55)

Although any of these operators “T = −i∂x” is formally self-adjoint we
have,

D(T ) 6= D(T †), (4.56)

so T and T † are not the same operator and none of them is truly self-adjoint.

Exercise 4.4: Consider the differential operator M = d4/dx4, Find the formal
adjoint of M with respect to the inner product 〈u, v〉 =

∫
u∗v dx, and find

the corresponding surface term Q[u, v]. Find the adjoint boundary conditions
defining the domain of M † for the case

D(M) = {y, y(4) ∈ L2[0, 1] : y(0) = y′′′(0) = y(1) = y′′′(1) = 0}.

4.2.4 Self-adjoint boundary conditions

A formally self-adjoint operator T is truly self adjoint only if the domains of
T † and T coincide. From now on, the unqualified phrase “self-adjoint” will
always mean “truly self-adjoint.”

Self-adjointness is usually desirable in physics problems. It is therefore
useful to investigate what boundary conditions lead to self-adjoint operators.
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For example, what are the most general boundary conditions we can impose
on T = −i∂x if we require the resultant operator to be self-adjoint? Now,

∫ 1

0

dx u∗(−i∂xv)−
∫ 1

0

dx(−i∂xu)∗v = −i
(
u∗(1)v(1)− u∗(0)v(0)

)
. (4.57)

Demanding that the right-hand side be zero gives us, after division by u∗(0)v(1),

u∗(1)

u∗(0)
=
v(0)

v(1)
. (4.58)

We require this to be true for any u and v obeying the same boundary
conditions. Since u and v are unrelated, both sides must equal a constant κ,
and furthermore this constant must obey κ∗ = κ−1 in order that u(1)/u(0)
be equal to v(1)/v(0). Thus, the boundary condition is

u(1)

u(0)
=
v(1)

v(0)
= eiθ (4.59)

for some real angle θ. The domain is therefore

D(T ) = {y, Ty ∈ L2[0, 1] : y(1) = eiθy(0)}. (4.60)

These are twisted periodic boundary conditions.
With these generalized periodic boundary conditions, everything we ex-

pect of a self-adjoint operator actually works:
i) The functions un = ei(2πn+θ)x, with n = . . . ,−2,−1, 0, 1, 2 . . . are eigen-

functions of T with eigenvalues kn ≡ 2πn+ θ.
ii) The eigenvalues are real.
iii) The eigenfunctions form a complete orthonormal set.

Because self-adjoint operators possess a complete set of mutually orthogo-
nal eigenfunctions, they are compatible with the interpretational postulates
of quantum mechanics, where the square of the inner product of a state
vector with an eigenstate gives the probability of measuring the associated
eigenvalue. In quantum mechanics, self-adjoint operators are therefore called
observables.
Example: The Sturm-Liouville equation. With

L =
d

dx
p(x)

d

dx
+ q(x), x ∈ [a, b], (4.61)
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we have

〈u, Lv〉 − 〈Lu, v〉 = [p(u∗v′ − u′∗v)]ba. (4.62)

Let us seek to impose boundary conditions separately at the two ends. Thus,
at x = a we want

(u∗v′ − u′∗v)|a = 0, (4.63)

or
u′∗(a)

u∗(a)
=
v′(a)

v(a)
, (4.64)

and similarly at b. If we want the boundary conditions imposed on v (which
define the domain of L) to coincide with those for u (which define the domain
of L†) then we must have

v′(a)

v(a)
=
u′(a)

u(a)
= tan θa (4.65)

for some real angle θa, and similar boundary conditions with a θb at b. We
can also write these boundary conditions as

αay(a) + βay
′(a) = 0,

αby(b) + βby
′(b) = 0. (4.66)

Deficiency indices and self-adjoint extensions

There is a general theory of self-adjoint boundary conditions, due to Her-
mann Weyl and John von Neumann. We will not describe this theory in any
detail, but simply give their recipe for counting the number of parameters
in the most general self-adjoint boundary condition: To find this number we
define an initial domain D0(L) for the operator L by imposing the strictest
possible boundary conditions. This we do by setting to zero the bound-
ary values of all the y(n) with n less than the order of the equation. Next
count the number of square-integrable eigenfunctions of the resulting adjoint
operator T † corresponding to eigenvalue ±i. The numbers, n+ and n−, of
these eigenfunctions are called the deficiency indices. If they are not equal
then there is no possible way to make the operator self-adjoint. If they are
equal, n+ = n− = n, then there is an n2 real-parameter family of self-adjoint
extensions D(L) ⊃ D0(L) of the initial tightly-restricted domain.
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Example: The sad case of the “radial momentum operator.” We wish to
define the operator Pr = −i∂r on the half-line 0 < r <∞. We start with the
restrictive domain

Pr = −i∂r, D0(T ) = {y, Pry ∈ L2[0,∞] : y(0) = 0}. (4.67)

We then have

P †
r = −i∂r, D(P †

r ) = {y, P †
r y ∈ L2[0,∞]} (4.68)

with no boundary conditions. The equation P †
r y = iy has a normalizable

solution y = e−r. The equation P †
r y = −iy has no normalizable solution.

The deficiency indices are therefore n+ = 1, n− = 0, and this operator
cannot be rescued and made self adjoint.
Example: The Schrödinger operator. We now consider −∂2

x on the half-line.
Set

T = −∂2
x, D0(T ) = {y, Ty ∈ L2[0,∞] : y(0) = y′(0) = 0}. (4.69)

We then have

T † = −∂2
x, D(T †) = {y, T †y ∈ L2[0,∞]}. (4.70)

Again T † comes with no boundary conditions. The eigenvalue equation
T †y = iy has one normalizable solution y(x) = e(i−1)x/

√
2, and the equation

T †y = −iy also has one normalizable solution y(x) = e−(i+1)x/
√

2. The defi-
ciency indices are therefore n+ = n− = 1. The Weyl-von Neumann theory
now says that, by relaxing the restrictive conditions y(0) = y ′(0) = 0, we
can extend the domain of definition of the operator to find a one-parameter
family of self-adjoint boundary conditions. These will be the conditions
y′(0)/y(0) = tan θ that we found above.

If we consider the operator −∂2
x on the finite interval [a, b], then both

solutions of (T † ± i)y = 0 are normalizable, and the deficiency indices will
be n+ = n− = 2. There should therefore be 22 = 4 real parameters in the
self-adjoint boundary conditions. This is a larger class than those we found
in (4.66), because it includes generalized boundary conditions of the form

B1[y] = α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = 0,

B2[y] = α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = 0
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GaAs: mL AlGaAs:mR

Figure 4.1: Heterojunction and wavefunctions.

Physics application: semiconductor heterojunction

We now demonstrate why we have spent so much time on identifying self-
adjoint boundary conditions: the technique is important in practical physics
problems.

A heterojunction is an atomically smooth interface between two related
semiconductors, such as GaAs and AlxGa1−xAs, which typically possess dif-
ferent band-masses. We wish to describe the conduction electrons by an
effective Schrödinger equation containing these band masses. What match-
ing condition should we impose on the wavefunction ψ(x) at the interface
between the two materials? A first guess is that the wavefunction must be
continuous, but this is not correct because the “wavefunction” in an effective-
mass band-theory Hamiltonian is not the actual wavefunction (which is con-
tinuous) but instead a slowly varying envelope function multiplying a Bloch
wavefunction. The Bloch function is rapidly varying, fluctuating strongly
on the scale of a single atom. Because the Bloch form of the solution is no
longer valid at a discontinuity, the envelope function is not even defined in
the neighbourhood of the interface, and certainly has no reason to be con-
tinuous. There must still be some linear relation beween the ψ’s in the two
materials, but finding it will involve a detailed calculation on the atomic
scale. In the absence of these calculations, we must use general principles to
constrain the form of the relation. What are these principles?

We know that, were we to do the atomic-scale calculation, the resulting
connection between the right and left wavefunctions would:

• be linear,
• involve no more than ψ(x) and its first derivative ψ ′(x),
• make the Hamiltonian into a self-adjoint operator.

We want to find the most general connection formula compatible with these
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principles. The first two are easy to satisfy. We therefore investigate what
matching conditions are compatible with self-adjointness.

Suppose that the band masses are mL and mR, so that

H = − 1

2mL

d2

dx2
+ VL(x), x < 0,

= − 1

2mR

d2

dx2
+ VR(x), x > 0. (4.71)

Integrating by parts, and keeping the terms at the interface gives us

〈ψ1, Hψ2〉−〈Hψ1, ψ2〉 =
1

2mL

{
ψ∗

1Lψ
′
2L − ψ′∗

1Lψ2L

}
− 1

2mR

{
ψ∗

1Rψ
′
2R − ψ′∗

1Rψ2R

}
.

(4.72)
Here, ψL,R refers to the boundary values of ψ immediately to the left or right
of the junction, respectively. Now we impose general linear homogeneous
boundary conditions on ψ2:

(
ψ2L

ψ′
2L

)
=

(
a b
c d

)(
ψ2R

ψ′
2R

)
. (4.73)

This relation involves four complex, and therefore eight real, parameters.
Demanding that

〈ψ1, Hψ2〉 = 〈Hψ1, ψ2〉, (4.74)

we find

1

2mL

{
ψ∗

1L(cψ2R + dψ′
2R)− ψ′∗

1L(aψ2R + bψ′
2R)
}

=
1

2mR

{
ψ∗

1Rψ
′
2R − ψ′∗

1Rψ2R

}
,

(4.75)
and this must hold for arbitrary ψ2R, ψ′

2R, so, picking off the coefficients of
these expressions and complex conjugating, we find

(
ψ1R

ψ′
1R

)
=

(
mR

mL

)(
d∗ −b∗
−c∗ a∗

)(
ψ1L

ψ′
1L

)
. (4.76)

Because we wish the domain of H† to coincide with that of H, these must
be same conditions that we imposed on ψ2. Thus we must have

(
a b
c d

)−1

=

(
mR

mL

)(
d∗ −b∗
−c∗ a∗

)
. (4.77)
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Since (
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
, (4.78)

we see that this requires
(
a b
c d

)
= eiφ

√
mL

mR

(
A B
C D

)
, (4.79)

where φ, A, B, C, D are real, and AD−BC = 1. Demanding self-adjointness
has therefore cut the original eight real parameters down to four. These
can be determined either by experiment or by performing the microscopic
calculation.3 Note that 4 = 22, a perfect square, as required by the Weyl-
Von Neumann theory.

Exercise 4.5: Consider the Schrödinger operator Ĥ = −∂2
x on the interval

[0, 1]. Show that the most general self-adjoint boundary condition applicable
to Ĥ can be written as

[
ϕ(0)
ϕ′(0)

]
= eiφ

[
a b
c d

] [
ϕ(1)
ϕ′(1)

]
,

where φ, a, b, c, d are real and ac − bd = 1. Consider Ĥ as the quantum
Hamiltonian of a particle on a ring constructed by attaching x = 0 to x = 1.
Show that the self-adjoint boundary condition found above leads to unitary
scattering at the point of join. Does the most general unitary point-scattering
matrix correspond to the most general self-adjoint boundary condition?

4.3 Completeness of eigenfunctions

Now that we have a clear understanding of what it means to be self-adjoint,
we can reiterate the basic claim: an operator T that is self-adjoint with
respect to an L2[a, b] inner product possesses a complete set of mutually or-
thogonal eigenfunctions. The proof that the eigenfunctions are orthogonal
is identical to that for finite matrices. We will sketch a proof of the com-
pleteness of the eigenfunctions of the Sturm-Liouville operator in the next
section.

The set of eigenvalues is, with some mathematical cavils, called the spec-
trum of T . It is usually denoted by σ(T ). An eigenvalue is said to belong to

3For example, see: T. Ando, S. Mori, Surface Science 113 (1982) 124.
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the point spectrum when its associated eigenfunction is normalizable i.e is
a bona-fide member of L2[a, b] having a finite length. Usually (but not al-
ways) the eigenvalues of the point spectrum form a discrete set, and so the
point spectrum is also known as the discrete spectrum. When the opera-
tor acts on functions on an infinite interval, the eigenfunctions may fail to
be normalizable. The associated eigenvalues are then said to belong to the
continuous spectrum. Sometimes, e.g. the hydrogen atom, the spectrum is
partly discrete and partly continuous. There is also something called the
residual spectrum, but this does not occur for self-adjoint operators.

4.3.1 Discrete spectrum

The simplest problems have a purely discrete spectrum. We have eigenfunc-
tions φn(x) such that

Tφn(x) = λnφn(x), (4.80)

where n is an integer. After multiplication by suitable constants, the φn are
orthonormal, ∫

φ∗
n(x)φm(x) dx = δnm, (4.81)

and complete. We can express the completeness condition as the statement
that ∑

n

φn(x)φ
∗
n(x

′) = δ(x− x′). (4.82)

If we take this representation of the delta function and multiply it by f(x′)
and integrate over x′, we find

f(x) =
∑

n

φn(x)

∫
φ∗
n(x

′)f(x′) dx′. (4.83)

So,

f(x) =
∑

n

anφn(x) (4.84)

with

an =

∫
φ∗
n(x

′)f(x′) dx′. (4.85)

This means that if we can expand a delta function in terms of the φn(x), we
can expand any (square integrable) function.
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Figure 4.2: The sum
∑70

n=1 2 sin(nπx) sin(nπx′) for x′ = 0.4. Take note of
the very disparate scales on the horizontal and vertical axes.

Warning: The convergence of the series
∑

n φn(x)φ
∗
n(x

′) to δ(x − x′) is
neither pointwise nor in the L2 sense. The sum tends to a limit only in the
sense of a distribution — meaning that we must multiply the partial sums by
a smooth test function and integrate over x before we have something that
actually converges in any meaningful manner. As an illustration consider our
favourite orthonormal set: φn(x) =

√
2 sin(nπx) on the interval [0, 1]. A plot

of the first 70 terms in the sum

∞∑

n=1

√
2 sin(nπx)

√
2 sin(nπx′) = δ(x− x′)

is shown in figure 4.2. The “wiggles” on both sides of the spike at x =
x′ do not decrease in amplitude as the number of terms grows. They do,
however, become of higher and higher frequency. When multiplied by a
smooth function and integrated, the contributions from adjacent positive and
negative wiggle regions tend to cancel, and it is only after this integration
that the sum tends to zero away from the spike at x = x′.

Rayleigh-Ritz and completeness

For the Schrödinger eigenvalue problem

Ly = −y′′ + q(x)y = λy, x ∈ [a, b], (4.86)
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the large eigenvalues are λn ≈ n2π2/(a − b)2. This is because the term qy
eventually becomes negligeable compared to λy, and we can then solve the
equation with sines and cosines. We see that there is no upper limit to
the magnitude of the eigenvalues. The eigenvalues of the Sturm-Liouville
problem

Ly = −(py′)′ + qy = λy, x ∈ [a, b], (4.87)

are similarly unbounded. We will use this unboundedness of the spectrum to
make an estimate of the rate of convergence of the eigenfunction expansion
for functions in the domain of L, and extend this result to prove that the
eigenfunctions form a complete set.

We know from chapter one that the Sturm-Liouville eigenvalues are the
stationary values of 〈y, Ly〉 when the function y is constrained to have unit
length, 〈y, y〉 = 1. The lowest eigenvalue, λ0, is therefore given by

λ0 = inf
y∈D(L)

〈y, Ly〉
〈y, y〉 . (4.88)

As the variational principle, this formula provides a well-known method of
obtaining approximate ground state energies in quantum mechanics. Part of
its effectiveness comes from the stationary nature of 〈y, Ly〉 at the minimum:
a crude approximation to y often gives a tolerably good approximation to λ0.
In the wider world of eigenvalue problems, the variational principle is named
after Rayleigh and Ritz.4

Suppose we have already found the first n normalized eigenfunctions
y0, y1, . . . , yn−1. Let the space spanned by these functions be Vn. Then an
obvious extension of the variational principle gives

λn = inf
y∈V ⊥

n

〈y, Ly〉
〈y, y〉 . (4.89)

We now exploit this variational estimate to show that if we expand an arbi-
trary y in the domain of L in terms of the full set of eigenfunctions ym,

y =
∞∑

m=0

amym, (4.90)

4J. W. Strutt (later Lord Rayleigh), “In Finding the Correction for the Open End of
an Organ-Pipe.” Phil. Trans. 161 (1870) 77; W. Ritz, ”Uber eine neue Methode zur
Lösung gewisser Variationsprobleme der mathematischen Physik.” J. reine angew. Math.
135 (1908).
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where
am = 〈ym, y〉, (4.91)

then the sum does indeed converge to y.
Let

hn = y −
n−1∑

m=0

amym (4.92)

be the residual error after the first n terms. By definition, hn ∈ V ⊥
n . Let

us assume that we have adjusted, by adding a constant to q if necessary, L
so that all the λm are positive. This adjustment will not affect the ym. We
expand out

〈hn, Lhn〉 = 〈y, Ly〉 −
n−1∑

m=0

λm|am|2, (4.93)

where we have made use of the orthonormality of the ym. The subtracted
sum is guaranteed positive, so

〈hn, Lhn〉 ≤ 〈y, Ly〉. (4.94)

Combining this inequality with Rayleigh-Ritz tells us that

〈y, Ly〉
〈hn, hn〉

≥ 〈hn, Lhn〉〈hn, hn〉
≥ λn. (4.95)

In other words
〈y, Ly〉
λn

≥ ‖y −
n−1∑

m=0

amym‖2. (4.96)

Since 〈y, Ly〉 is independent of n, and λn →∞, we have ‖y −∑n−1
0 amym‖2 → 0.

Thus the eigenfunction expansion indeed converges to y, and does so faster
than λ−1

n goes to zero.
Our estimate of the rate of convergence applies only to the expansion of

functions y for which 〈y, Ly〉 is defined — i.e. to functions y ∈ D (L). The
domain D (L) is always a dense subset of the entire Hilbert space L2[a, b],
however, and, since a dense subset of a dense subset is also dense in the larger
space, we have shown that the linear span of the eigenfunctions is a dense
subset of L2[a, b]. Combining this observation with the alternative definition
of completeness in 2.2.3, we see that the eigenfunctions do indeed form a
complete orthonormal set. Any square integrable function therefore has a
convergent expansion in terms of the ym, but the rate of convergence may
well be slower than that for functions y ∈ D (L).
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Operator methods

Sometimes there are tricks for solving the eigenvalue problem.
Example: Quantum Harmonic Oscillator. Consider the operator

H = (−∂x + x)(∂x + x) + 1 = −∂2
x + x2. (4.97)

This is in the form Q†Q + 1, where Q = (∂x + x), and Q† = (−∂x + x) is its
formal adjoint. If we write these operators in the opposite order we have

QQ† = (∂x + x)(−∂x + x) = −∂2
x + x2 + 1 = H + 1. (4.98)

Now, if ψ is an eigenfunction of Q†Q with non-zero eigenvalue λ then Qψ is
eigenfunction of QQ† with the same eigenvalue. This is because

Q†Qψ = λψ (4.99)

implies that
Q(Q†Qψ) = λQψ, (4.100)

or
QQ†(Qψ) = λ(Qψ). (4.101)

The only way that Qψ can fail to be an eigenfunction of QQ† is if it happens
that Qψ = 0, but this implies that Q†Qψ = 0 and so the eigenvalue was zero.
Conversely, if the eigenvalue is zero then

0 = 〈ψ,Q†Qψ〉 = 〈Qψ,Qψ〉, (4.102)

and so Qψ = 0. In this way, we see that Q†Q and QQ† have exactly the
same spectrum, with the possible exception of any zero eigenvalue.

Now notice that Q†Q does have a zero eigenvalue because

ψ0 = e−
1
2
x2

(4.103)

obeys Qψ0 = 0 and is normalizable. The operator QQ†, considered as an
operator on L2[−∞,∞], does not have a zero eigenvalue because this would
require Q†ψ = 0, and so

ψ = e+
1
2
x2

, (4.104)

which is not normalizable, and so not an element of L2[−∞,∞].
Since

H = Q†Q+ 1 = QQ† − 1, (4.105)
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we see that ψ0 is an eigenfunction of H with eigenvalue 1, and so an eigen-
function of QQ† with eigenvalue 2. Hence Q†ψ0 is an eigenfunction of Q†Q
with eigenvalue 2 and so an eigenfunction H with eigenvalue 3. Proceeding
in the way we find that

ψn = (Q†)nψ0 (4.106)

is an eigenfunction of H with eigenvalue 2n+ 1.
Since Q† = −e 1

2
x2

∂xe
− 1

2
x2

, we can write

ψn(x) = Hn(x)e
− 1

2
x2

, (4.107)

where

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

(4.108)

are the Hermite Polynomials.
This is a useful technique for any second-order operator that can be fac-

torized — and a surprising number of the equations for “special functions”
can be. You will see it later, both in the exercises and in connection with
Bessel functions.

Exercise 4.6: Show that we have found all the eigenfunctions and eigenvalues
of H = −∂2

x + x2. Hint: Show that Q lowers the eigenvalue by 2 and use the
fact that Q†Q cannot have negative eigenvalues.

Problem 4.7: Schrödinger equations of the form

−d
2ψ

dx2
− l(l + 1)sech2xψ = Eψ

are known as Pöschel-Teller equations. By setting u = ltanhx and following
the strategy of this problem one may relate solutions for l to those for l−1 and
so find all bound states and scattering eigenfunctions for any integer l.

a) Suppose that we know that ψ = exp
{
−
∫ x

u(x′)dx′
}

is a solution of

Lψ ≡
(
− d2

dx2
+W (x)

)
ψ = 0.

Show that L can be written as L = M †M where

M =

(
d

dx
+ u(x)

)
, M † =

(
− d

dx
+ u(x)

)
,

the adjoint being taken with respect to the product 〈u, v〉 =
∫
u∗v dx.
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b) Now assume L is acting on functions on [−∞,∞] and that we not have
to worry about boundary conditions. Show that given an eigenfunction
ψ− obeying M †Mψ− = λψ− we can multiply this equation on the left
by M and so find a eigenfunction ψ+ with the same eigenvalue for the
differential operator

L′ = MM † =

(
d

dx
+ u(x)

)(
− d

dx
+ u(x)

)

and vice-versa. Show that this correspondence ψ− ↔ ψ+ will fail if, and
only if , λ = 0.

c) Apply the strategy from part b) in the case u(x) = tanhx and one of the
two differential operators M †M , MM † is (up to an additive constant)

H = − d

dx

2

− 2 sech2x.

Show that H has eigenfunctions of the form ψk = eikxP (tanh x) and
eigenvalue E = k2 for any k in the range −∞ < k < ∞. The function
P (tanhx) is a polynomial in tanhx which you should be able to find
explicitly. By thinking about the exceptional case λ = 0, show that H
has an eigenfunction ψ0(x), with eigenvalue E = −1, that tends rapidly
to zero as x→ ±∞. Observe that there is no corresponding eigenfunction
for the other operator of the pair.

4.3.2 Continuous spectrum

Rather than a give formal discussion, we will illustrate this subject with some
examples drawn from quantum mechanics.

The simplest example is the free particle on the real line. We have

H = −∂2
x. (4.109)

We eventually want to apply this to functions on the entire real line, but we
will begin with the interval [−L/2, L/2], and then take the limit L→∞

The operator H has formal eigenfunctions

ϕk(x) = eikx, (4.110)

corresponding to eigenvalues λ = k2. Suppose we impose periodic boundary
conditions at x = ±L/2:

ϕk(−L/2) = ϕk(+L/2). (4.111)
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This selects kn = 2πn/L, where n is any positive, negative or zero integer,
and allows us to find the normalized eigenfunctions

χn(x) =
1√
L
eiknx. (4.112)

The completeness condition is

∞∑

n=−∞

1

L
eiknxe−iknx′ = δ(x− x′), x, x′ ∈ [−L/2, L/2]. (4.113)

As L becomes large, the eigenvalues become so close that they can hardly be
distinguished; hence the name continuous spectrum,5 and the spectrum σ(H)
becomes the entire positive real line. In this limit, the sum on n becomes an
integral

∞∑

n=−∞

{
. . .

}
→
∫
dn

{
. . .

}
=

∫
dk

(
dn

dk

){
. . .

}
, (4.114)

where
dn

dk
=

L

2π
(4.115)

is called the (momentum) density of states. If we divide this by L to get a
density of states per unit length, we get an L independent “finite” quantity,
the local density of states. We will often write

dn

dk
= ρ(k). (4.116)

If we express the density of states in terms of the eigenvalue λ then, by
an abuse of notation, we have

ρ(λ) ≡ dn

dλ
=

L

2π
√
λ
. (4.117)

5When L is strictly infinite, ϕk(x) is no longer normalizable. Mathematicians do not
allow such un-normalizable functions to be considered as true eigenfunctions, and so a
point in the continuous spectrum is not, to them, actually an eigenvalue. Instead, they
say that a point λ lies in the continuous spectrum if for any ε > 0 there exists an ap-
proximate eigenfunction ϕε such that ‖ϕε‖ = 1, but ‖Lϕε − λϕε‖ < ε. This is not a
profitable definition for us. We prefer to regard non-normalizable wavefunctions as being
distributions in our rigged Hilbert space.
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Note that
dn

dλ
= 2

dn

dk

dk

dλ
, (4.118)

which looks a bit weird, but remember that two states, ±kn, correspond to
the same λ and that the symbols

dn

dk
,

dn

dλ
(4.119)

are ratios of measures, i.e. Radon-Nikodym derivatives, not ordinary deriva-
tives.

In the L→∞ limit, the completeness condition becomes

∫ ∞

−∞

dk

2π
eik(x−x

′) = δ(x− x′), (4.120)

and the length L has disappeared.

Suppose that we now apply boundary conditions y = 0 on x = ±L/2.
The normalized eigenfunctions are then

χn =

√
2

L
sin kn(x+ L/2), (4.121)

where kn = nπ/L. We see that the allowed k’s are twice as close together as
they were with periodic boundary conditions, but now n is restricted to being
a positive non-zero integer. The momentum density of states is therefore

ρ(k) =
dn

dk
=
L

π
, (4.122)

which is twice as large as in the periodic case, but the eigenvalue density of
states is

ρ(λ) =
L

2π
√
λ
, (4.123)

which is exactly the same as before.

That the number of states per unit energy per unit volume does not
depend on the boundary conditions at infinity makes physical sense: no
local property of the sublunary realm should depend on what happens in
the sphere of fixed stars. This point was not fully grasped by physicists,
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however, until Rudolph Peierls6 explained that the quantum particle had to
actually travel to the distant boundary and back before the precise nature
of the boundary could be felt. This journey takes time T (depending on
the particle’s energy) and from the energy-time uncertainty principle, we
can distinguish one boundary condition from another only by examining the
spectrum with an energy resolution finer than ~/T . Neither the distance nor
the nature of the boundary can affect the coarse details, such as the local
density of states.

The dependence of the spectrum of a general differential operator on
boundary conditions was investigated by Hermann Weyl. Weyl distinguished
two classes of singular boundary points: limit-circle, where the spectrum
depends on the choice of boundary conditions, and limit-point , where it does
not. For the Schrödinger operator, the point at infinity, which is “singular”
simply because it is at infinity, is in the limit-point class. We will discuss
Weyl’s theory of singular endpoints in chapter 8.

Phase-shifts

Consider the eigenvalue problem
(
− d2

dr2
+ V (r)

)
ψ = Eψ (4.124)

on the interval [0, R], and with boundary conditions ψ(0) = 0 = ψ(R). This
problem arises when we solve the Schrödinger equation for a central potential
in spherical polar coordinates, and assume that the wavefunction is a function
of r only (i.e. S-wave, or l = 0). Again, we want the boundary at R to be
infinitely far away, but we will start with R at a large but finite distance,
and then take the R →∞ limit. Let us first deal with the simple case that
V (r) ≡ 0; then the solutions are

ψk(r) ∝ sin kr, (4.125)

with eigenvalue E = k2, and with the allowed values of being given by
knR = nπ. Since ∫ R

0

sin2(knr) dr =
R

2
, (4.126)

6Peierls proved that the phonon contribution to the specific heat of a crystal could be
correctly calculated by using periodic boundary conditions. Some sceptics had thought
that such “unphysical” boundary conditions would give a result wrong by factors of two.
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the normalized wavefunctions are

ψk =

√
2

R
sin kr, (4.127)

and completeness reads
∞∑

n=1

(
2

R

)
sin(knr) sin(knr

′) = δ(r − r′). (4.128)

As R becomes large, this sum goes over to an integral:
∞∑

n=1

(
2

R

)
sin(knr) sin(knr

′) →
∫ ∞

0

dn

(
2

R

)
sin(kr) sin(kr′),

=

∫ ∞

0

Rdk

π

(
2

R

)
sin(kr) sin(kr′).(4.129)

Thus, (
2

π

)∫ ∞

0

dk sin(kr) sin(kr′) = δ(r − r′). (4.130)

As before, the large distance, here R, no longer appears.
Now consider the more interesting problem which has the potential V (r)

included. We will assume, for simplicity, that there is an R0 such that V (r)
is zero for r > R0. In this case, we know that the solution for r > R0 is of
the form

ψk(r) = sin (kr + η(k)) , (4.131)

where the phase shift η(k) is a functional of the potential V . The eigenvalue
is still E = k2.
Example: A delta-function shell. We take V (r) = λδ(r − a). See figure 4.3.

a
r

λδ (r−a)
ψ

Figure 4.3: Delta function shell potential.
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A solution with eigenvalue E = k2 and satisfying the boundary condition at
r = 0 is

ψ(r) =

{
A sin(kr), r < a,
sin(kr + η), r > a.

(4.132)

The conditions to be satisfied at r = a are:
i) continuity, ψ(a− ε) = ψ(a+ ε) ≡ ψ(a), and
ii) jump in slope, −ψ′(a + ε) + ψ′(a− ε) + λψ(a) = 0.

Therefore,
ψ′(a+ ε)

ψ(a)
− ψ′(a− ε)

ψ(a)
= λ, (4.133)

or
k cos(ka+ η)

sin(ka + η)
− k cos(ka)

sin(ka)
= λ. (4.134)

Thus,

cot(ka+ η)− cot(ka) =
λ

k
, (4.135)

and

η(k) = −ka + cot−1

(
λ

k
+ cot ka

)
. (4.136)

ka

(k)

−π

π 2π 3π 4π

η

Figure 4.4: The phase shift η(k) of equation (4.136) plotted against ka.

A sketch of η(k) is shown in figure 4.4. The allowed values of k are required
by the boundary condition

sin(kR + η(k)) = 0 (4.137)
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to satisfy
kR + η(k) = nπ. (4.138)

This is a transcendental equation for k, and so finding the individual solutions
kn is not simple. We can, however, write

n =
1

π

(
kR + η(k)

)
(4.139)

and observe that, when R becomes large, only an infinitesimal change in k
is required to make n increment by unity. We may therefore regard n as a
“continuous” variable which we can differentiate with respect to k to find

dn

dk
=

1

π

{
R +

∂η

∂k

}
. (4.140)

The density of allowed k values is therefore

ρ(k) =
1

π

{
R +

∂η

∂k

}
. (4.141)

For our delta-shell example, a plot of ρ(k) appears in figure 4.5.
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a

(R−a) π

Figure 4.5: The density of states for the delta-shell potential. The extended
states are so close in energy that we need an optical aid to resolve individual
levels. The almost-bound resonance levels have to squeeze in between them.

This figure shows a sequence of resonant bound states at ka = nπ superposed
on the background continuum density of states appropriate to a large box of
length (R−a). Each “spike” contains one extra state, so the average density
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of states is that of a box of length R. We see that changing the potential
does not create or destroy eigenstates, it just moves them around.

The spike is not exactly a delta function because of level repulsion between
nearly degenerate eigenstates. The interloper elbows the nearby levels out of
the way, and all the neighbours have to make do with a bit less room. The
stronger the coupling between the states on either side of the delta-shell, the
stronger is the inter-level repulsion, and the broader the resonance spike.

Normalization factor

We now evaluate ∫ R

0

dr|ψk|2 = N−2
k , (4.142)

so as to find the the normalized wavefunctions

χk = Nkψk. (4.143)

Let ψk(r) be a solution of

Hψ =

(
− d2

dr2
+ V (r)

)
ψ = k2ψ (4.144)

satisfying the boundary condition ψk(0) = 0, but not necessarily the bound-
ary condition at r = R. Such a solution exists for any k. We scale ψk by
requiring that ψk(r) = sin(kr + η) for r > R0. We now use Lagrange’s
identity to write

(k2 − k′2)
∫ R

0

dr ψk ψk′ =

∫ R

0

dr {(Hψk)ψk′ − ψk(Hψk′)}

= [ψkψ
′
k′ − ψ′

kψk′]
R
0

= sin(kR + η)k′ cos(k′R + η)

−k cos(kR + η) sin(k′R + η). (4.145)

Here, we have used ψk,k′(0) = 0, so the integrated out part vanishes at the
lower limit, and have used the explicit form of ψk,k′ at the upper limit.

Now differentiate with respect to k, and then set k = k′. We find

2k

∫ R

0

dr(ψk)
2 = −1

2
sin
(
2(kR + η)

)
+ k

{
R +

∂η

∂k

}
. (4.146)
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In other words,

∫ R

0

dr(ψk)
2 =

1

2

{
R +

∂η

∂k

}
− 1

4k
sin
(
2(kR + η)

)
. (4.147)

At this point, we impose the boundary condition at r = R. We therefore
have kR + η = nπ and the last term on the right hand side vanishes. The
final result for the normalization integral is therefore

∫ R

0

dr|ψk|2 =
1

2

{
R +

∂η

∂k

}
. (4.148)

Observe that the same expression occurs in both the density of states
and the normalization integral. When we use these quantities to write down
the contribution of the normalized states in the continuous spectrum to the
completeness relation we find that

∫ ∞

0

dk

(
dn

dk

)
N2
kψk(r)ψk(r

′) =

(
2

π

)∫ ∞

0

dk ψk(r)ψk(r
′), (4.149)

the density of states and normalization factor having cancelled and disap-
peared from the end result. This is a general feature of scattering problems:
The completeness relation must give a delta function when evaluated far from
the scatterer where the wavefunctions look like those of a free particle. So,
provided we normalize ψk so that it reduces to a free particle wavefunction
at large distance, the measure in the integral over k must also be the same
as for the free particle.

Including any bound states in the discrete spectrum, the full statement
of completeness is therefore

∑

bound states

ψn(r)ψn(r
′) +

(
2

π

)∫ ∞

0

dk ψk(r)ψk(r
′) = δ(r − r′). (4.150)

Example: We will exhibit a completeness relation for a problem on the entire
real line. We have already met the Pöschel-Teller equation,

Hψ =

(
− d2

dx2
− l(l + 1) sech2x

)
ψ = Eψ (4.151)

in exercise 4.7. When l is an integer, the potential in this Schrödinger equa-
tion has the special property that it is reflectionless.
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The simplest non-trivial example is l = 1. In this case, H has a single
discrete bound state at E0 = −1. The normalized eigenfunction is

ψ0(x) =
1√
2
sech x. (4.152)

The rest of the spectrum consists of a continuum of unbound states with
eigenvalues E(k) = k2 and eigenfunctions

ψk(x) =
1√

1 + k2
eikx(−ik + tanh x). (4.153)

Here, k is any real number. The normalization of ψk(x) has been chosen so
that, at large |x|, where tanh x→ ±1, we have

ψ∗
k(x)ψk(x

′)→ e−ik(x−x
′). (4.154)

The measure in the completeness integral must therefore be dk/2π, the same
as that for a free particle.

Let us compute the difference

I = δ(x− x′)−
∫ ∞

−∞

dk

2π
ψ∗
k(x)ψk(x

′)

=

∫ ∞

−∞

dk

2π

(
e−ik(x−x) − ψ∗

k(x)ψk(x
′)
)

=

∫ ∞

−∞

dk

2π
e−ik(x−x

′) 1 + ik(tanh x− tanhx′)− tanh x tanhx′

1 + k2
.

(4.155)

We use the standard integral,
∫ ∞

−∞

dk

2π
e−ik(x−x

′) 1

1 + k2
=

1

2
e−|x−x′|, (4.156)

together with its x′ derivative,
∫ ∞

−∞

dk

2π
e−ik(x−x

′) ik

1 + k2
= sgn (x− x′)1

2
e−|x−x′|, (4.157)

to find

I =
1

2

{
1 + sgn (x− x′)(tanh x− tanh x′)− tanh x tanh x′

}
e−|x−x′|. (4.158)
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Assume, without loss of generality, that x > x′; then this reduces to

1

2
(1 + tanh x)(1− tanhx′)e−(x−x′) =

1

2
sech x sech x′

= ψ0(x)ψ0(x
′). (4.159)

Thus, the expected completeness condition

ψ0(x)ψ0(x
′) +

∫ ∞

−∞

dk

2π
ψ∗
k(x)ψk(x

′) = δ(x− x′), (4.160)

is confirmed.

4.4 Further exercises and problems

We begin with a practical engineering eigenvalue problem.

Exercise 4.8: Whirling drive shaft. A thin flexible drive shaft is supported by
two bearings that impose the conditions x′ = y′ = x = y = 0 at at z = ±L.
Here x(z), y(z) denote the transverse displacements of the shaft, and the
primes denote derivatives with respect to z.
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Figure 4.6: The n = 1 even-parity mode of a whirling shaft.

The shaft is driven at angular velocity ω. Experience shows that at certain
critical frequencies ωn the motion becomes unstable to whirling — a sponta-
neous vibration and deformation of the normally straight shaft. If the rotation
frequency is raised above ωn, the shaft becomes quiescent and straight again
until we reach a frequency ωn+1, at which the pattern is repeated. Our task
is to understand why this happens.
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The kinetic energy of the whirling shaft is

T =
1

2

∫ L

−L
ρ{ẋ2 + ẏ2}dz,

and the strain energy due to bending is

V [x, y] =
1

2

∫ L

−L
γ{(x′′)2 + (y′′)2} dz.

a) Write down the Lagrangian, and from it obtain the equations of motion
for the shaft.

b) Seek whirling-mode solutions of the equations of motion in the form

x(z, t) = ψ(z) cos ωt,

y(z, t) = ψ(z) sinωt.

Show that this quest requires the solution of the eigenvalue problem

γ

ρ

d4ψ

dz4
= ω2

nψ, ψ′(−L) = ψ(−L) = ψ′(L) = ψ(L) = 0.

c) Show that the critical frequencies are given in terms of the solutions ξn
to the transcendental equation

tanh ξn = ± tan ξn, (?)

as

ωn =

√
γ

ρ

(
ξn
L

)2

,

Show that the plus sign in ? applies to odd parity modes, where ψ(z) =
−ψ(−z), and the minus sign to even parity modes where ψ(z) = ψ(−z).

Whirling, we conclude, occurs at the frequencies of the natural transverse
vibration modes of the elastic shaft. These modes are excited by slight imbal-
ances that have negligeable effect except when the shaft is being rotated at
the resonant frequency.

Insight into adjoint boundary conditions for an ODE can be obtained by
thinking about how we would impose these boundary conditions in a numer-
ical solution. The next exercise problem this.
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Problem 4.9: Discrete approximations and self-adjointness. Consider the sec-
ond order inhomogeneous equation Lu ≡ u′′ = g(x) on the interval 0 ≤x ≤1.
Here g(x) is known and u(x) is to be found. We wish to solve the problem on a
computer, and so set up a discrete approximation to the ODE in the following
way:

• replace the continuum of independent variables 0 ≤x ≤1 by the discrete
lattice of points 0 ≤ xn ≡ (n − 1

2)/N ≤ 1. Here N is a positive integer
and n = 1, 2, . . . , N ;

• replace the functions u(x) and g(x) by the arrays of real variables un ≡
u(xn) and gn ≡ g(xn);

• replace the continuum differential operator d2/dx2 by the difference op-
erator D2, defined by D2un ≡ un+1 − 2un + un−1.

Now do the following problems:

a) Impose continuum Dirichlet boundary conditions u(0) = u(1) = 0. De-
cide what these correspond to in the discrete approximation, and write
the resulting set of algebraic equations in matrix form. Show that the
corresponding matrix is real and symmetric.

b) Impose the periodic boundary conditions u(0) = u(1) and u′(0) = u′(1),
and show that these require us to set u0 ≡ uN and uN+1 ≡ u1. Again
write the system of algebraic equations in matrix form and show that
the resulting matrix is real and symmetric.

c) Consider the non-symmetric N -by-N matrix operator

D2u =




0 0 0 0 0 . . . 0
1 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0
...

...
...

. . .
...

...
...

0 . . . 0 1 −2 1 0
0 . . . 0 0 1 −2 1
0 . . . 0 0 0 0 0







uN
uN−1

uN−2
...
u3

u2

u1




.

i) What vectors span the null space of D2?
ii) To what continuum boundary conditions for d2/dx2 does this matrix

correspond?
iii) Consider the matrix (D2)†, To what continuum boundary condi-

tions does this matrix correspond? Are they the adjoint boundary
conditions for the differential operator in part ii)?

Exercise 4.10: Let

Ĥ =

(
−i∂x m1 − im2

m1 + im2 i∂x

)
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= −iσ̂3∂x +m1σ̂1 +m2σ̂2

be a one-dimensional Dirac Hamiltonian. Here m1(x) and m2(x) are real
functions and the σ̂i are the Pauli matrices. The matrix differential operator
Ĥ acts on the two-component “spinor”

Ψ(x) =

(
ψ1(x)
ψ2(x)

)
.

a) Consider the eigenvalue problem ĤΨ = EΨ on the interval [a, b]. Show
that the boundary conditions

ψ1(a)

ψ2(a)
= exp{iθa},

ψ1(b)

ψ2(b)
= exp{iθb}

where θa, θb are real angles, make Ĥ into an operator that is self-adjoint
with respect to the inner product

〈Ψ1,Ψ2〉 =
∫ b

a
Ψ†

1(x)Ψ2(x) dx.

b) Find the eigenfunctions Ψn and eigenvalues En in the case that m1 =
m2 = 0 and the θa,b are arbitrary real angles.

Here are three further problems involving the completeness of operators with
a continuous spectrum:

Problem 4.11: Missing State. In problem 4.7 you will have found that the
Schrödinger equation

(
− d2

dx2
− 2 sech2x

)
ψ = E ψ

has eigensolutions

ψk(x) = eikx(−ik + tanhx)

with eigenvalue E = k2.

• For x large and positive ψk(x) ≈ Aeikxeiη(k), while for x large and neg-
ative ψk(x) ≈ Aeikxe−iη(k), the (complex) constant A being the same
in both cases. Express the phase shift η(k) as the inverse tangent of an
algebraic expression in k.
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• Impose periodic boundary conditions ψ(−L/2) = ψ(+L/2) where L� 1.
Find the allowed values of k and hence an explicit expression for the k-
space density, ρ(k) = dn

dk , of the eigenstates.
• Compare your formula for ρ(k) with the corresponding expression, ρ0(k) =
L/2π, for the eigenstate density of the zero-potential equation and com-
pute the integral

∆N =

∫ ∞

−∞
{ρ(k) − ρ0(k)}dk.

• Deduce that one eigenfunction has gone missing from the continuum and
become the localized bound state ψ0(x) = 1√

2
sech x.

Problem 4.12: Continuum Completeness. Consider the differential operator

L̂ = − d2

dx2
, 0 ≤ x <∞

with self-adjoint boundary conditions ψ(0)/ψ ′(0) = tan θ for some fixed angle
θ.

• Show that when tan θ < 0 there is a single normalizable negative-eigenvalue
eigenfunction localized near the origin, but none when tan θ > 0.

• Show that there is a continuum of positive-eigenvalue eigenfunctions of
the form ψk(x) = sin(kx+ η(k)) where the phase shift η is found from

eiη(k) =
1 + ik tan θ√
1 + k2 tan2 θ

.

• Write down (no justification required) the appropriate completeness re-
lation

δ(x− x′) =

∫
dn

dk
N2
kψk(x)ψk(x

′) dk +
∑

bound

ψn(x)ψn(x
′)

with an explicit expression for the product (not the separate factors) of
the density of states and the normalization constant N 2

k , and with the
correct limits on the integral over k.

• Confirm that the ψk continuum on its own, or together with the bound
state when it exists, form a complete set. You will do this by evaluating
the integral

I(x, x′) =
2

π

∫ ∞

0
sin(kx+ η(k)) sin(kx′ + η(k)) dk
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and interpreting the result. You will need the following standard integral
∫ ∞

−∞

dk

2π
eikx

1

1 + k2t2
=

1

2|t|e
−|x|/|t|.

Take care! You should monitor how the bound state contribution switches
on and off as θ is varied. Keeping track of the modulus signs | . . . | in the
standard integral is essential for this.

Problem 4.13: One-dimensional scattering redux. Consider again the one-
dimensional Schrödinger equation from chapter 3 problem 3.4:

−d
2ψ

dx2
+ V (x)ψ = Eψ,

where V (x) is zero except in a finite interval [−a, a] near the origin.

xa−a
RL

a

a in 

a

a in 

out out 
L R

RL 

V(x)

Figure 4.7: Incoming and outgoing waves in problem 4.13. The asymptotic
regions L and R are defined by L = {x < −a} and R = {x > a}.

For k > 0, consider solutions of the form

ψ(x) =

{
ain
L e

ikx + aout
L e−ikx, x ∈ L,

ain
Re

−ikx + aout
R eikx, x ∈ R.

a) Show that, in the notation of problem 3.4, we have
[
aout
L

aout
R

]
=

[
rL(k) tR(−k)
tL(k) rR(−k)

] [
ain
L

ain
R

]
,

and show that the S-matrix

S(k) ≡
[
rL(k) tR(−k)
tL(k) rR(−k)

]

is unitary.
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b) By observing that complex conjugation interchanges the “in” and “out”
waves, show that it is natural to extend the definition of the transmission
and reflection coefficients to all real k by setting rL,R(k) = r∗L,R(−k),
tL,R(k) = t∗L,R(−k).

c) In problem 3.4 we introduced the particular solutions

ψk(x) =

{
eikx + rL(k)e−ikx, x ∈ L,
tL(k)eikx, x ∈ R,

k > 0,

=

{
tR(k)eikx, x ∈ L,
eikx + rR(k)e−ikx, x ∈ R. k < 0.

Show that, together with any bound states ψn(x), these ψk(x) satisfy
the completeness relation

∑

bound

ψ∗
n(x)ψn(x

′) +

∫ ∞

−∞

dk

2π
ψ∗
k(x)ψk(x

′) = δ(x − x′)

provided that

−
∑

bound

ψ∗
n(x)ψn(x

′) =

∫ ∞

−∞

dk

2π
rL(k)e−ik(x+x

′), x, x′ ∈ L,

=

∫ ∞

−∞

dk

2π
tL(k)e−ik(x−x

′), x ∈ L, x′ ∈ R,

=

∫ ∞

−∞

dk

2π
tR(k)e−ik(x−x

′), x ∈ R, x′ ∈ L,

=

∫ ∞

−∞

dk

2π
rR(k)e−ik(x+x

′), x, x′ ∈ R.

d) Compute rL,R(k) and tL,R(k) for the potential V (x) = −λδ(x),and verify
that the conditions in part c) are satisfied.

If you are familiar with complex variable methods, look ahead to chapter
18 where problem 18.22 shows you how to use complex variable methods to
evaluate the Fourier transforms in part c), and so confirm that the bound state
ψn(x) and the ψk(x) together constitute a complete set of eigenfunctions.

Problem 4.14: Levinson’s Theorem and the Friedel sum rule. The interaction
between an attractive impurity and (S-wave, and ignoring spin) electrons in
a metal can be modelled by a one-dimensional Schrödinger equation

−d
2χ

dr2
+ V (r)χ = k2χ.
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Here r is the distance away from the impurity and V (r) is the (spherically
symmetric) impurity potential and χ(r) =

√
4πrψ(r) where ψ(r) is the three-

dimensional wavefunction. The impurity attracts electrons to its vicinity. Let
χ0
k(r) = sin(kr) denote the unperturbed wavefunction, and χk(r) denote the

perturbed wavefunction that beyond the range of impurity potential becomes
sin(kr + η(k)). We fix the 2nπ ambiguity in the definition of η(k) by taking
η(∞) to be zero, and requiring η(k) to be a continuous function of k.

• Show that the continuous-spectrum contribution to the change in the
number of electrons within a sphere of radius R surrounding the impurity
is given by

2

π

∫ kf

0

(∫ R

0

{
|χk(x)|2 − |χ0

k(x)|2
}
dr

)
dk =

1

π
[η(kf )− η(0)]+oscillations.

Here kf is the Fermi momentum, and “oscillations” refers to Friedel oscil-
lations ≈ cos(2(kfR+ η)). You should write down an explicit expression
for the Friedel oscillation term, and recognize it as the Fourier transform
of a function ∝ k−1 sin η(k).

• Appeal to the Riemann-Lebesgue lemma to argue that the Friedel density
oscillations make no contribution to the accumulated electron number in
the limit R→∞.
(Hint: You may want to look ahead to the next part of the problem in
order to show that k−1 sin η(k) remains finite as k → 0.)

The impurity-induced change in the number of unbound electrons in the in-
terval [0, R] is generically some fraction of an electron, and, in the case of
an attractive potential, can be negative — the phase-shift being positive and
decreasing steadily to zero as k increases to infinity. This should not be sur-
prising. Each electron in the Fermi sea speeds up as it enters an attractive
potential well, spends less time there, and so makes a smaller contribution
to the average local density than it would in the absence of the potential.
We would, however, surely expect an attractive potential to accumulate a net
positive number of electrons.

• Show that a negative continuous-spectrum contribution to the accumu-
lated electron number is more than compensated for by a positive number

Nbound =

∫ ∞

0
(ρ0(k)− ρ(k))dk = −

∫ ∞

0

1

π

∂η

∂k
dk =

1

π
η(0).

of electrons bound to the potential. After accounting for these bound
electrons, show that the total number of electrons accumulated near the
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impurity is

Qtot =
1

π
η(kf ).

This formula (together its higher angular momentum versions) is known
as the Friedel sum rule. The relation between η(0) and the number of
bound states is called Levinson’s theorem. A more rigorous derivation
of this theorem would show that η(0) may take the value (n + 1/2)π
when there is a non-normalizable zero-energy “half-bound” state. In
this exceptional case the accumulated charge will depend on R.


