
mathematical methods - week 8

Fourier transform

2014-10-07 Predrag Lecture 15
Arfken and Weber chapter 14. Fourier Series.
Roger Penrose [8.1] chapter on Fourier transforms is too pretty to pass up.

2014-10-09 Mohammad Farazmand Lecture 16
Farazmand notes on Fourier transforms.
Grigoriev notes
4. Integral transforms, 4.3-4.4 square wave, Gibbs phenomenon;
5. Fourier transform: 5.1-5.6 inverse, Parseval’s identity, ..., examples

Georgia Tech PHYS-6124
Homework HW #8 due Thursday, October 9, 2014

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

Exercise 8.1 D-dimensional Gaussian integrals
5 points

Exercise 8.2 Convolution of Gaussians 5 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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http://ChaosBook.org/~predrag/courses/PHYS-6124-14/ArWe05chap14.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-14/Penr04-9.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-14/FourierLectFaraz.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-14/ln4.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-14/ln5.pdf
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Exercises
8.1. D-dimensional Gaussian integrals. Show that the Gaussian integral in D-dimensions

is given by

1

(2π)d/2

∫
ddφe−

1
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φ>·M−1·φ+φ·J = |detM |

1
2 e

1
2
J>·M·J , (8.1)

where M is a real positive definite [d × d] matrix, i.e., a matrix with strictly positive
eigenvalues. x, J are D-dimensional vectors, and x> is the transpose of x.

8.2. Convolution of Gaussians. Show that the Fourier transform of convolution

[f ∗ g](x) =

∫
ddy f(x− y)g(y)

of two Gaussians
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·x
, g(x) = e
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(a) factorizes as

[f ∗ g](x) =
1

(2π)d

∫
dk F (k)G(k)eik·x , (8.2)

where
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ddx g(x)e−ik·x = |det ∆2|1/2e
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(b) Show that

[f ∗ g](x) =
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∫
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x>·(∆1+∆2)−1·x . (8.3)
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