
mathematical methods - week 15

(Non)linear dimensionality
reduction

Georgia Tech PHYS-6124
Homework HW #15 due Monday, December 2, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 15.1 Unbiased sample variance 5 points

Bonus points
Exercise 15.2 Standard error of the mean 5 points
Exercise 15.3 Bayesian statistics, by Sara A. Solla 10 points

Total of 10 points = 100 % score. Extra points accumulate, can help you still if you
had missed a few problems.

edited November 24, 2019
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http://chaosbook.org/~predrag/courses/PHYS-6124-19/exerWeek15.tex
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/HW15Solla.pdf


104MATHEMATICAL METHODS - WEEK 15. (NON)LINEAR DIMENSIONALITY REDUCTION

Week 15 syllabus Monday, November 25, 2019

Linear and nonlinear dimensionality reduction:
applications to neural data
Lecturer: Sara A. Solla

Mon Neural recordings; Principal Components Analysis (PCA); Singular Value De-
composition (SVD); ISOMAP nonlinear dimensionality reduction; Multidimen-
sional scaling

– Sara’s lecture notes.

– Predrag’s summary of key concepts for a physicist: ChaosBook Sect. 17.1.3
Moments, cumulants.

15.1 Optional reading: Bayesian statistics
Sara A. Solla

Natural sciences aim at abstracting general principles from the observation of natural
phenomena. Such observations are always affected by instrumental restrictions and
limited measurement time. The available information is thus imperfect and to some
extent unreliable; scientists in general and physicists in particular thus have to face the
task of extracting valid inferences from noisy and incomplete data. Bayesian proba-
bility theory provides a systematic framework for quantitative reasoning in the face of
such uncertainty.

In this lecture (not given in the Fall 2019 course) we will focus on the problem
of inferring a probabilistic relationship between a dependent and an independent vari-
able. We will review the concepts of joint and conditional probability distributions, and
justify the commonly adopted Gaussian assumption on the basis of maximal entropy
arguments. We will state Bayes’ theorem and discuss its application to the problem of
integrating prior knowledge about the variables of interest with the information pro-
vided by the data in order to optimally update our knowledge about these variables.
We will introduce and discuss Maximum Likelihood (ML) and Maximum A Posteri-
ori (MAP) for optimal inference. These methods provide a solution to the problem of
specifying optimal values for the parameters in a model for the relationship between
independent and dependent variables. We will discuss the general formulation of this
framework, and demonstrate that it validates the method of minimizing the sum-of-
squared-errors in the case of Gaussian distributions.

• A quick but superficial read: Matthew R. Francis, So what’s all the fuss about
Bayesian statistics?

• Reading: Lyons [1], Bayes and Frequentism: a particle physicist’s perspective (
click here)

https://www.feinberg.northwestern.edu/faculty-profiles/az/profile.html?xid=16584
http://chaosbook.org/~predrag/courses/PHYS-6124-19/GATech 112519.pdf
http://chaosbook.org/chapters/ChaosBook.pdf#section.20.2
http://galileospendulum.org/2013/06/07/so-whats-all-the-fuss-about-bayesian-statistics/
http://galileospendulum.org/2013/06/07/so-whats-all-the-fuss-about-bayesian-statistics/
http://ChaosBook.org/library/Lyons13.pdf
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Exercises
15.1. Unbiased sample variance. Empirical estimates of the mean µ̂ and the variance σ̂2 are

said to be “unbiased” if their expectations equal the exact values,

E[µ̂] = µ , E[σ̂2] = σ2 . (15.1)

(a) Verify that the empirical mean

µ̂ =
1

N

N∑
i=1

ai (15.2)

is unbiased.
(b) Show that the naive empirical estimate for the sample variance

σ̄2 =
1

N

N∑
i=1

(ai − µ̂)2 =
1

N

N∑
i=1

a2
i −

1

N2

(
N∑
i=1

ai

)2

is biased. Hint: note that in evaluating E[· · · ] you have to separate out the diagonal terms
in (

N∑
i=1

ai

)2

=

N∑
i=1

a2
i +

N∑
i 6=j

aiaj . (15.3)

(c) Show that the empirical estimate of form

σ̂2 =
1

N − 1

N∑
i=1

(ai − µ̂)2 , (15.4)

is unbiased.
(d) Is this empirical sample variance unbiased for any finite sample size, or is it unbiased
only in the n→∞ limit?

Sara A. Solla

15.2. Standard error of the mean.
Now, estimate the empirical mean (15.2) of observable a by j = 1, 2, · · · , N attempts to
estimate the mean µ̂j , each based on M data samples

µ̂j =
1

M

M∑
i=1

ai . (15.5)

Every attempt yields a different sample mean.

http://dx.doi.org/10.1080/00107514.2012.756312
https://doi.org/10.1080/00107514.2012.756312
https://doi.org/10.1080/00107514.2012.756312
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(a) Argue that µ̂j itself is an idd random variable, with unbiased expectation E[µ̂] = µ.
(b) What is its variance

Var[µ̂] = E[(µ̂− µ)2] = E[µ̂2]− µ2

as a function of variance expectation (15.1) and N , the number of µ̂j estimates? Hint;
one way to do this is to repeat the calculations of exercise 15.1, this time for µ̂j rather
than ai.
(c) The quantity

√
Var[µ̂] = σ/

√
N is called the standard error of the mean (SEM); it

tells us that the accuracy of the determination of the mean µ. How does SEM decrease as
the N , the number of estimate attempts, increases?

Sara A. Solla

15.3. Bayes. Bayesian statistics.

http://ChaosBook.org/~predrag/courses/PHYS-6124-19/HW15Solla.pdf

