
mathematical methods - week 3

Go with the flow

Georgia Tech PHYS-6124
Homework HW #3 due Monday, September 9, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

Exercise 3.1 Rotations in a plane 4 points
Exercise 3.2 Visualizing 2-dimensional linear flows 6 points

Bonus points
Exercise 3.3 Visualizing Duffing flow 3 points
Exercise 3.4 Visualizing Lorenz flow 2 points
Exercise 3.5 A limit cycle with analytic Floquet exponent 6 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited September 4, 2019
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28 MATHEMATICAL METHODS - WEEK 3. GO WITH THE FLOW

Week 3 syllabus Wednesday, September 4, 2019

• Sect. 3.1 Linear flows

• Sect. 3.2 Stability of linear flows

• Optional reading: Sect. 3.3 Nonlinear flows

• Sect. 3.4 Optional listening

Typical ordinary differential equations course spends most of time teaching you how
to solve linear equations, and for those our spectral decompositions are very instruc-
tive. Nonlinear differential equations (as well as the differential geometry) are much
harder, but still (as we already discussed in sect. 1.3), linearizations of flows are a very
powerful tool.

3.1 Linear flows
Linear is good, nonlinear is bad.

—Jean Bellissard

(Notes based of ChaosBook.org/chapters/flows.pdf)

A dynamical system is defined by specifying a state space M, and a law of motion,
typically an ordinary differential equation (ODE), first order in time,

ẋ = v(x) . (3.1)

The vector field v(x) can be any nonlinear function of x, so it pays to start with a
simple example. Linear dynamical system is the simplest example, described by linear
differential equations which can be solved explicitly, with solutions that are good for all
times. The state space for linear differential equations isM = Rd, and the equations
of motion are written in terms of a state space point x and a constant A as

ẋ = Ax . (3.2)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through a given initial point x0. If x(t) is a solution with x(0) = x0 and
y(t) another solution with y(0) = y0, then the linear combination ax(t) + by(t) with
a, b ∈ R is also a solution, but now starting at the point ax0 + by0. At any instant in
time, the space of solutions is a d-dimensional vector space, spanned by a basis of d
linearly independent solutions.

Solution of (3.2) is given by the exponential of a constant matrix

x(t) = J t x0 , (3.3)

http://ChaosBook.org/chapters/flows.pdf
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usually defined by its series expansion (1.7):

J t = etA =

∞∑
k=0

tk

k!
Ak , A0 = 1 , (3.4)

and that is why we started the course by defining functions of matrices, and in par-
ticular the matrix exponential. As we discuss next, that means that depending on the
eigenvalues of the matrix A, solutions of linear ordinary differential equations are ei-
ther growing or shrinking exponentially (over-damped oscillators; cosh’s, sinh’s), or
oscillating (under-damped oscillators; cos’s, sin’s).

3.2 Stability of linear flows
The system of linear equations of variations for the displacement of the infinitesimally
close neighbor x + δx follows from the flow equations (3.2) by Taylor expanding to
linear order

ẋi + ˙δxi = vi(x+ δx) ≈ vi(x) +
∑
j

∂vi
∂xj

δxj .

The infinitesimal deviation vector δx is thus transported along the trajectory x(x0, t),
with time variation given by

d

dt
δxi(x0, t) =

∑
j

∂vi
∂xj

(x)

∣∣∣∣
x=x(x0,t)

δxj(x0, t) . (3.5)

As both the displacement and the trajectory depend on the initial point x0 and the
time t, we shall often abbreviate the notation to x(x0, t) → x(t) → x, δxi(x0, t) →
δxi(t)→ δx in what follows. Taken together, the set of equations

ẋi = vi(x) , ˙δxi =
∑
j

Aij(x)δxj (3.6)

governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by adjoining the
d-dimensional tangent space δx ∈ TMx to every point x ∈ M in the d-dimensional
state spaceM⊂ Rd. The stability matrix or velocity gradients matrix

Aij(x) =
∂

∂xj
vi(x) (3.7)

describes the instantaneous rate of shearing of the infinitesimal neighborhood of x(t)
by the flow. In case at hand, the linear flow (3.2), with v(x) = Ax, the stability matrix

Aij(x) =
∂

∂xj
vi(x) = Aij (3.8)

is a space- and time-independent constant matrix.

http://youtube.com/embed/Lf3-atjcEhs
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Consider an infinitesimal perturbation of the initial state, x0 +δx. The perturbation
δx(x0, t) evolves as x(t) itself, so

δx(t) = J t δx(0) . (3.9)

The equations are linear, so we can integrate them. In general, the Jacobian matrix J t

is computed by integrating the equations of variations

ẋi = vi(x) , ˙δxi =
∑
j

Aij(x)δxj , (3.10)

but for linear ODEs everything is known once eigenvalues and eigenvectors of A are
known.

Example 3.1. Linear stability of 2-dimensional flows: For a 2-dimensional flow
the eigenvalues λ1, λ2 of A are either real, leading to a linear motion along their eigen-
vectors, xj(t) = xj(0) exp(tλj), or form a complex conjugate pair λ1 = µ + iω , λ2 =
µ− iω , leading to a circular or spiral motion in the [x1, x2] plane, see example 3.2.

Figure 3.1: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node
(attracting), center (elliptic), in spiral.

These two possibilities are refined further into sub-cases depending on the signs of
the real part. In the case of real λ1 > 0, λ2 < 0, x1 grows exponentially with time, and x2

contracts exponentially. This behavior, called a saddle, is sketched in figure 3.1, as are
the remaining possibilities: in/out nodes, inward/outward spirals, and the center. The
magnitude of out-spiral |x(t)| diverges exponentially when µ > 0, and in-spiral contracts
into (0, 0) when µ < 0; whereas, the phase velocity ω controls its oscillations.

If eigenvalues λ1 = λ2 = λ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector, see example 1.1. We distinguish
two cases: (a) A can be brought to diagonal form and (b) A can be brought to Jordan
form, which (in dimension 2 or higher) has zeros everywhere except for the repeating
eigenvalues on the diagonal and some 1’s directly above it. For every such Jordan
[dα×dα] block there is only one eigenvector per block.

We sketch the full set of possibilities in figures 3.1 and 3.2.

Example 3.2. Complex eigenvalues: in-out spirals. As M has only real entries, it
will in general have either real eigenvalues, or complex conjugate pairs of eigenvalues.
Also the corresponding eigenvectors can be either real or complex. All coordinates used



3.3. NONLINEAR FLOWS 31

saddle

××
6
-

out node

××
6

-

in node

××
6
-

center

×
×

6
-

out spiral

×
×

6
-

in spiral

×
×

6
-

Figure 3.2: Qualitatively distinct types of exponents {λ1, λ2} of a [2×2] Jacobian
matrix.

in defining a dynamical flow are real numbers, so what is the meaning of a complex
eigenvector?

If λk, λk+1 eigenvalues that lie within a diagonal [2×2] sub-block M′ ⊂ M form
a complex conjugate pair, {λk, λk+1} = {µ + iω, µ − iω}, the corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e(k), e(k+1)} →
{Re e(k), Im e(k)}. In this 2-dimensional real representation, M′ → A, the block A is
a sum of the rescaling×identity and the generator of rotations in the {Re e(1), Im e(1)}
plane.

A =

[
µ −ω
ω µ

]
= µ

[
1 0
0 1

]
+ ω

[
0 −1
1 0

]
. (3.11)

Trajectories of ẋ = Ax, given by x(t) = Jt x(0), where (omitting e(3), e(4), · · · eigen-
directions)

Jt = etA = etµ
[

cos ωt − sin ωt
sin ωt cos ωt

]
, (3.12)

spiral in/out around (x, y) = (0, 0), see figure 3.1, with the rotation period T and the
radial expansion /contraction multiplier along the e(j) eigen-direction per a turn of the
spiral:

exercise 3.1
T = 2π/ω , Λradial = eTµ . (3.13)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000T, or 10−2T).

3.3 Nonlinear flows
While linear flows are prettily analyzed in terms of defining matrices and their eigen-
modes, understanding nonlinear flows requires many tricks and insights. These days,
we start by integrating them, by any numerical code you feel comfortable with: Matlab,
Python, Mathematica, Julia, c++, whatever.

We have already made a foray into nonlinearity in example 2.2 A simple sta-
ble/unstable manifolds pair, but that was a bit of a cheat - it is really an example of
a non-autonomous flow in variable y(t), driven by external forcing by x(t). Duffing
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(a) (b)

Figure 3.3: (a) The 2-dimensional vector field for the Duffing system (3.14), together
with a short trajectory segment. (b) The flow lines. Each ‘comet’ represents the same
time interval of a trajectory, starting at the tail and ending at the head. The longer the
comet, the faster the flow in that region. (From ChaosBook [1])

flow of example 3.3 is a typical 2-dimensional flow, with a ‘nonlinear oscialltor’ limit
cycle. Real fun only starts in 3 dimensions, with example 3.4 Lorenz strange attractor.

For purposes of this course, it would be good if you coded the next two examples,
and just played with their visualizations, without further analysis (that would take us
into altogether different ChaosBook.org/course1).

Example 3.3. A 2-dimensional vector field v(x). A simple example of a flow is
afforded by the unforced Duffing system

ẋ(t) = y(t)

ẏ(t) = −0.15 y(t) + x(t)− x(t)3 (3.14)

plotted in figure 3.3. The 2-dimensional velocity vectors v(x) = (ẋ, ẏ) are drawn super-
imposed over the configuration coordinates (x, y) of state spaceM.

Figure 3.4: Lorenz “butterfly” strange attractor.
(From ChaosBook [1])
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Example 3.4. Lorenz strange attractor. Lorenz equation

ẋ = v(x) =

 ẋ
ẏ
ż

 =

 σ(y − x)
ρx− y − xz
xy − bz

 (3.15)

http://ChaosBook.org/course1
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has played a key role in the history of ‘deterministic chaos’ for many reasons that you
can read about elsewhere [1]. All computations that follow will be performed for the
Lorenz parameter choice σ = 10, b = 8/3, ρ = 28 . For these parameter values the
long-time dynamics is confined to the strange attractor depicted in figure 3.4.

3.4 Optional listening
If you do not know Emmy Noether, one of the great mathematicians of the 20th cen-
tury, the time to make up for that is now. All symmetries we will use in this course
are for kindergartners: flips, slides and turns. Noether, however, found a profound
connections between these and invariants of our world - masses, charges, elementary
particles. Then the powerful plutocrats of Germany made a clown the Chancellor of
German Reich, because they could easily control him. They were wrong, and that’s
why you are not getting this lecture in German. Noether lost interest in physics and
went on to shape much of what is today called pure mathematics.

There are no doubt many online courses vastly better presented than this one - here
is a glimpse into our competition:
MIT 18.085 Computational Science and Engineering I .

References
[1] R. Mainieri, P. Cvitanović, and E. A. Spiegel, “Go with the flow”, in Chaos: Clas-

sical and Quantum, edited by P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner,
and G. Vattay (Niels Bohr Inst., Copenhagen, 2019).

Exercises
3.1. Rotations in a plane: In order to understand the role complex eigenvalues in exam-

ple 3.2 play, it is helpful to show by exponentiation Jt = exp(tA) =
∑∞
k=0 t

kAk/k!
with pure imaginary A in (3.11), that

A = ω

(
0 −1
1 0

)
,

generates a rotation in the {Re e(1), Im e(1)} plane,

Jt = eAt = cosωt

(
1 0
0 1

)
+ sinωt

(
0 −1
1 0

)
=

(
cosωt − sinωt
sinωt cosωt

)
. (3.16)

https://photos.app.goo.gl/2cWxT6j4kRLytrCQ8
https://www.bbc.co.uk/programmes/m00025bw
https://www.youtube.com/watch?v=A5u6J8WugyU
http://www.youtube.com/watch?v=0oBJN8F616U
http://ChaosBook.org/paper.shtml#flows
http://ChaosBook.org/paper.shtml#flows
http://ChaosBook.org/paper.shtml#flows
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3.2. Visualizing 2-dimensional linear flows. Either use any integration routine to inte-
grate numerically, or plot the analytic solution of the linear flow (3.2) for all examples of
qualitatively different eigenvalue pairs of figure 3.2. As noted in (1.42), the eigenvalues

λ1,2 =
1

2
trA± 1

2

√
(trA)2 − 4 detA

depend only on trA and detA, so you can get two examples by choosing any A such
that trA = 0 (symplectic or Hamiltonian flow), vary detA. For other examples choose
A such that detA = 1, vary trA. Do your plots capture the qualitative features of the
examples of figure 3.1?

3.3. Visualizing Duffing flow. Use any integration routine to integrate numerically the
Duffing flow (3.14). Take a grid of initial points, integrate each for some short time δt.
Does your result look like the vector field of figure 3.3? What does a generic long-time
trajectory look like?

3.4. Visualizing Lorenz flow. Use any integration routine to integrate numerically the
Lorenz flow (3.15). Does your result look like the ‘strange attractor’ of figure 3.4?

3.5. A limit cycle with analytic Floquet exponent. There are only two examples of
nonlinear flows for which the Floquet multipliers can be evaluated analytically. Both are
cheats. One example is the 2-dimensional flow

q̇ = p+ q(1− q2 − p2)

ṗ = −q + p(1− q2 − p2) .

Determine all periodic solutions of this flow, and determine analytically their Floquet
exponents. Hint: go to polar coordinates (q, p) = (r cos θ, r sin θ). G. Bard Ermentrout


