
mathematical methods - week 1

Linear algebra

Georgia Tech PHYS-6124
Homework HW #1 due Tuesday, August 26, 2014

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

Exercise 8.1 Trace-log of a matrix 4 points
Exercise 1.2 Stability, diagonal case 2 points
Exercise 1.3 Time-ordered exponentials 4 points

Bonus points
Exercise 1.4 Real representation of complex eigenvalues 4 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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6 MATHEMATICAL METHODS - WEEK 1. LINEAR ALGEBRA

2014-08-19 Predrag Lecture 1
Grigoriev notes pages 6.2 up to 1) Mechanics inertia tensor, 6.4, 6.5 up to Right
and left eigenvectors

Sect. 1.4 Eigenvalues and eigenvectors

2014-08-21 Predrag Lecture 2 (with spill over into lecture 3)

Recap from Lecture 1: state Hamilton-Cayley equation, projection operators
(1.27), any matrix function is evaluated by spectral decomposition (1.30).
Work through example 1.6

Predrag notes, Grigoriev p. 6.5: Right (columns) and left (rows) eigenvectors

Predrag notes on moment of inertia tensor, (they substitute for Grigoriev p. 6.2
Mechanics, inertia tensor)

Predrag handwritten notes are not on the web, for those streteches you might want
to take your own notes in the lecture.

1.1 Literature
Mopping up operations are the activities that engage most sci-
entists throughout their careers.

— Thomas Kuhn, The Structure of Scientific Revolutions

The subject of linear algebra generates innumerable tomes of its own, and is way
beyond what we can exhaustively cover. We have added to the course homepage linear
operators and matrices reading: Stone and P. Goldbart [1.1], Mathematics for Physics:
A Guided Tour for Graduate Students, Appendix A. This is an advanced summary
where you will find almost everything one needs to know. More pedestrian and per-
haps easier to read is Arfken and Weber [1.2] Mathematical Methods for Physicists: A
Comprehensive Guide, Chapter 3.

Here we recapitulate a few concepts that we found essential. The punch line is Eq.
(1.38): Hamilton-Cayley equation

∏
(M− λi1) = 0 associates with each distinct root

λi of a matrix M a projection onto ith vector subspace

Pi =
∏
j 6=i

M− λj1
λi − λj

.

1.2 Matrix-valued functions
We summarize some of the properties of functions of finite-dimensional matrices.

The derivative of a matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′ij(x) =

d

dx
Aij(x) . (1.1)

http://ChaosBook.org/~predrag/courses/PHYS-6124-14/schedule.html
http://ChaosBook.org/~predrag/courses/PHYS-6124-14/StGoAppA.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-14/ArWe05chap3.pdf
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Derivatives of products of matrices are evaluated by the chain rule

d

dx
(AB) =

dA

dx
B + A

dB

dx
. (1.2)

A matrix and its derivative matrix in general do not commute

d

dx
A2 =

dA

dx
A + A

dA

dx
. (1.3)

The derivative of the inverse of a matrix, follows from d
dx (AA−1) = 0:

d

dx
A−1 = − 1

A

dA

dx

1

A
. (1.4)

A function of a single variable that can be expressed in terms of additions and
multiplications generalizes to a matrix-valued function by replacing the variable by the
matrix.

In particular, the exponential of a constant matrix can be defined either by its series
expansion, or as a limit of an infinite product:

eA =

∞∑
k=0

1

k!
Ak , A0 = 1 (1.5)

= lim
N→∞

(
1 +

1

N
A

)N
(1.6)

The first equation follows from the second one by the binomial theorem, so these in-
deed are equivalent definitions. That the terms of order O(N−2) or smaller do not
matter follows from the bound(

1 +
x− ε
N

)N
<

(
1 +

x+ δxN
N

)N
<

(
1 +

x+ ε

N

)N
,

where |δxN | < ε. If lim δxN → 0 as N →∞, the extra terms do not contribute.
Consider now the determinant

det (eA) = lim
N→∞

(det (1 + A/N))
N
.

To the leading order in 1/N

det (1 + A/N) = 1 +
1

N
trA +O(N−2) .

hence

det eA = lim
N→∞

(
1 +

1

N
trA +O(N−2)

)N
= etrA (1.7)

Due to non-commutativity of matrices, generalization of a function of several vari-
ables to a function is not as straightforward. Expression involving several matrices
depend on their commutation relations. For example, the commutator expansion

etABe−tA = B + t[A,B] +
t2

2
[A, [A,B]] +

t3

3!
[A, [A, [A,B]]] + · · · (1.8)
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sometimes used to establish the equivalence of the Heisenberg and Schrödinger pic-
tures of quantum mechanics follows by recursive evaluation of t derivatives

d

dt

(
etABe−tA

)
= etA[A,B]e−tA .

Manipulations of such ilk yield

e(A+B)/N = eA/NeB/N − 1

2N2
[A,B] +O(N−3) ,

and the Trotter product formula: if B, C and A = B + C are matrices, then

eA = lim
N→∞

(
eB/NeC/N

)N
(1.9)

1.3 A linear diversion
Linear is good, nonlinear is bad.

—Jean Bellissard

(Notes based of ChaosBook.org/chapters/stability.pdf)

Linear fields are the simplest vector fields, described by linear differential equations
which can be solved explicitly, with solutions that are good for all times. The state
space for linear differential equations is M = Rd, and the equations of motion are
written in terms of a vector x and a constant stability matrix A as

ẋ = v(x) = Ax . (1.10)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through a given initial point x0. If x(t) is a solution with x(0) = x0 and
y(t) another solution with y(0) = y0, then the linear combination ax(t) + by(t) with
a, b ∈ R is also a solution, but now starting at the point ax0 + by0. At any instant in
time, the space of solutions is a d-dimensional vector space, spanned by a basis of d
linearly independent solutions.

How do we solve the linear differential equation (1.10)? If instead of a matrix
equation we have a scalar one, ẋ = λx , the solution is x(t) = etλx0 . In order to solve
the d-dimensional matrix case, it is helpful to rederive this solution by studying what
happens for a short time step δt. If time t = 0 coincides with position x(0), then

x(δt)− x(0)

δt
= λx(0) , (1.11)

which we iterate m times to obtain Euler’s formula for compounding interest

x(t) ≈
(

1 +
t

m
λ

)m
x(0) ≈ etλx(0) . (1.12)

http://ChaosBook.org/chapters/stability.pdf
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The term in parentheses acts on the initial condition x(0) and evolves it to x(t) by
taking m small time steps δt = t/m. As m → ∞, the term in parentheses converges
to etλ. Consider now the matrix version of equation (1.11):

x(δt)− x(0)

δt
= Ax(0) . (1.13)

A representative point x is now a vector in Rd acted on by the matrix A, as in (1.10).
Denoting by 1 the identity matrix, and repeating the steps (1.11) and (1.12) we obtain
Euler’s formula for the exponential of a matrix:

x(t) = J tx(0) , J t = etA = lim
m→∞

(
1 +

t

m
A

)m
. (1.14)

We will find this definition for the exponential of a matrix helpful in the general case,
where the matrix A = A(x(t)) varies along a trajectory.

Now that we have some feeling for the qualitative behavior of eigenvectors and eigen-
values of linear flows, we are ready to return to the nonlinear case. How do we compute
the exponential (1.14)?

x(t) = f t(x0) , δx(x0, t) = J t(x0) δx(x0, 0) . (1.15)

The equations are linear, so we should be able to integrate them–but in order to make
sense of the answer, we derive this integral step by step. The Jacobian matrix is com-
puted by integrating the equations of variations

ẋi = vi(x) , ˙δxi =
∑
j

Aij(x)δxj (1.16)

Consider the case of a general, non-stationary trajectory x(t). The exponential of a
constant matrix can be defined either by its Taylor series expansion or in terms of the
Euler limit (1.14):

etA =
∞∑
k=0

tk

k!
Ak = lim

m→∞

(
1 +

t

m
A

)m
. (1.17)

Taylor expanding is fine if A is a constant matrix. However, only the second, tax-
accountant’s discrete step definition of an exponential is appropriate for the task at
hand. For dynamical systems, the local rate of neighborhood distortion A(x) depends
on where we are along the trajectory. The linearized neighborhood is deformed along
the flow, and the m discrete time-step approximation to J t is therefore given by a
generalization of the Euler product (1.17):

J t = lim
m→∞

1∏
n=m

(1 + δtA(xn)) = lim
m→∞

1∏
n=m

eδtA(xn) (1.18)

= lim
m→∞

eδtA(xm)eδtA(xm−1) · · · eδtA(x2)eδtA(x1) ,
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where δt = (t− t0)/m, and xn = x(t0 +nδt). Indexing of the products indicates that
the successive infinitesimal deformation are applied by multiplying from the left. The
m→∞ limit of this procedure is the formal integral

J tij(x0) =
[
Te

∫ t
0
dτA(x(τ))

]
ij
, (1.19)

where T stands for time-ordered integration, defined as the continuum limit of the
successive multiplications (1.18). This integral formula for J t is the finite time com-

exercise 1.3
panion of the differential definition. The definition makes evident important properties
of Jacobian matrices, such as their being multiplicative along the flow,

J t+t
′
(x) = J t

′
(x′) J t(x), where x′ = f t(x0) , (1.20)

which is an immediate consequence of the time-ordered product structure of (1.18).
However, in practice J is evaluated by integrating differential equation along with the
ODEs that define a particular flow.

1.4 Eigenvalues and eigenvectors
10. Try to leave out the part that readers tend to skip.

— Elmore Leonard’s Ten Rules of Writing.

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M− λ1) =
∏

(λi − λ) = 0 . (1.21)

Given a nonsingular matrix M, with all λi 6= 0, acting on d-dimensional vectors x, we
would like to determine eigenvectors e(i) of M on which M acts by scalar multiplica-
tion by eigenvalue λi

Me(i) = λie
(i) . (1.22)

If λi 6= λj , e(i) and e(j) are linearly independent. There are at most d distinct eigen-
values and eigenspaces, which we assume have been computed by some method, and
ordered by their real parts, Reλi ≥ Reλi+1.

If all eigenvalues are distinct e(j) are d linearly independent vectors which can be
used as a (non-orthogonal) basis for any d-dimensional vector x ∈ Rd

x = x1 e
(1) + x2 e

(2) + · · ·+ xd e
(d) . (1.23)

From (1.22) it follows that

(M− λi1) e(j) = (λj − λi) e(j) ,



1.4. EIGENVALUES AND EIGENVECTORS 11

matrix (M−λi1) annihilates e(i), the product of all such factors annihilates any vector,
and the matrix M satisfies its characteristic equation

d∏
i=1

(M− λi1) = 0 . (1.24)

This humble fact has a name: the Hamilton-Cayley theorem. If we delete one term from
this product, we find that the remainder projects x from (1.23) onto the corresponding
eigenspace: ∏

j 6=i

(M− λj1)x =
∏
j 6=i

(λi − λj)xie(i) .

Dividing through by the (λi − λj) factors yields the projection operators

Pi =
∏
j 6=i

M− λj1
λi − λj

, (1.25)

which are orthogonal and complete:

PiPj = δijPj , (no sum on j) ,
r∑
i=1

Pi = 1 , (1.26)

with the dimension of the ith subspace given by di = trPi . For each distinct eigen-
value λi of M,

(M− λj1)Pj = Pj(M− λj1) = 0 , (1.27)

the colums/rows of Pi are the right/left eigenvectors e(k), e(k) of M which (provided
M is not of Jordan type, see example 1.4) span the corresponding linearized subspace,
and are a convenient starting seed for tracing out the global unstable/stable manifolds.
Once the distinct non-zero eigenvalues {λi} are computed, projection operators are
polynomials in M which need no further diagonalizations or orthogonalizations. Eco-
nomical description of neighborhoods of equilibria and periodic orbits is afforded by
projection operators (1.25), where matrix M is typically either equilibrium stability
matrix A, or periodic orbit Jacobian matrix Ĵ .

It follows from the characteristic equation (1.27) that λi is the eigenvalue of M on
Pi subspace:

MPi = λiPi (no sum on i) . (1.28)

Using M = M1 and completeness relation (1.26) we can rewrite M as

M = λ1P1 + λ2P2 + · · ·+ λdPd . (1.29)

Any matrix function f(M) takes the scalar value f(λi) on the Pi subspace, f(M)Pi =
f(λi)Pi , and is thus easily evaluated through its spectral decomposition

f(M) =
∑
i

f(λi)Pi . (1.30)
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This, of course, is the reason why anyone but a fool works with irreducible reps: they
reduce matrix (AKA “operator”) evaluations to manipulations with numbers.

By (1.27) every column of Pi is proportional to a right eigenvector e(i), and its
every row to a left eigenvector e(i). In general, neither set is orthogonal, but by the
idempotence condition (1.26), they are mutually orthogonal,

e(i) · e(j) = c δji . (1.31)

The non-zero constant c is convention dependent and not worth fixing, unless you feel
nostalgic about Clebsch-Gordan coefficients. We shall set c = 1. Then it is convenient
to collect all left and right eigenvectors into a single matrix as follows.

Example 1.1. Fundamental matrix. If A is constant in time, the system (1.16) is
autonomous, and the solution is

x(t) = eA tx(0) ,

where exp(At) is defined by the Taylor series for exp(x). As the system is linear, the
sum of any two solutions is also a solution. Therefore, given d independent initial con-
ditions, x1(0), x2(0), . . . xd(0) we can write the solution for an arbitrary initial condition
based on its projection on to this set,

x(t) = F(t)F(0)−1x(0) = eAtx(0) ,

where F(t) = (x1(t), x2(t), . . . , xd(t)) is a fundamental matrix of the system.

Fundamental matrix (take 1). As the system is a linear, a superposition of any two
solutions to x(t) = Jtx(0) is also a solution. One can take any d independent initial
states, x(1)(0), x(2)(0), . . . , x(d)(0), assemble them as columns of a matrix Φ(0), and
formally write the solution for an arbitrary initial condition projected onto this basis,

x(t) = Φ(t)Φ(0)−1x(0) (1.32)

where Φ(t) = [x(1)(t), x(2)(t), · · · , x(d)(t)]. Φ(t) is called the fundamental matrix of
the system, and the Jacobian matrix Jt = Φ(t)Φ(0)−1 can thus be fashioned out of d
trajectories {x(j)(t)}. Numerically this works for sufficiently short times.

Fundamental matrix (take 2). The set of solutions x(t) = Jt(x0)x0 for a system of
homogeneous linear differential equations ẋ(t) = A(t)x(t) of order 1 and dimension d
forms a d-dimensional vector space. A basis {e(1)(t), . . . , e(d)(t)} for this vector space
is called a fundamental system. Every solution x(t) can be written as

x(t) =

d∑
i=1

ci e
(i)(t) .

The [d×d] matrix F−1
ij = e

(j)
i whose columns are the right eigenvectors of Jt

F(t)−1 = (e(1)(t), . . . , e(d)(t)) , F(t)T = (e(1)(t), . . . , e(d)(t)) (1.33)

is the inverse of a fundamental matrix.
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Jacobian matrix. The Jacobian matrix Jt(x0) is the linear approximation to a differ-
entiable function f t(x0), describing the orientation of a tangent plane to the function
at a given point and the amount of local rotation and shearing caused by the transfor-
mation. The inverse of the Jacobian matrix of a function is the Jacobian matrix of the
inverse function. If f is a map from d-dimensional space to itself, the Jacobian matrix is
a square matrix, whose determinant we refer to as the ‘Jacobian.’

The Jacobian matrix can be written as transformation from basis at time t0 to the
basis at time t1,

Jt1−t0(x0) = F(t1)F(t0)−1 . (1.34)

Then the matrix form of (1.31) is F(t)F(t)−1 = 1, i.e., for zero time the Jacobian matrix
is the identity. (J. Halcrow)

exercise 1.4

Example 1.2. Linear stability of 2-dimensional flows: For a 2-dimensional flow
the eigenvalues λ1, λ2 of A are either real, leading to a linear motion along their eigen-
vectors, xj(t) = xj(0) exp(tλj), or form a complex conjugate pair λ1 = µ + iω , λ2 =
µ− iω , leading to a circular or spiral motion in the [x1, x2] plane, see example 1.3.

Figure 1.1: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node
(attracting), center (elliptic), in spiral.

These two possibilities are refined further into sub-cases depending on the signs of
the real part. In the case of real λ1 > 0, λ2 < 0, x1 grows exponentially with time, and x2
contracts exponentially. This behavior, called a saddle, is sketched in figure 1.1, as are
the remaining possibilities: in/out nodes, inward/outward spirals, and the center. The
magnitude of out-spiral |x(t)| diverges exponentially when µ > 0, and in-spiral contracts
into (0, 0) when µ < 0; whereas, the phase velocity ω controls its oscillations.

If eigenvalues λ1 = λ2 = λ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector, see example 1.4. We distinguish
two cases: (a) A can be brought to diagonal form and (b) A can be brought to Jordan
form, which (in dimension 2 or higher) has zeros everywhere except for the repeating
eigenvalues on the diagonal and some 1’s directly above it. For every such Jordan
[dα×dα] block there is only one eigenvector per block.

We sketch the full set of possibilities in figures 1.1 and 1.2.

Example 1.3. Complex eigenvalues: in-out spirals. As M has only real entries, it
will in general have either real eigenvalues, or complex conjugate pairs of eigenvalues.
Also the corresponding eigenvectors can be either real or complex. All coordinates used
in defining a dynamical flow are real numbers, so what is the meaning of a complex
eigenvector?
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saddle
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in node
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center
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in spiral
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Figure 1.2: Qualitatively distinct types of exponents {λ1, λ2} of a [2×2] Jacobian
matrix.

If λk, λk+1 eigenvalues that lie within a diagonal [2×2] sub-block M′ ⊂ M form
a complex conjugate pair, {λk, λk+1} = {µ + iω, µ − iω}, the corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e(k), e(k+1)} →
{Re e(k), Im e(k)}. In this 2-dimensional real representation, M′ → A, the block A is a
sum of the rescaling×identity and the generator of SO(2) rotations in the {Re e(1), Im e(1)}
plane.

A =

(
µ −ω
ω µ

)
= µ

(
1 0
0 1

)
+ ω

(
0 −1
1 0

)
.

Trajectories of ẋ = Ax, given by x(t) = Jt x(0), where (omitting e(3), e(4), · · · eigen-
directions)

Jt = etA = etµ
(

cos ωt − sin ωt
sin ωt cos ωt

)
, (1.35)

spiral in/out around (x, y) = (0, 0), see figure 1.1, with the rotation period T and the
radial expansion /contraction multiplier along the e(j) eigen-direction per a turn of the
spiral:

exercise 1.4
T = 2π/ω , Λradial = eTµ . (1.36)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000T, or 10−2T).

Example 1.4. Degenerate eigenvalues. While for a matrix with generic real
elements all eigenvalues are distinct with probability 1, that is not true in presence of
symmetries, or spacial parameter values (bifurcation points). What can one say about
situation where dα eigenvalues are degenerate, λα = λi = λi+1 = · · · = λi+dα−1?
Hamilton-Cayley (1.24) now takes form

r∏
α=1

(M− λα1)dα = 0 ,
∑
α

dα = d . (1.37)

We distinguish two cases:

M can be brought to diagonal form. The characteristic equation (1.37) can be re-
placed by the minimal polynomial,

r∏
α=1

(M− λα1) = 0 , (1.38)
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where the product includes each distinct eigenvalue only once. Matrix M acts multi-
plicatively

Me(α,k) = λie
(α,k) , (1.39)

on a dα-dimensional subspace spanned by a linearly independent set of basis eigen-
vectors {e(α,1), e(α,2), · · · , e(α,dα)}. This is the easy case. Luckily, if the degeneracy is
due to a finite or compact symmetry group, relevant M matrices can always be brought
to such Hermitian, diagonalizable form.

M can only be brought to upper-triangular, Jordan form. This is the messy case,
so we only illustrate the key idea in example 1.5.

Example 1.5. Decomposition of 2-dimensional vector spaces: Enumeration of ev-
ery possible kind of linear algebra eigenvalue / eigenvector combination is beyond what
we can reasonably undertake here. However, enumerating solutions for the simplest
case, a general [2×2] non-singular matrix

M =

(
M11 M12

M21 M22

)
.

takes us a long way toward developing intuition about arbitrary finite-dimensional matri-
ces. The eigenvalues

λ1,2 =
1

2
trM± 1

2

√
(trM)2 − 4 detM (1.40)

are the roots of the characteristic (secular) equation (1.21):

det (M− λ1) = (λ1 − λ)(λ2 − λ)

= λ2 − trMλ+ detM = 0 .

Distinct eigenvalues case has already been described in full generality. The left/right
eigenvectors are the rows/columns of projection operators

P1 =
M− λ21

λ1 − λ2
, P2 =

M− λ11

λ2 − λ1
, λ1 6= λ2 . (1.41)

Degenerate eigenvalues. If λ1 = λ2 = λ, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case. (b) M can be brought to Jordan form,
with zeros everywhere except for the diagonal, and some 1’s directly above it; for a [2×2]
matrix the Jordan form is

M =

(
λ 1
0 λ

)
, e(1) =

(
1 0

)
, v(2) =

(
0 1

)
.

v(2) helps span the 2-dimensional space, (M − λ)2v(2) = 0, but is not an eigenvector,
as Mv(2) = λv(2) + e(1). For every such Jordan [dα×dα] block there is only one
eigenvector per block. Noting that

Mm =

(
λm mλm−1

0 λm

)
,
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we see that instead of acting multiplicatively on R2, Jacobian matrix Jt = exp(tM)

etM
(
u

v

)
= etλ

(
u+ tv

v

)
(1.42)

picks up a power-low correction. That spells trouble (logarithmic term ln t if we bring the
extra term into the exponent).

Example 1.6. Projection operator decomposition in 2 dimensions: Let’s illustrate
how the distinct eigenvalues case works with the [2×2] matrix

M =

(
4 1
3 2

)
.

Its eigenvalues {λ1, λ2} = {5, 1} are the roots of (1.40):

det (M− λ1) = λ2 − 6λ+ 5 = (5− λ)(1− λ) = 0 .

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by ex-
plicit calculation:(

4 1
3 2

)2

− 6

(
4 1
3 2

)
+ 5

(
1 0
0 1

)
=

(
0 0
0 0

)
.

Associated with each root λi is the projection operator (1.41)

P1 =
1

4
(M− 1) =

1

4

(
3 1
3 1

)
(1.43)

P2 =
1

4
(M− 5 · 1) =

1

4

(
1 −1
−3 3

)
. (1.44)

Matrices Pi are orthonormal and complete, The dimension of the ith subspace is given
by di = trPi ; in case at hand both subspaces are 1-dimensional. From the charac-
teristic equation it follows that Pi satisfies the eigenvalue equation MPi = λiPi . Two
consequences are immediate. First, we can easily evaluate any function of M by spec-
tral decomposition, for example

M7 − 3 · 1 = (57 − 3)P1 + (1− 3)P2 =

(
58591 19531
58593 19529

)
.

Second, as Pi satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

{e(1), e(2)} = {
(

1 1
)
,
(

1 −3
)
}

{e(1), e(2)} = {
(

3 1
)
,
(

1 −1
)
} ,

with overall scale arbitrary. The matrix is not symmetric, so {e(j)} do not form an orthog-
onal basis. The left-right eigenvector dot products e(j) · e(k), however, are orthogonal
as in (1.31), by inspection. (Continued in example 1.8.)
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Example 1.7. Computing matrix exponentials. If A is diagonal (the system is un-
coupled), then etA is given by

exp


λ1t

λ2t

. . .
λdt

 =


eλ1t

eλ2t

. . .
eλdt

 .

If A is diagonalizable, A = FDF−1, where D is the diagonal matrix of the eigen-
values of A and F is the matrix of corresponding eigenvectors, the result is simple:
An = (FDF−1)(FDF−1) . . . (FDF−1) = FDnF−1. Inserting this into the Taylor se-
ries for ex gives eAt = FeDtF−1.

But A may not have d linearly independant eigenvectors, making F singular and
forcing us to take a different route. To illustrate this, consider [2×2] matrices. For any
linear system in R2, there is a similarity transformation

B = U−1AU ,

where the columns of U consist of the generalized eigenvectors of A such that B has
one of the following forms:

B =

(
λ 0
0 µ

)
, B =

(
λ 1
0 λ

)
, B =

(
µ −ω
ω µ

)
.

These three cases, called normal forms, correspond to A having (1) distinct real eigen-
values, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues. It follows
that

eBt =

(
eλt 0
0 eµt

)
, eBt = eλt

(
1 t
0 1

)
, eBt = eat

(
cos bt − sin bt
sin bt cos bt

)
,

and eAt = UeBtU−1. What we have done is classify all [2×2] matrices as belonging to
one of three classes of geometrical transformations. The first case is scaling, the second
is a shear, and the third is a combination of rotation and scaling. The generalization of
these normal forms to Rd is called the Jordan normal form. (J. Halcrow)

Figure 1.3: The stable/unstable manifolds
of the equilibrium (xq, xq) = (0, 0) of 2-
dimensional flow (1.45).

y

x

Example 1.8. A simple stable/unstable manifolds pair: Consider the 2-dimensional
ODE system

dx

dt
= −x, dy

dt
= y + x2 , (1.45)
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The flow through a point x(0) = x0, y(0) = y0 can be integrated

x(t) = x0 e
−t, y(t) = (y0 + x20/3) et − x20 e−2t/3 . (1.46)

Linear stability of the flow is described by the stability matrix

A =

(
−1 0
2x 1

)
. (1.47)

The flow is hyperbolic, with a real expanding/contracting eigenvalue pair λ1 = 1, λ2 =
−1, and area preserving. The right eigenvectors at the point (x, y)

e(1) =

(
0
1

)
, e(2) =

(
1
−x

)
. (1.48)

can be obtained by acting with the projection operators (see example 1.5 Decomposition
of 2-dimensional vector spaces)

Pi =
A− λj1
λi − λj

: P1 =

(
0 0
x 1

)
, P2 =

(
1 0
−x 0

)
(1.49)

on an arbitrary vector. Matrices Pi are orthonormal and complete.
The flow has a degenerate pair of equilibria at (xq, yq) = (0, 0), with eigenvalues

(stability exponents), λ1 = 1, λ2 = −1, eigenvectors e(1) = (0, 1), e(2) = (1, 0). The
unstable manifold is the y axis, and the stable manifold is given by (see figure 1.3)

y0 +
1

3
x20 = 0⇒ y(t) +

1

3
x(t)2 = 0 . (1.50)

(N. Lebovitz)

1.4.1 Yes, but how do you really do it?
As M has only real entries, it will in general have either real eigenvalues (over-damped
oscillator, for example), or complex conjugate pairs of eigenvalues (under-damped os-
cillator, for example). That is not surprising, but also the corresponding eigenvectors
can be either real or complex. All coordinates used in defining the flow are real num-
bers, so what is the meaning of a complex eigenvector?

If two eigenvalues form a complex conjugate pair, {λk, λk+1} = {µ+ iω, µ− iω},
they are in a sense degenerate: while a real λk characterizes a motion along a line, a
complex λk characterizes a spiralling motion in a plane. We determine this plane by
replacing the corresponding complex eigenvectors by their real and imaginary parts,
{e(k), e(k+1)} → {Re e(k), Im e(k)}, or, in terms of projection operators:

Pk =
1

2
(R + iQ) , Pk+1 = P∗k ,

where R = Pk + Pk+1 is the subspace decomposed by the kth complex eigenvalue
pair, and Q = (Pk −Pk+1)/i, both matrices with real elements. Substitution

(
Pk Pk+1

)
=

1

2

(
1 i
1 −i

)(
R Q

)
,
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brings the λkPk + λk+1Pk+1 complex eigenvalue pair in the spectral decomposition
into the real form,

(
Pk Pk+1

)( λ 0
0 λ∗

)(
Pk Pk+1

)
=
(
R Q

)( µ −ω
ω µ

)(
R Q

)
,

(1.51)
where we have dropped the superscript (k) for notational brevity.

To summarize, spectrally decomposed matrix M acts along lines on subspaces cor-
responding to real eigenvalues, and as a [2×2] rotation in a plane on subspaces corre-
sponding to complex eigenvalue pairs.

Commentary
Remark 1.1. Projection operators. The construction of projection operators given in ap-
pendix 1.4.1 is taken from refs. [1.3, 1.4]. Who wrote this down first we do not know, lineage
certainly goes all the way back to Lagrange polynomials [1.5], but projection operators tend to
get drowned in sea of algebraic details. Arfken and Weber [1.2] ascribe spectral decomposi-
tion (1.30) to Sylvester. Halmos [1.6] is a good early reference - but we like Harter’s exposi-
tion [1.7, 1.8, 1.9] best, for its multitude of specific examples and physical illustrations.
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Exercises
1.1. Trace-log of a matrix. Prove that

det M = etr lnM .

for an arbitrary nonsingular finite dimensional matrix M , detM 6= 0.

1.2. Stability, diagonal case. Verify that for a diagonalizable matrix A the exponential is
also diagonalizable

Jt = etA = U−1etADU , AD = UAU−1 . (1.52)

1.3. Time-ordered exponentials. Given a time dependent matrix A(t), show that the time-
ordered exponential

J(t) = Te
∫ t
0 dτA(τ)

may be written as

J(t) = 1 +

∞∑
m=1

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtmA(t1)A(t2) · · ·A(tm) . (1.53)

(Hint: for a warmup, consider summing elements of a finte-dimensional symmetric ma-
trix S = S>. Use the symmetry to sum over each matrix element once; (1.53) is a
continuous limit generalization, for an object symmetric in m variables.) Verify, by using
this representation, that J(t) satisfies the equation

J̇(t) = A(t)J(t),

with the initial condition J(0) = 1.

1.4. Real representation of complex eigenvalues. (Verification of example 1.3.) λk, λk+1

eigenvalues form a complex conjugate pair, {λk, λk+1} = {µ+ iω, µ− iω}. Show that

(a) corresponding projection operators are complex conjugates of each other,

P = Pk , P∗ = Pk+1 ,

where we denote Pk by P for notational brevity.

(b) P can be written as

P =
1

2
(R + iQ) ,

where R = Pk + Pk+1 and Q are matrices with real elements.

(c) (
Pk

Pk+1

)
=

1

2

(
1 i
1 −i

)(
R
Q

)
.
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(d) The · · ·+ λkPk + λ∗kPk+1 + · · · complex eigenvalue pair in the spectral decom-
position (1.29) is now replaced by a real [2×2] matrix

· · · +

(
µ −ω
ω µ

)(
R
Q

)
+ · · ·

or whatever you find the clearest way to write this real representation.
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