mathematical methods - week 6

Cauchy - applications

Georgia Tech PHYS-6124

Homework HW #6

due Monday, September 30, 2019

== show all your work for maximum credit,

== put labels, title, legends on any graphs

== acknowledge study group member, if collective effort

== if you are LaTeXing, here is the source code

Exercise 6.1 *Complex integration* Exercise 6.2 *Fresnel integral* (a) 4; (b) 2; (c) 2; and (d) 3 points 7 points

6 points

Bonus points

Exercise 6.3 Cauchy's theorem via Green's theorem in the plane

Total of 16 points = 100 % score. Extra points accumulate, can help you later if you miss a few problems.

edited September 25, 2019

Week 6 syllabus

September 23, 2019

- Mon Goldbart pages 3/10 3/30; 3/60 3/70 (Cauchy integral formula)
- Wed Goldbart pages 3/80 3/110 (singularities; Laurent series) Grigoriev pages 3.4 - 3.5b (evaluation of integrals)
- Fri Grigoriev pages 3.4 3.5b (evaluation of integrals) Goldbart pages 4/10 - 4/100 (linear response)

Optional reading

- Arfken and Weber [1] (click here) Chapter 6 sects. 6.3 6.4, on Cauchy contour integral
- Arfken and Weber [1] Chapter 6 sects. 6.5 6.8, on Laurent expansion, cuts, mappings
- Arfken and Weber [1] (click here) Chapter 7 sects. 7.1 7.2, on residues
- Stone and Goldbart [2] (click here) Chapter 17 sect. 17.2 17.4

Question 6.1. Henriette Roux had asked

Q You made us do exercise 4.5, but you did not cover this in class? What's up with that? I left it blank!

A Mhm. Check the discussion of this problem in the updated week 4 notes.

References

- [1] G. B. Arfken and H. J. Weber, *Mathematical Methods for Physicists: A Comprehensive Guide*, 6th ed. (Academic, New York, 2005).
- [2] M. Stone and P. Goldbart, *Mathematics for Physics: A Guided Tour for Graduate Students* (Cambridge Univ. Press, Cambridge, 2009).

Exercises

- 6.1. Complex integration.
 - (a) Write down the values of ∮_C(1/z) dz for each of the following choices of C:
 (i) |z| = 1, (ii) |z 2| = 1, (iii) |z 1| = 2.
 Then confirm the answers the hard way, using parametric evaluation.

46

- (b) Evaluate parametrically the integral of 1/z around the square with vertices $\pm 1 \pm i$.
- (c) Confirm by parametric evaluation that the integral of z^m around an origin centered circle vanishes, except when the integer m = −1.
- (d) Evaluate $\int_{1+i}^{3-2i} dz \sin z$ in two ways: (i) via the fundamental theorem of (complex) calculus, and (ii) (bonus) by choosing any path between the end-points and using real integrals.

6.2. Fresnel integral.

We wish to evaluate the $I = \int_0^\infty \exp(ix^2) dx$. To do this, consider the contour integral $I_R = \int_{C(R)} \exp(iz^2) dz$, where C(R) is the closed circular sector in the upper half-plane with boundary points 0, R and $R \exp(i\pi/4)$. Show that $I_R = 0$ and that $\lim_{R\to\infty} \int_{C_1(R)} \exp(iz^2) dz = 0$, where $C_1(R)$ is the contour integral along the circular sector from R to $R \exp(i\pi/4)$. [Hint: use $\sin x \ge (2x/\pi)$ on $0 \le x \le \pi/2$.] Then, by breaking up the contour C(R) into three components, deduce that

$$\lim_{R \to \infty} \left(\int_0^R \exp\left(ix^2\right) dx - e^{i\pi/4} \int_0^R \exp\left(-r^2\right) dr \right) = 0$$

and, from the well-known result of real integration $\int_0^\infty \exp(-x^2) dx = \sqrt{\pi}/2$, deduce that $I = e^{i\pi/4} \sqrt{\pi}/2$.

6.3. Cauchy's theorem via Green's theorem in the plane. Express the integral $\oint_C dz f(z)$ of the analytic function f = u + iv around the simple contour *C* in parametric form, apply the two-dimensional version of Gauss' theorem (a.k.a. Green's theorem in the plane), and invoke the Cauchy-Riemann conditions. Hence establish Cauchy's theorem $\oint_C dz f(z) = 0$.