
mathematical methods - week 8

Discrete Fourier transform

Georgia Tech PHYS-6124
Homework HW #8 due Wednesday, October 16, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 8.1 Laplacian is a non-local operator 4 points
Exercise 8.2 Lattice Laplacian diagonalized 8 points

Total of 12 points = 100 % score.
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http://chaosbook.org/~predrag/courses/PHYS-6124-19/exerWeek8.tex


58 EXERCISES

Week 8 syllabus Monday, October 7, 2019

Discretization of continuum, lattices, discrete derivatives, discrete Fourier transforms.

Mon Applied math version: how to discretize derivatives: ChaosBook Appendix A24
Deterministic diffusion,
Sects. A24.1 to A24.1.1 Lattice Laplacian.

Wed A periodic lattice as the simplest example of the theory of finite groups:
Sects. A24.1.2 to A24.3.1.
Example A24.2 Projection operators for discrete Fourier transform.
Example A24.3 ‘Configuration-momentum’ Fourier space duality.

Fri Sect. A24.4 Fourier transform as the limit of a discrete Fourier transform.

Optional reading

• A theoretical physicist’s version of the above notes: Quantum Field Theory - a
cyclist tour, Chapter 1 Lattice field theory motivates discrete Fourier transforms
by computing a free propagator on a lattice.

Exercises
8.1. Laplacian is a non-local operator.

While the Laplacian is a simple tri-diagonal difference operator, its inverse (the “free”
propagator of statistical mechanics and quantum field theory) is a messier object. A way
to compute is to start expanding propagator as a power series in the Laplacian
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As ∆ is a finite matrix, the expansion is convergent for sufficiently large m2. To get a
feeling for what is involved in evaluating such series, show that ∆2 is:
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What ∆3, ∆4, · · · contributions look like is now clear; as we include higher and higher
powers of the Laplacian, the propagator matrix fills up; while the inverse propagator
is differential operator connecting only the nearest neighbors, the propagator is integral
operator, connecting every lattice site to any other lattice site.
This matrix can be evaluated as is, on the lattice, and sometime it is evaluated this way,
but in case at hand a wonderful simplification follows from the observation that the lattice
action is translationally invariant, exercise 8.2.

http://chaosbook.org/chapters/appendDiff.pdf
http://chaosbook.org/chapters/appendDiff.pdf
http://chaosbook.org/chapters/appendDiff.pdf#section.X.6
http://chaosbook.org/chapters/appendDiff.pdf#section.X.6
http://chaosbook.org/FieldTheory/QMlectures/lectQM.pdf#chapter.1
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8.2. Lattice Laplacian diagonalized. Insert the identity
∑
P (k) = 1 wherever you

profitably can, and use the shift matrix eigenvalue equation to convert shift σ matrices
into scalars. If M commutes with σ, then (ϕ†k ·M · ϕk′) = M̃ (k)δkk′ , and the matrix
M acts as a multiplication by the scalar M̃ (k) on the kth subspace. Show that for the
1-dimensional version of the lattice Laplacian (??) the projection on the kth subspace is
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In the kth subspace the propagator is simply a number, and, in contrast to the mess gen-
erated by (8.1), there is nothing to evaluating:
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where k is a site in the N -dimensional dual lattice, and a = L/N is the lattice spacing.


