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Notes on Quantum Field Theory Mark Srednicki

54: Maxwell’s Equations

Prerequisite: 3

The photon is the quintessential spin-one particle. The phenomenon of

emission and absorbtion of photons by matter is a critical topic in many areas

of physics, and so that is the context in which most physicists first encounter

a serious treatment of photons. We will use a brief review of this subject

(in this section and the next) as our entry point into the theory of quantum

electrodynamics.

Let us begin with classical electrodynamics. Maxwell’s equations are

∇·E = ρ , (1)

∇× B − Ė = J , (2)

∇× E + Ḃ = 0 , (3)

∇·B = 0 , (4)

where E is the electric field, B is the magnetic field, ρ is the charge den-

sity, and J is the current density. We have written Maxwell’s equations in

Heaviside-Lorentz units, and also set c = 1. In these units, the magnitude of

the force between two charges of magnitude Q is Q2/4πr2.

Maxwell’s equations must be supplemented by formulae that give us the

dynamics of the charges and currents (such as the Lorentz force law for

point particles). For now, however, we will treat the charges and currents as

specified sources, and focus on the dynamics of the electromagnetic fields.

The last two of Maxwell’s equations, the ones with no sources on the

right-hand side, can be solved by writing the E and B fields in terms of a
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scalar potential ϕ and a vector potential A,

E = −∇ϕ − Ȧ , (5)

B = ∇×A . (6)

Thus, the potentials uniquely determine the fields, but the fields do not

uniquely determine the potentials. Given a particular ϕ and A that result in

a particular E and B, we will get the same E and B from any other potentials

ϕ′ and A′ that are related by

ϕ′ = ϕ + Γ̇ , (7)

A′ = A −∇Γ , (8)

where Γ is an arbitrary function of spacetime. A change of potentials that

does not change the fields is called a gauge transformation. The fields are

gauge invariant.

All this becomes more compact and elegant in a relativistic notation.

Define the four-vector potential

Aµ = (ϕ,A) ; (9)

Aµ is also called the gauge field. We also define the field strength

F µν = ∂µAν − ∂νAµ . (10)

Obviously, F µν is antisymmetric: F µν = −F νµ. Comparing eqs. (5), (9), and

(10), we see that

F 0i = Ei . (11)

Comparing eqs. (6), (9), and (10), we see that

F ij = εijkBk . (12)

The first two of Maxwell’s equations can now be written as

∂νF
µν = Jµ , (13)
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where

Jµ = (ρ,J) (14)

is the charge-current density four-vector. If we take the four-divergence of

eq. (13), we get ∂µ∂νF
µν = ∂µJµ. The left-hand side of this equation vanishes,

because ∂µ∂ν is symmetric on exchange of µ and ν, while F µν is antisymmet-

ric. We conclude that we must have

∂µJµ = 0 ; (15)

that is, the electromagnetic current must be conserved.

The last two of Maxwell’s equations can be written as

εµνρσ∂ρF µν = 0 . (16)

Plugging in eq. (10), we see that eq. (16) is automatically satisfied, since the

antisymmetric combination of two derivatives vanishes.

Eqs. (7) and (8) can be combined into

A′µ = Aµ − ∂µΓ . (17)

Setting F ′µν = ∂µA′ν − ∂νA′µ and using eq. (17), we get

F ′µν = F µν − (∂µ∂ν − ∂ν∂µ)Γ . (18)

The last term vanishes because derivatives commute; thus the field strength

is gauge invariant,

F ′µν = F µν . (19)

Next we will find an action that results in Maxwell’s equations as the

equations of motion. We will treat the current as an external source. The

action we seek should be Lorentz invariant, gauge invariant, parity and time-

reversal invariant, and no more than second order in derivatives. The only

candidate is S =
∫

d4xL, where

L = −1
4
F µνFµν + JµAµ . (20)
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The first term is obviously gauge invariant, because F µν is. After a gauge

transformation, eq. (17), the second term becomes JµA′
µ, and the difference

is

Jµ(A′
µ − Aµ) = −Jµ∂µΓ

= −(∂µJµ)Γ − ∂µ(JµΓ) . (21)

The first term in eq. (21) vanishes because the current is conserved. The

second term is a total divergence, and its integral over d4x vanishes (assum-

ing suitable boundary conditions at infinity). Thus the action specified by

eq. (20) is gauge invariant.

Setting F µν = ∂µAν − ∂νAµ and multiplying out the terms, eq. (20) be-

comes

L = −1
2
∂µAν∂µAν + 1

2
∂µAν∂νAµ + JµAµ (22)

= +1
2
Aµ(g

µν∂2 − ∂µ∂ν)Aν + JµAµ − ∂µKµ , (23)

where Kµ = Aν(∂µAν − ∂νAµ). The last term is a total divergence, and can

be dropped. From eq. (23), we can see that varying Aµ while requiring S to

be unchanged yields the equation of motion

(gµν∂2 − ∂µ∂ν)Aν + Jµ = 0 . (24)

Noting that ∂νF
µν = ∂ν(∂

µAν − ∂νAµ) = (∂µ∂ν − gµν∂2)Aν , we see that

eq. (24) is equivalent to eq. (13).
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Notes on Quantum Field Theory Mark Srednicki

55: Electrodynamics in Coulomb Gauge

Prerequisite: 54

Next we would like to construct the hamiltonian, and quantize the elec-

tromagnetic field.

There is an immediate difficulty, caused by the gauge invariance: we have

too many degrees of freedom. This problem manifests itself in several ways.

For example, the lagrangian

L = −1
4
F µνFµν + JµAµ (25)

= −1
2
∂µAν∂µAν + 1

2
∂µAν∂νAµ + JµAµ (26)

does not contain the time derivative of A0. Thus, this field has no canonically

conjugate momentum and no dynamics.

Dealing with this complication generally requires a large amount of new

formalism. In this section, we will instead proceed heuristically, with the

goal of reaching a physically relevant answer as quickly as possible. We will

revisit this issue when we take up path-integral quantization, where it is more

easily resolved.

We begin by eliminating the gauge freedom. We do this by choosing a

gauge. We choose a gauge by imposing a gauge condition. This is a condition

which we require Aµ(x) to satisfy. The idea is that there should be only one

Aµ(x) that results in a given F µν(x) and also satisfies the gauge condition.

One possible class of gauge conditions is nµAµ(x) = 0, where nµ is a

constant four-vector. If n is spacelike (n2 > 0), then we have chosen axial

gauge; if n is lightlike, (n2 = 0), it is lightcone gauge; and if n is timelike,

(n2 < 0), it is temporal gauge.

Another gauge is Lorentz gauge, where the condition is ∂µAµ = 0. We

will meet a family of closely related gauges in section ??.
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In this section, we will pick Coulomb gauge, also known as radiation gauge

or transverse gauge. The condition for Coulomb gauge is

∇·A(x) = 0 . (27)

Let us write out the lagrangian in terms of the scalar and vector poten-

tials, ϕ = A0 and Ai. Starting from eq. (26), we get

L = 1
2
ȦiȦi − 1

2
∇jAi∇jAi + JiAi

+ 1
2
∇iAj∇jAi + Ȧi∇iϕ

+ 1
2
∇iϕ∇iϕ − ρϕ . (28)

In the second line of eq. (28), the ∇i in each term can be integrated by parts;

in the first term, we will then get a factor of ∇j(∇iAi), and in the second

term, we will get a factor of ∇iȦi. Both of these vanish by virtue of the gauge

condition ∇iAi = 0, and so both of these terms can simply be dropped.

If we now vary ϕ (and require S =
∫

d4xL to be stationary), we find that

ϕ obeys Poisson’s equation,

−∇2ϕ = ρ . (29)

The solution is

ϕ(x, t) =
∫

d3y
ρ(y, t)

4π|x−y| . (30)

This solution is unique if we impose the boundary conditions that ϕ and ρ

both vanish at spatial infinity.

Eq. (30) tells us that ϕ(x, t) is given entirely in terms of the charge density

at the same time, and so has no dynamics of its own. It is therefore legitimate

to plug eq. (30) back into the lagrangian. After an integration by parts to

turn ∇iϕ∇iϕ into −ϕ∇2ϕ = ϕρ, the result is

L = 1
2
ȦiȦi − 1

2
∇jAi∇jAi + JiAi + Lcoul , (31)

where

Lcoul = −1

2

∫
d3y

ρ(x, t)ρ(y, t)

4π|x−y| . (32)
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We can now vary Ai, and find that each compenent obeys the massless Klein-

Gordon equation, with Ji as a source,

−∂2Ai = Ji . (33)

For a free field (Ji = 0), the general solution is

A(x) =
∑

λ=±

∫
d̃k
[
εεε∗λ(k)aλ(k)eikx + εεελ(k)a†

λ(k)e−ikx
]
, (34)

where k0 = ω = |k|, d̃k = d3k/(2π)32ω, and εεε+(k) and εεε−(k) are polarization

vectors. We choose them so that the helicity of the photon state a†
±(k)|0〉 is

±1; that is, so that

k̂·Ja†
+(k)|0〉 = ±a†

+(k)|0〉 , (35)

where J is the angular momentum operator. For k in the z direction, k =

(0, 0, k),

εεε+(k) = 1√
2
(1,−i, 0) ,

εεε−(k) = 1√
2
(1, +i, 0) , (36)

up to overall phase factors that are physically irrelevant. More generally, the

two polarization vectors along with the unit vector in the k direction form

an orthonormal and complete set,

k·εεελ(k) = 0 , (37)

εεελ′(k)·εεε∗λ(k) = δλ′λ , (38)

∑

λ=±
ε∗iλ(k)εjλ(k) = δij −

kikj

k2
. (39)

The coefficients aλ(k) and a†
λ(k) will become operators after quantization,

which is why we have used the dagger symbol for their conjugation.

In complete analogy with the procedure used for a scalar field in section

3, we can invert eq. (34) and its time derivative to get

aλ(k) = +i εεελ(k)·
∫

d3x e−ikx
↔
∂0 A(x) , (40)

a†
λ(k) = −i εεε∗λ(k)·

∫
d3x e+ikx

↔
∂0 A(x) , (41)
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where f
↔
∂µ g = f(∂µg) − (∂µf)g.

Now we can proceed to the hamiltonian formalism. First, we compute

the canonically conjugate momentum to Ai,

Πi =
∂L
∂Ȧi

= Ȧi . (42)

The hamiltonian density is then

H = ΠiȦi − L
= 1

2
ΠiΠi + ∇jAi∇jAi − JiAi + Hcoul , (43)

where Hcoul = −Lcoul.

To quantize the field, we should apparently impose the canonical com-

mutation relations

[Ai(x, t), Πj(y, t)] = iδijδ
3(x − y) . (44)

This, however, is inconsistent with the gauge condition, since acting on the

left-hand side with ∇xi (and summing over i) should give zero, while the

right-hand side fails to vanish.

To understand this properly, we need the formalism for quantization of

constrained systems. Instead of introducing it, we will proceed heuristically,

and simply alter the right-hand side of eq. (44) to read

[Ai(x, t), Πj(y, t)] = i
∫

d3k

(2π)3
eik·(x−y)

(
δij −

kikj

k2

)
. (45)

This procedure projects the offending components out of the delta function.

The commutation relations of the aλ(k) and a†
λ(k) operators follow from

eqs. (40) and (41), along with eq. (45) and [Ai, Aj] = [Πi, Πj ] = 0 (at equal

times). The result is

[aλ(k), aλ′(k′)] = 0 , (46)

[a†
λ(k), a†

λ′(k′)] = 0 , (47)

[aλ(k), a†
λ′(k′)] = (2π)32ω δ3(k′ − k)δλλ′ . (48)
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We interpret a†
λ(k) and aλ(k) as creation and annihilation operators for pho-

tons of definite momentum and helicity, with positive helicity corresponding

to left-circular polarization and negative helicity to right-circular polariza-

tion.

It is now straightfoward to write the hamiltonian in terms of these oper-

ators. We find

H =
∑

λ=±

∫
d̃k ω a†

λ(k)aλ(k) + 2E0V −
∫

d3x J(x)·A(x) + Hcoul , (49)

where E0 =
∫

d3k ω is the zero-point energy per unit volume for each oscillator,

V is the volume of space,

Hcoul =
1

2

∫
d3x d3y

ρ(x, t)ρ(y, t)

4π|x−y| , (50)

and we use eq. (34) to express Ai(x) in terms of aλ(k) and a†
λ(k) at any

one particular time (say, t = 0). This is sufficient, because H itself is time

independent.

This form of the hamiltonian of electrodynamics is often used as the

starting point for calculations of atomic transition rates, with the charges and

currents treated via the nonrelativistic Schrödinger equation. The Coulomb

interaction appears explicitly, and the J·A term allows for the creation and

annihilation of photons of definite polarization.
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Notes on Quantum Field Theory Mark Srednicki

56: LSZ Reduction for Photons

Prerequisite: 5, 55

In section 55, we found that the creation and annihilation operators for

free photons could be written as

a†
λ(k) = −i εεε∗λ(k)·

∫
d3x e+ikx

↔
∂0 A(x) , (51)

aλ(k) = +i εεελ(k)·
∫

d3x e−ikx
↔
∂0 A(x) , (52)

where εεελ(k) is a polarization vector. From here, we can follow the analysis

of section 5 line by line to deduce the LSZ reduction formula for photons.

The result is that the creation operator for each incoming photon should be

replaced by

a†
λ(k)in → i εµ∗

λ (k)
∫

d4x e+ikx(−∂2)Aµ(x) , (53)

and the destruction operator for each outgoing photon should be replaced by

aλ(k)out → i εµ
λ(k)

∫
d4x e−ikx(−∂2)Aµ(x) , (54)

and then we should take the vacuum expectation value of the time-ordered

product. Note that, in writing eqs. (53) and (54), we have made them look

nicer by introducing ε0
λ(k) ≡ 0, and then using four-vector dot products

rather than three-vector dot products.

The LSZ formula is valid provided the field is normalized according to

the free-field formulae

〈0|Ai(x)|0〉 = 0 , (55)

〈k, λ|Ai(x)|0〉 = εi
λ(k)eikx . (56)
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The zero on the right-hand side of eq. (55) is required by rotation invariance,

and only the overall scale of the right-hand side of eq. (56) might be different

in an interacting theory.

The renormalization of Ai necessitates including appropriate Z factors in

the lagrangian:

L = −1
4
Z3F

µνFµν + Z1J
µAµ . (57)

Here Z3 and Z1 are the traditional names of these factors. (We will meet Z2

in section ??.) We must choose Z3 so that eq. (56) holds; Z1 will be fixed

by requiring some 1PI vertex function to take on a certain value for certain

external momenta.

Next we must compute the correlation functions 〈0|TAi(x) . . . |0〉. As

usual, we will begin by working with free field theory. The analysis is again

almost identical to the case of a scalar field; see problem 8.3. We find that,

in free field theory,

〈0|TAi(x)Aj(y)|0〉 = 1
i
∆ij(x − y) , (58)

where the propagator is

∆ij(x − y) =
∫

d4k

(2π)4

eik(x−y)

k2 − iε

∑
λ=±εi∗

λ (k)εj
λ(k) . (59)

As with a free scalar field, correlations of an odd number of fields vanish, and

correlations of an even number of fields are given in terms of the propagator

by Wick’s theorem; see section 8.

We would now like to evaluate the path integral for the free electromag-

netic field

Z0(J) ≡ 〈0|0〉J =
∫

DA ei
∫

d4x [− 1
4
F µνFµν+JµAµ] . (60)

Here we treat the current Jµ(x) as an external source.

We will evaluate Z0(J) in Coulomb gauge. This means that we will

integrate over only those field configurations that satisfy ∇·A = 0.

We begin by integrating over A0. Because the action is quadratic in

Aµ, this is equivalent to solving the variational equation for A0, and then

substituting the solution back into the lagrangian. The result is that we
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have the Coulomb term in the action,

Scoul = −1

2

∫
d4x d4y δ(x0−y0)

J0(x)J0(y)

4π|x−y| . (61)

Since this term does not depend on the vector potential, we simply get a

factor of exp(iScoul) in front of the remaining path integral over Ai. We

perform this integral formally (as we did with fermion fields in section 43) by

requiring it to yield correct results for the correlation functions of Ai when

we take functional derivatives of it with respect to Ji.

Putting all of this together, we get

Z0(J) = exp
[
iScoul +

i

2

∫
d4x d4y Ji(x)∆ij(x − y)Jj(y)

]
. (62)

We can make Z0(J) look prettier by writing it as

Z0(J) = exp
[
i

2

∫
d4x d4y Jµ(x)∆µν(x − y)Jν(y)

]
, (63)

where we have defined

∆µν(x − y) ≡
∫

d4k

(2π)4
eik(x−y) ∆̃µν(k) , (64)

∆̃µν(k) ≡ − 1

k2
δµ0δν0 +

1

k2 − iε

∑
λ=±εµ∗

λ (k)εν
λ(k) . (65)

The first term on the right-hand side of eq. (65) reproduces the Coulomb

term in eq. (62) by virtue of the facts that

∫ +∞

−∞

dk0

2π
e−ik0(x0−y0) = δ(x0 − y0) , (66)

∫
d3k

(2π)3

eik·(x−y)

k2
=

1

4π|x − y| . (67)

The second term on the right-hand side of eq. (65) reproduces the second

term in eq. (62) by virtue of the fact that ε0
λ(k) = 0.

Next we will simplify eq. (65). We begin by introducing a unit vector in

the time direction

t̂µ = (1, 0) . (68)
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Next we need a unit vector in the k direction, which we will call ẑµ. We first

note that t̂·k = −k0, and so we can write

(0,k) = kµ + (t̂·k)t̂µ . (69)

The square of this four-vector is

k2 = k2 + (t̂·k)2 , (70)

where we have used t̂2 = −1. Thus the unit vector that we want is

ẑµ =
kµ + (t̂·k)t̂µ

[k2 + (t̂·k)2]1/2
. (71)

Now we recall from section 55 that

∑

λ=±
εi∗

λ (k)εj
λ(k) = δij −

kikj

k2
. (72)

This can be extended to i → µ and j → ν by writing

∑

λ=±
εµ∗

λ (k)εν
λ(k) = gµν + t̂µt̂ν − ẑµẑν . (73)

It is not hard to check that the right-hand side of eq. (73) vanishes if µ = 0

or ν = 0, and agrees with eq. (72) for µ = i and ν = j. Putting all this

together, we can now write eq. (65) as

∆̃µν(k) = − t̂µt̂ν

k2 + (t̂·k)2
+

gµν + t̂µt̂ν − ẑµẑν

k2 − iε
. (74)

The next step is to consider the terms in this expression that contain

factors of kµ or kν ; from eq. (71), we see that these will arise from the ẑµẑν

term. In eq. (64), a factor of kµ can be written as a derivative with respect

to xµ acting on eik(x−y). This derivative can then be integrated by parts in

eq. (63) to give a factor of ∂µJµ(x). But ∂µJµ(x) vanishes, because the current

must be conserved. Similarly, a factor of kν can be turned into ∂νJν(y), and

also leads to a vanishing contribution. Therefore, we can ignore any terms

in ∆̃µν(k) that contain factors of kµ or kν .
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From eq. (71), we see that this means we can make the substitution

ẑµ → (t̂·k)t̂µ

[k2 + (t̂·k)2]1/2
. (75)

Then eq. (74) becomes

∆̃µν(k) =
1

k2 − iε

[
gµν +

(
− k2

k2 + (t̂·k)2
+ 1 − (t̂·k)2

k2 + (t̂·k)2

)
t̂µt̂ν

]
, (76)

where the three coefficients of t̂µt̂ν come from the Coulomb term, the t̂µt̂ν

term in the polarization sum, and the ẑµẑν term, respectively. A bit of

algebra now reveals that the net coefficient of t̂µt̂ν vanishes, leaving us with

the elegant expression

∆̃µν(k) =
gµν

k2 − iε
. (77)

Written in this way, the photon propagator is said to be in Feynman gauge.

[It would still be in Coulomb gauge if we had retained the kµ and kν terms

in eq. (74).]

In the next section, we will rederive eq. (77) from a more explicit path-

integral point of view.
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57: The Path Integral for Photons

Prerequisite: 8, 56

In this section we will attempt to evaluate the path integral directly, using

the methods of section 8. We begin with

Z0(J) =
∫

DA eiS0 , (78)

S0 =
∫

d4x
[
−1

4
F µνFµν + JµAµ

]
. (79)

Following section 8, we Fourier-transform to momentum space, where we find

S0 =
1

2

∫
d4k

(2π)4

[
−Ãµ(k)

(
k2gµν − kµkν

)
Ãν(−k)

+ J̃µ(k)Ãµ(−k) + J̃µ(−k)Ãµ(k)
]
. (80)

The next step is to shift the integration variable Ã so as to “complete the

square”. This involves inverting the 4 × 4 matrix k2gµν − kµkν . However,

this matrix has a zero eigenvalue, and cannot be inverted.

To better understand what is going on, it is convenient to note that the

matrix of interest can be written as k2P µν(k), where we define

P µν(k) ≡ gµν − kµkν/k2 . (81)

This matrix is a projection matrix because, as is easily checked,

P µν(k)Pν
λ(k) = P µλ(k) . (82)

Thus the only allowed eigenvalues of P are one and zero. There is at least

one zero eigenvalue, because

P µν(k)kν = 0 . (83)
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On the other hand, the sum of the eigenvalues is given by the trace

gµνP
µν(k) = 3 . (84)

Thus the remaining three eigenvalues must all be one.

Now let us imagine carrying out the path integral of eq. (78), with S0 given

by eq. (80). Let us decompose the field Ãµ(k) into components aligned along a

set of linearly independent four-vectors, one of which is kµ. (It will not matter

whether or not this basis set is orthonormal.) Because the term quadratic in

Ãµ involves the matrix k2P µν(k), and P µν(k)kν = 0, the component of Ãµ(k)

that lies along kµ does not contribute to this quadratic term. Furthermore,

it does not contribute to the linear term either, because ∂µJµ(x) = 0 implies

kµJ̃µ(k) = 0. Thus this component does not appear in the path integal at all!

It then makes no sense to integrate over it. We therefore define
∫ DA to mean

integration over only those components that are spanned by the remaining

three basis vectors, and therefore satisfy kµÃµ(k) = 0. This is equivalent to

imposing Lorentz gauge, ∂µAµ(x) = 0.

The matrix P µν(k) is simply the matrix that projects a four-vector into

the subspace orthogonal to kµ. Within the subspace, P µν(k) is equivalent to

the identity matrix. Therefore, within the subspace, the inverse of k2P µν(k) is

(1/k2)P µν(k). Employing the ε trick to pick out vacuum boundary conditions

replaces k2 with k2 − iε.

We can now continue following the procedure of section 8, with the result

that

Z0(J) = exp

[
i

2

∫
d4k

(2π)4
J̃µ(k)

P µν(k)

k2 − iε
J̃ν(−k)

]

= exp
[
i

2

∫
d4x d4y Jµ(x)∆µν(x − y)Jν(y)

]
, (85)

where

∆µν(x − y) =
∫ d4k

(2π)4
eik(x−y) P µν(k)

k2 − iε
(86)

is the photon propagator in Lorentz gauge or Landau gauge. Of course,

because the current is conserved, the kµkν term in P µν(k) does not contribute,

and so the result is equivalent to that of Feynman gauge, where P µν(k) is

replaced by gµν .
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Notes on Quantum Field Theory Mark Srednicki

58: The Feynman Rules for Quantum Electrodynamics

Prerequisite: 45, 57

In the section, we will allow the photons to interact with the electrons

and positrons of a Dirac field. We do this by taking the electromagnetic

current jµ(x) to be proportional to the Noether current corresponding to the

U(1) symmetry of a Dirac field (see section 36). Specifically,

jµ(x) = eΨ(x)γµΨ(x) . (87)

Here e = −0.302822 is the charge of the electron in Heaviside-Lorentz units,

with h̄ = c = 1. (We will rely on context to distinguish this e from the

base of natural logarithms.) In these units, the the fine-structure constant is

α = e2/4π = 1/137.036. With the normalization of eq. (87), Q =
∫

d3x j0(x)

is the electric charge operator.

Of course, when we specify a number in quantum field theory, we must

always have a renormalization scheme in mind; e = −0.302822 corresponds

to on-shell renormalization. The value of e will be different in other renor-

malization schemes, such as MS, as we will see in section ??.

The complete lagrangian of our theory is thus

L = −1
4
F µνFµν + iΨ/∂Ψ − mΨΨ + eΨγµΨAµ . (88)

In this section, we will be concerned with tree-level processes only, and so we

omit renormalizing Z factors.

We have a problem, though. A Noether current is conserved only when

the fields obey the equations of motion, or, equivalently, only at points in field

space where the action is stationary. On the other hand, in our development

of photon path integrals in sections 56 and 57, we assumed that the current

was always conserved.
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This issue is resolved by enlarging the definition of a gauge transformation

to include a transformation on the Dirac field as well as the electromagnetic

field. Specifically, we define a gauge transformation to consist of

Aµ(x) → Aµ(x) − ∂µΓ(x) , (89)

Ψ(x) → exp[−ieΓ(x)]Ψ(x) , (90)

Ψ(x) → exp[+ieΓ(x)]Ψ(x) . (91)

It is not hard to check that L(x) is invariant under this transformation,

whether or not the fields obey their equations of motion. To perform this

check most easily, we first rewrite L as

L = −1
4
F µνFµν + iΨ /DΨ − mΨΨ , (92)

where we have defined the gauge covariant derivative (or just covariant

derivative for short)

Dµ ≡ ∂µ − ieAµ . (93)

In the last section, we found that F µν is invariant under eq. (89), and so

the FF term in L is obviously invariant as well. It is also obvious that the

mΨΨ term in L is invariant under eqs. (90) and (91). This leaves the Ψ /DΨ

term. This term will also be invariant if, under the gauge transformation,

the covariant derivative of Ψ transforms as

DµΨ(x) → exp[−ieΓ(x)]DµΨ(x) . (94)

To see if this is true, we note that

DµΨ →
(
∂µ − ie[Aµ − ∂µΓ]

)(
exp[−ieΓ]Ψ

)

= exp[−ieΓ]
(
∂µΨ − ie(∂µΓ)Ψ − ie[Aµ − ∂µΓ]Ψ

)

= exp[−ieΓ]
(
∂µ − ieAµ

)
Ψ

= exp[−ieΓ]DµΨ . (95)

So eq. (94) holds, and Ψ /DΨ is gauge invariant.

20



We can also write the transformation rule for Dµ a little more abstractly

as

Dµ → e−ieΓDµ e+ieΓ , (96)

where the ordinary derivative in Dµ is defined to act on anything to its right,

including any fields that are left unwritten in eq. (96). Thus we have

DµΨ →
(
e−ieΓDµe+ieΓ

)(
e−ieΓΨ

)

= e−ieΓDµΨ , (97)

which is, of course, the same as eq. (95). We can also express the field strength

in terms of the covariant derivative by noting that

[Dµ, Dν]Ψ(x) = −ieF µν(x)Ψ(x) . (98)

We can write this more abstractly as

F µν = i
e [Dµ, Dν] , (99)

where, again, the ordinary derivative in each covariant derivative acts on

anything to its right. From eqs. (96) and (99), we see that, under a gauge

transformation,

F µν → i
e

[
e−ieΓDµ e+ieΓ, e−ieΓDν e+ieΓ

]

= e−ieΓ
(
i
e [Dµ, Dν ]

)
e+ieΓ

= e−ieΓF µνe+ieΓ

= F µν . (100)

In the last line, we are able to cancel the e±ieΓ factors against each other

because no derivatives act on them. Eq. (100) shows us that (as we already

knew) F µν is gauge invariant.

It is interesting to note that the gauge transformation on the fermion

fields, eqs. (90–91), is a generalization of the U(1) transformation

Ψ → e−iαΨ , (101)

Ψ → e+iαΨ , (102)
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that is a symmetry of the free Dirac lagrangian. The difference is that,

in the gauge transformation, the phase factor is allowed to be a function

of spacetime, rather than a constant that is the same everywhere. Thus,

the gauge transformation is also called a local U(1) transformation, while

eqs. (101–102) correspond to a global U(1) transformation. We say that,

in a gauge theory, the global U(1) symmetry is promoted to a local U(1)

symmetry, or that we have gauged the U(1) symmetry.

In section 57, we argued that the path integral over Aµ should be re-

stricted to those components of Ãµ(k) that are orthogonal to kµ, because

the component parallel to kµ did not appear in the integrand. Now we must

make a slightly more subtle argument. We argue that the path integral over

the parallel component is redundant, because the fermionic path integral

over Ψ and Ψ already includes all possible values of Γ(x). Therefore, as in

section 57, we should not integrate over the parallel component. (We will

make a more precise and careful version of this argument when we discuss

nonabelian gauge theories in section ??.)

By the standard procedure, this leads us to the following form of the path

integral for quantum electrodynamics:

Z(η, η, J) ∝ exp

[
ie
∫

d4x

(
1

i

δ

δJµ(x)

)(
i

δ

δηα(x)

)
(γµ)αβ

(
1

i

δ

δηβ(x)

)]

× Z0(η, η)Z0(J) , (103)

where

Z0(η, η) = exp
[
i
∫

d4x d4y η(x)S(x − y)η(y)
]
, (104)

Z0(J) = exp
[
i

2

∫
d4x d4y Jµ(x)∆µν(x − y)Jν(y)

]
, (105)

and

S(x − y) =
∫ d4p

(2π)4

(−/p + m)

p2 + m2 − iε
eip(x−y) , (106)

∆µν(x − y) =
∫

d4k

(2π)4

gµν

k2 − iε
eik(x−y) (107)
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are the appropriate Feynman propagators for the corresponding free fields.

We impose the normalization Z(0, 0, 0) = 1, and write

Z(η, η, J) = exp[W (η, η, J)] . (108)

Then W (η, η, J) can be expressed as a series of connected Feynman diagrams

with sources.

The rules for internal and external Dirac fermions were worked out in

the context of Yukawa theory in section 45, and they follow here with no

change. For external photons, the LSZ analysis of section 56 implies that

each external photon line carries a factor of the polarization vector εµ(k).

Putting everything together, we get the following set of Feynman rules for

tree-level processes in quantum electrodynamics.

1) For each incoming electron, draw a solid line with an arrow pointed

towards the vertex, and label it with the electron’s four-momentum, pi.

2) For each outgoing electron, draw a solid line with an arrow pointed

away from the vertex, and label it with the electron’s four-momentum, p′i.

3) For each incoming positron, draw a solid line with an arrow pointed

away from the vertex, and label it with minus the positron’s four-momentum,

−pi.

4) For each outgoing positron, draw a solid line with an arrow pointed

towards the vertex, and label it with minus the positron’s four-momentum,

−p′i.

5) For each incoming photon, draw a wavy line with an arrow pointed

towards the vertex, and label it with the photon’s four-momentum, ki. (Wavy

lines for photons is a standard convention.)

6) For each outgoing photon, draw a wavy line with an arrow pointed

away from the vertex, and label it with the photon’s four-momentum, k′
i.

7) The only allowed vertex joins two solid lines, one with an arrow point-

ing towards it and one with an arrow pointing away from it, and one wavy

line (whose arrow can point in either direction). Using this vertex, join up

all the external lines, including extra internal lines as needed. In this way,

draw all possible diagrams that are topologically inequivalent.

8) Assign each internal line its own four-momentum. Think of the four-

momenta as flowing along the arrows, and conserve four-momentum at each
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vertex. For a tree diagram, this fixes the momenta on all the internal lines.

9) The value of a diagram consists of the following factors:

for each incoming photon, εµ∗
λi

(ki);

for each outgoing photon, εµ
λ′

i
(k′

i);

for each incoming electron, usi
(pi);

for each outgoing electron, us′
i
(p′

i);

for each incoming positron, vsi
(pi);

for each outgoing positron, vs′
i
(p′

i);

for each vertex, ieγµ;

for each internal photon line, −igµν/(k2 − iε),

where k is the four-momentum of that line;

for each internal fermion line, −i(−/p + m)/(p2 + m2 − iε),

where p is the four-momentum of that line.

10) Spinor indices are contracted by starting at one end of a fermion line:

specifically, the end that has the arrow pointing away from the vertex. The

factor associated with the external line is either u or v. Go along the complete

fermion line, following the arrows backwards, and write down (in order from

left to right) the factors associated with the vertices and propagators that

you encounter. The last factor is either a u or v. Repeat this procedure for

the other fermion lines, if any. The vector index on each vertex is contracted

with the vector index on either the photon propagator (if the attached photon

line is internal) or the photon polarization vector (if the attached photon line

is external).

11) Two diagrams that are identical except for the momentum and spin

labels on two external fermion lines that have their arrows pointing in the

same direction (either both towards or both away from the vertex) have a

relative minus sign.

12) The value of iT (at tree level) is given by a sum over the values of all

the contributing diagrams.

In the next section, we will do a sample calculation.
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Notes on Quantum Field Theory Mark Srednicki

59: Tree-Level Scattering in QED

Prerequisite: 48, 58

In the last section we wrote down the Feynman rules for quantum elec-

trodynamics. In this section, we will compute the scattering amplitude (and

its spin-averaged square) at tree level for the process of electron-positron

annihilation into a pair of photons, e+e− → γγ.

The contributing diagrams are shown in fig. (1), and the associated ex-

pression for the scattering amplitude is

Te+e−→γγ = e2 εµ
1′ε

ν
2′ v2

[
γµ

(
−/p1 + /k′

1 + m

−t + m2

)
γν + γν

(
−/p1 + /k′

2 + m

−u + m2

)
γµ

]
u1 ,

(109)

where εµ
1′ is shorthand for εµ

λ′
1
(k′

1), v2 is shorthand for vs2(p2), and so on.

The Mandelstam variables are

s = −(p1 + p2)
2 = −(k′

1 + k′
2)

2 ,

t = −(p1 − k′
1)

2 = −(p2 − k′
2)

2 ,

u = −(p1 − k′
2)

2 = −(p2 − k′
1)

2 , (110)

and they obey s + t + u = 2m2.

Following the procedure of section 46, we write eq. (109) as

T = εµ
1′ε

ν
2′ v2Aµνu1 , (111)

where

Aµν ≡ e2

[
γµ

(
−/p1 + /k′

1 + m

−t + m2

)
γν + γν

(
−/p1 + /k′

2 + m

−u + m2

)
γµ

]
. (112)
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Figure 1: Diagrams for e+e− → γγ, corresponding to eq. (109).

We also have

T ∗ = T = ερ∗
1′ ε

σ∗
2′ u1 Aρσ v2 . (113)

Using /a/b . . . = . . . /b/a, we see from eq. (112) that

Aρσ = Aσρ . (114)

Thus we have

|T |2 = εµ
1′ε

ν
2′ ε

ρ∗
1′ ε

σ∗
2′ (v2Aµνu1)(u1Aσρv2) . (115)

Next, we will average over the initial electron and positron spins, using

the technology of section 46; the result is

1
4

∑

s1,s2

|T |2 = 1
4
εµ
1′ε

ν
2′ε

ρ∗
1′ ε

σ∗
2′ Tr

[
Aµν(−/p1+m)Aσρ(−/p2−m)

]
. (116)

We would also like to sum over the final photon polarizations. From

eq. (116), we see that we must evaluate

∑

λ=±
εµ

λ(k)ερ∗
λ (k) . (117)

We did this polarization sum in Coulomb gauge in section 56, with the result

that ∑

λ=±
εµ

λ(k)ερ∗
λ (k) = gµρ + t̂µt̂ρ − ẑµẑρ , (118)
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where t̂µ is a unit vector in the time direction, and ẑµ is a unit vector in the

k direction that can be expressed as

ẑµ =
kµ + (t̂·k)t̂µ

[k2 + (t̂·k)2]1/2
. (119)

It is tempting to drop the kµ and kρ terms in eq. (118), on the grounds that

the photons couple to a conserved current, and so these terms should not

contribute. (We indeed used this argument to drop the analogous terms in

the photon propagator.) This also follows from the notion that the scattering

amplitude should be invariant under a gauge transformation, as represented

by a transformation of the external polarization vectors of the form

εµ
λ(k) → εµ

λ(k) − iΓ̃(k)kµ . (120)

Thus, if we write a scattering amplitude T for a process that includes a

particular outgoing photon with four-momentum kµ as

T = εµ
λ(k)Mµ , (121)

or a particular incoming photon with four-momentum kµ as

T = εµ∗
λ (k)Mµ , (122)

then in either case we should have

kµMµ = 0 . (123)

Eq. (123) is in fact valid; we will give a proof of it, based on the Ward identity

for the electromagnetic current, in section ??. For now, we will take eq. (123)

as given, and so drop the kµ and kρ terms in eq. (118).

This leaves us with

∑

λ=±
εµ

λ(k)ερ∗
λ (k) → gµρ + t̂µt̂ρ − (t̂·k)2

k2 + (t̂·k)2
t̂µt̂ρ . (124)

But, for an external photon, k2 = 0. Thus the second and third terms in

eq. (124) cancel, leaving us with the beautifully simple substitution rule

∑

λ=±
εµ

λ(k)ερ∗
λ (k) → gµρ . (125)
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Using eq. (125), we can sum |T |2 over the polarizations of the outgoing

photons, in addition to averaging over the spins of the incoming fermions;

the result is

〈|T |2〉 ≡ 1
4

∑

λ′

1,λ′

2

∑

s1,s2

|T |2

= 1
4
Tr
[
Aµν(−/p1+m)Aνµ(−/p2−m)

]

= e4

[
〈Φtt〉

(m2 − t)2
+

〈Φtu〉 + 〈Φut〉
(m2 − t)(m2 − u)

+
〈Φuu〉

(m2 − u)2

]
, (126)

where

〈Φtt〉 = 1
4
Tr
[
γµ(−/p1+/k′

1+m)γν(−/p1+m)γν(−/p1+/k′
1+m)γµ(−/p2−m)

]
,(127)

〈Φuu〉 = 1
4
Tr
[
γν(−/p1+/k′

2+m)γµ(−/p1+m)γµ(−/p1+/k′
2+m)γν(−/p2−m)

]
,(128)

〈Φtu〉 = 1
4
Tr
[
γµ(−/p1+/k′

1+m)γν(−/p1+m)γµ(−/p1+/k′
2+m)γν(−/p2−m)

]
,(129)

〈Φut〉 = 1
4
Tr
[
γν(−/p1+/k′

2+m)γµ(−/p1+m)γν(−/p1+/k′
1+m)γµ(−/p2−m)

]
.(130)

Examinging eqs. (127) and (128), we see that 〈Φtt〉 and 〈Φuu〉 are transformed

into each other by k′
1 ↔ k′

2, which is equivalent to t ↔ u. The same is true of

eqs. (129) and (130). Thus we need only compute 〈Φtt〉 and 〈Φtu〉, and then

take t ↔ u to get 〈Φuu〉 and 〈Φut〉.
Now we can apply the gamma-matrix technology of section 47. In par-

ticular, we will need the d = 4 relations

γµγµ = −4 , (131)

γµ/aγµ = 2/a , (132)

γµ/a/bγµ = 4(ab) , (133)

γµ/a/b/cγµ = 2/c/b/a , (134)

in addition to the trace formulae. We also need

p1p2 = −1
2
(s − 2m2) ,

k′
1k

′
2 = −1

2
s ,

p1k
′
1 = p2k

′
2 = +1

2
(t − m2) ,

p1k
′
2 = p2k

′
1 = +1

2
(u − m2) . (135)
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which follow from eq. (110) plus the mass-shell conditions p2
1 = p2

2 = −m2

and k′
1
2 = k′

2
2 = 0. After a lengthy and tedious calculation, we find

〈Φtt〉 = 2[tu − m2(3t + u) − m4] , (136)

〈Φtu〉 = 2m2(s − 4m2) , (137)

which then implies

〈Φuu〉 = 2[tu − m2(3u + t) − m4] , (138)

〈Φut〉 = 2m2(s − 4m2) . (139)

This completes our calculation.

Other tree-level scattering processes in QED pose no new calculational

difficulties, and are left to the problems.

In the high-energy limit, where the electron can be treated as massless,

we can use the method of spinor helicity, which was introduced in section

50. We take this up in the next section.
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Notes on Quantum Field Theory Mark Srednicki

60: Spinor Helicity for QED

Prerequisite: 48

In section 50, we introduced a special notation for u and v spinors of

definite helicity for massless electrons and positrons. This notation greatly

simplifies calculations in the high-energy limit (s, |t|, and |u| all much greater

than m2).

We define the twistors

|p] ≡ u−(p) = v+(p) ,

|p〉 ≡ u+(p) = v−(p) ,

[p| ≡ u+(p) = v−(p) ,

〈p| ≡ u−(p) = v+(p) . (140)

We then have

[k| |p] = [k p] ,

〈k| |p〉 = 〈k p〉 ,

[k| |p〉 = 0 ,

〈k| |p] = 0 , (141)

where the twistor products [k p] and 〈k p〉 are antisymmetric,

[k p] = −[p k] ,

〈k p〉 = −〈p k〉 , (142)
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and related by complex conjugation, 〈p k〉∗ = [k p]. They can be expressed

explicitly in terms of the components of the massless four-momenta k and p.

However, more useful are the relations

〈p q〉 [q r] 〈r s〉 [s p] = Tr 1
2
(1−γ5)/p/q/r/s (143)

and

〈k p〉 [p k] = Tr 1
2
(1−γ5)/k/p

= −2k ·p

= −(k + p)2 . (144)

Finally, for any massless four-momentum p we can write

−/p = |p〉[p| + |p]〈p| . (145)

We will quote other results from section 50 as we need them.

To apply this formalism to quantum electrodynamics, we need to write

photon polarization vectors in terms of twistors. The formulae we need are

εµ
+(k) =

〈q|γµ|k]√
2 〈q k〉

, (146)

εµ
−(k) =

[q|γµ|k〉√
2 [q k]

, (147)

where q is an arbitrary reference momentum.

The simplest way to verify eqs. (146) and (147) is to do so for a a specific

choice of k, and then rely on the Lorentz transformation properties of twistors

to conclude that the result must hold in any frame, and therefore for any

massless four-momentum k. So, we will choose kµ = (ω, ωẑ) = ω(1, 0, 0, 1).

Then, the most general form of εµ
+(k) is

εµ
+(k) = eiφ 1√

2
(0, 1,−i, 0) + Ckµ . (148)

Here eiφ is an arbitrary phase factor, and C is an arbitrary complex num-

ber; the freedom to add a multiple of k comes from the underlying gauge

invariance.
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To verify that eq. (146) reproduces eq. (148), we need the explicit form

of the twistors |k] and |k〉 when the three-momentum is in the z direction.

Using results in section 50 we find

|k] =
√

2ω




0
1
0
0


 , |k〉 =

√
2ω




0
0
1
0


 . (149)

The most general form for 〈q| is

〈q| = (0, 0, α, β) , (150)

where α and β are arbitrary complex numbers. Plugging eqs. (149) and (150)

into eq. (146), and using

γµ =

(
0 σµ

σ̄µ 0

)
(151)

along with σµ = (I, ~σ) and σ̄µ = (I,−~σ), we find that we reproduce eq. (148)

with eiφ = −1 and C = β/αω. There is now no need to check eq. (147),

because εµ
−(k) = −[εµ

+(k)]∗, as can be seen by using 〈q k〉∗ = −[q k] along

with another result from section 50, 〈q|γµ|k]∗ = 〈k|γµ|q].
In quantum electodynamics, the vector index on a photon polarization

vector is always contracted with the vector index on a gamma matrix. We

can get a convenient formula for /ε±(k) by using the Fierz identities

−1
2
γµ〈q|γµ|k] = |k]〈q| + |q〉[k| , (152)

−1
2
γµ[q|γµ|k〉 = |k〉[q| + |q]〈k| . (153)

We then have

/ε+(k;q) = −
√

2

〈q k〉
(
|k]〈q| + |q〉[k|

)
, (154)

/ε−(k;q) = −
√

2

[q k]

(
|k〉[q| + |q]〈k|

)
, (155)

where we have added the reference momentum as an explicit argument on

the left-hand sides. Since the phase of /ε±(k;q) is arbitrary, the minus signs

on the right-hand sides of eqs. (154) and (155) can be dropped.
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Now we have all the tools we need for doing calculations. However, we can

simplify things even further by making maximal use of crossing symmetry.

Note from eq. (140) that u− (which is the factor associated with an in-

coming electron) and v+ (an outgoing positron) are both represented by the

twistor |p], while u+ (an outgoing electron) and v− (an incoming positron)

are both represented by [p|. Thus the square-bracket twistors correspond to

outgoing fermions with positive helicity, and incoming fermions with neg-

ative helicity. Similarly, the angle-bracket twistors correspond to outgoing

fermions with negative helicity, and incoming fermions with positive helicity.

Let us adopt a convention in which all particles are assigned four-momenta

that are treated as outgoing. A particle that has an assigned four-momentum

p then has physical four-momentum εpp, where εp = sign(p0) = +1 if the

particle is physically outgoing, and εp = sign(p0) = −1 if the particle is

physically incoming.

Since the physical three-momentum of an incoming particle is opposite

to its assigned three-momentum, a particle with negative helicity relative

to its physical three-momentum has positive helicity relative to its assigned

three-momentum. From now on, we will refer to the helicity of a particle

relative to its assigned momentum. Thus a particle that we say has “positive

helicity” actually has negative physical helicity if it is incoming, and positive

physical helicity if it is outgoing.

With this convention, the square-bracket twistors |p] and [p| represent

positive-helicity fermions, and the angle-bracket twistors |p〉 and 〈p| repre-

sent negative-helicity fermions. When εp = sign(p0) = −1, we analytically

continue the twistors by replacing each ω1/2 in eq. (149) with i|ω|1/2. Then

all of our formulae for twistors and polarizations hold without change, with

the exception of the rule for complex conjugation of a twistor product, which

becomes

〈p k〉∗ = εpεk[k p] . (156)

Now we are ready to calculate some amplitudes. Consider first the pro-

cess of fermion-fermion scattering. The contributing tree-level diagrams are

shown in fig. (2).

The first thing to notice is that a diagram is zero if two external fermion

lines that meet at a vertex have the same helicity. This is because (as shown
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Figure 2: Diagrams for fermion-fermion scattering, with all momenta treated
as outgoing.

in section 50) we get zero if we sandwich the product of an odd number of

gamma matrices between two twistors of the same helicity. In particular, we

have 〈p|γµ|k〉 = 0 and [p|γµ|k] = 0. Thus, we will get a nonzero result for

the tree-level amplitude only if two of the helicities are positive, and two are

negative. This means that, of the 24 = 16 possible combinations of helicities,

only six give a nonzero tree-level amplitude: T++−−, T+−+−, T+−−+, T−−++,

T−+−+, and T−++−, where the notation is Ts1s2s3s4. Furthermore, the last

three of these are related to the first three by complex conjugation, so we

only have three amplitudes to compute.

Let us begin with T+−−+. Only the first diagram of fig. (2) contributes,

because the second has two postive-helicity lines meeting at a vertex. To

evaluate the first diagram, we note that the two vertices contribute a factor

of (ie)2 = −e2, and the internal photon line contributes a factor of igµν/s13,

where we have defined the Mandelstam variable

sij ≡ −(pi + pj)
2 . (157)

Following the charge arrows backwards on each fermion line, and dividing by

i to get T (rather than iT ), we find

T+−−+ = −e2 〈3|γµ|1] [4|γµ|2〉 /s13

= +2e2 [1 4] 〈2 3〉 /s13 , (158)
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where 〈3| is short for 〈p3|, etc, and we have used yet another form of the

Fierz identity to get the second line.

The computation of T+−+− is exactly analogous, except that now it is only

the second diagram of fig. (2) that contributes. According to the Feynman

rules, this diagram comes with a relative minus sign, and so we have

T+−+− = −2e2 [1 3] 〈2 4〉 /s14 . (159)

Finally, we turn to T++−−. Now both diagrams contribute, and we have

T++−− = −e2

(
〈3|γµ|1] 〈4|γµ|2]

s13
− 〈4|γµ|1] 〈3|γµ|2]

s14

)

= −2e2 [1 2] 〈3 4〉
(

1

s13
+

1

s14

)

= +2e2 [1 2] 〈3 4〉
(

s12

s13s14

)
, (160)

where we used the Mandelstam relation s12 + s13 + s14 = 0 to get the last

line.

To get the cross section for a particular set of helicities, we must take the

absolute squares of the amplitudes. These follow from eqs. (144) and (156):

|〈1 2〉|2 = |[1 2]|2 = ε1ε2s12 . (161)

Then taking the absolute square of any of eqs. (158–160) then yields an overall

factor of ε1ε2ε3ε4. Since there are always two incoming and two outgoing

particles, this factor equals one.

We can compute the spin-averaged cross section by summing the absolute

squares of eqs. (158–160), multiplying by two to account for the processes in

which all helicities are opposite (and which have amplitudes that are related

by complex conjugation), and then dividing by four to average over the initial

helicities. The result is

〈|T |2〉 = 2e4

(
s2
14

s2
13

+
s2
13

s2
14

+
s2
12s

2
34

s2
13s

2
14

)

= 2e4

(
s4
12 + s4

13 + s4
14

s2
13s

2
14

)
. (162)
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Figure 3: Diagrams for fermion-photon scattering, with all momenta treated
as outgoing.

We used s34 = s12 to get the second line.

For the processes of e−e− → e−e− and e+e+ → e+e+, we have s12 = s,

s13 = t, and s14 = u; for e+e− → e+e−, we have s13 = s, s14 = t, and s12 = u.

Now we turn to processes with two external fermions and two external

photons, as shown in fig. (3). The first thing to notice is that a diagram is

zero if the two external fermion lines have the same helicity. This is because

the corresponding twistors sandwich an odd number of gamma matrices:

one from each vertex, and one from the massless fermion propagator S̃(p) =

−/p/p2. Thus we need only compute T+−λ3λ4 since T−+λ3λ4 is related by

complex conjugation.

Next we use eqs (154–155) and (141–142) to get

/ε−(k;p)|p] = 0 , (163)

[p|/ε−(k;p) = 0 . (164)

/ε+(k;p)|p〉 = 0 , (165)

〈p|/ε+(k;p) = 0 , (166)

Thus we can get some amplitudes to vanish with appropriate choices of the

reference momenta in the photon polarizations.

So, let us consider

T+−λ3λ4 = + e2 〈2|/ελ4
(k4;q4)(/p1 + /k3)/ελ3

(k3;q3)|1] /s13
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+ e2 〈2|/ελ3
(k3;q3)(/p1 + /k4)/ελ4

(k4;q4)|1] /s14 . (167)

If we take λ3 = λ4 = −, then we can get both terms in eq. (167) to vanish

by choosing q3 = q4 = p1, and using eq. (163). If we take λ3 = λ4 = +, then

we can get both terms in eq. (167) to vanish by choosing q3 = q4 = p2, and

using eq. (166).

Thus, we need only compute T+−−+ and T+−+−. For T+−+−, we can

get the second term in eq. (167) to vanish by choosing q3 = p2, and using

eq. (166). Then we have

T+−+− = e2 〈2|/ε−(k4;q4)(/p1 + /k3)/ε+(k3;p2)|1] /s13

= e2

√
2

[q44]
〈2 4〉 [q4|(/p1 + /k3)|2〉 [3 1]

√
2

〈2 3〉
1

s13

. (168)

Next we note that [p|/p = 0, and so it is useful to choose either q4 = p1 or

q4 = k3. There is no obvious advantage in one choice over the other, and they

must give equivalent results, so let us take q4 = p1. Then, using eq. (145) for

/k3, we get

T+−+− = −2e2 〈2 4〉 [1 3] 〈3 2〉 [3 1]

[1 4] 〈2 3〉 s13
(169)

Now we use s13 = −〈2 4〉 [2 4], and antisymmetry of the twistor products, to

get

T+−+− = 2e2 [1 3]2

[1 4] [2 4]
. (170)

We can now get T+−−+ simply by exchanging the labels 3 and 4,

T+−−+ = 2e2 [1 4]2

[1 3] [2 3]
. (171)

We can compute the spin-averaged cross section by summing the abso-

lute squares of eqs. (170) and (171), multiplying by two to account for the

processes in which all helicities are opposite (and which have amplitudes that

are related by complex conjugation), and then dividing by four to average

over the initial helicities. The result is

〈|T |2〉 = 2e4 ε3ε4

(
s13

s14
+

s14

s13

)
. (172)
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We used |〈1, 3〉|2 = ε1ε3s13, s24 = s13, etc, as well as ε1ε2ε3ε4 = 1, to put the

result in this form. The role of the ε’s is to ensure that each term is positive.

For the processes of e−γ → e−γ and e+γ → e+γ, we have s13 = s, s12 = t,

s14 = u, and ε3ε4 = −1; for e+e− → γγ and γγ → e+e− we have s12 = s,

s13 = t, s14 = u, and ε3ε4 = +1.

Problems

60.1) Show that kµεµ
±(k;q) = 0 (as required by gauge invariance) and that

qµεµ
±(k;q) = 0 as well.

60.2) For a process with n external particles and all momenta treated as

outgoing, show that
n∑

j=1

〈i j〉 [j k] = 0 . (173)

60.3) Use various identities to show that eq. (171) can also be written as

T+−+− = −2e2 〈2 4〉2
〈1 3〉 〈2 3〉 . (174)

60.4a) Show explicitly that you would get the same result as eq. (170) if

you set q4 = k3 in eq. (168).

b) Show explicitly that you would get the same result as eq. (170) if you

set q4 = p2 in eq. (168).

60.5) Show that the tree-level scattering amplitude for two or more pho-

tons that all have the same helicity, plus any number of fermions with arbi-

trary helicities, vanishes.

60.6a) Consider the scattering of two fermions and three photons. Which

tree-level helicity amplitudes are zero?

b) Compute the nonzero tree amplitudes.
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Notes on Quantum Field Theory Mark Srednicki

61: Scalar Electrodynamics

Prerequisite: 58

In this section, we will consider how charged spin-zero particles interact

with photons. We begin with the lagrangian for a free complex scalar field

ϕ,

L = −∂µϕ†∂µϕ − m2ϕ†ϕ . (175)

The lagrangian is obviously invariant under the global U(1) symmetry

ϕ(x) → e−iαϕ(x) ,

ϕ†(x) → e+iαϕ†(x) . (176)

We would like to promote this to a local U(1) symmetry,

ϕ(x) → exp[−ieΓ(x)]ϕ(x) , (177)

ϕ†(x) → exp[+ieΓ(x)]ϕ†(x) . (178)

In order to do so, we must replace each ordinary derivative in eq. (175) with

a covariant derivative

Dµ ≡ ∂µ − ieAµ , (179)

where Aµ transforms as

Aµ(x) → Aµ(x) − ∂µΓ(x) , (180)

which implies that Dµ transforms as

Dµ → exp[−ieΓ(x)]Dµ exp[+ieΓ(x)] . (181)
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Our complete lagrangian for scalar electrodynamics is then

L = −(Dµϕ)†Dµϕ − m2ϕ†ϕ − 1
4
λ(ϕ†ϕ)2 − 1

4
F µνFµν . (182)

We have added the usual gauge-invariant kinetic term for the gauge field.

We have also added a gauge-invariant quartic coupling for the scalar field;

this turns out to be necessary for renormalizability, as we will see in section

??. For now, we omit the renormalizing Z factors.

Of course, eq. (182) is invariant under a global U(1) transformation as

well as a local U(1) transformation: we simply set Γ(x) to a constant. Then

we can find the conserved Noether current corresponding to this symmetry,

following the procedure of section 22. In the case of QED (by which we mean

quantum electrodynamics with a Dirac field), this current is same as it is in

the case of a free Dirac field, jµ = ΨγµΨ. In the case of a complex scalar

field, we find

jµ = Im
(
ϕ† ↔

Dµϕ
)

, (183)

where A
↔
DµB ≡ ADµB − (DµA)B. We see that this current depends on

the gauge field. Furthermore, with a factor of e, this current is indeed the

electromagnetic current, which is usefully defined in general as

jµ
EM

(x) ≡ ∂L
∂Aµ(x)

. (184)

We had not previously contemplated the notion that the electromagnetic

current could involve the gauge field itself, but in scalar electrodynamics this

arises naturally, and is essential for gauge invariance.

It also poses no special problem in the quantum theory. We will make

the same assumption that we did in the case of QED: namely, that the

correct procedure is to omit integration over the component of Ãµ(k) that is

parallel to kµ, on the grounds that this integration is redundant. This leads

to the same Feynman rules for internal and external photons as in QED.

The Feyman rules for internal and external scalars are the same as those of

problem ??. We will call the spin-zero particle with electric charge +e a scalar

electron or selectron (recall that our convention is that e is negative), and

the spin-zero particle with electric charge −e a scalar positron or spositron.
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Scalar lines (traditionally drawn as dashed in scalar electrodynamics) carry

a charge arrow whose direction must be preserved when lines are joined by

vertices.

To determine the kinds of vertices we have, we first write out the inter-

action terms in the lagrangian of eq. (182):

Lint = ieAµ[(∂µϕ†)ϕ − ϕ†∂µϕ] − e2AµAµϕ†ϕ − 1
4
λ(ϕ†ϕ)2 . (185)

This leads to the vertices shown in fig. (4). The vertex factors associated

with the last two terms are −2ie2gµν and −iλ. The vertex factor for the

first term is slightly tricky, because we have to translate the derivatives into

momenta while keeping the signs right; this is done in problem 61.1. The

result is that the vertex factor is ie(k1 +k2)µ, where the scalar four-momenta

are as shown in fig. (4).

Putting everything together, we get the following set of Feynman rules

for tree-level processes in scalar electrodynamics.

1) For each incoming selectron, draw a dashed line with an arrow pointed

towards the vertex, and label it with the selectron’s four-momentum, ki.

2) For each outgoing selectron, draw a dashed line with an arrow pointed

away from the vertex, and label it with the selectron’s four-momentum, k′
i.

3) For each incoming spositron, draw a dashed line with an arrow pointed

away from the vertex, and label it with minus the spositron’s four-momentum,

−ki.

4) For each outgoing spositron, draw a dashed line with an arrow pointed

towards the vertex, and label it with minus the spositron’s four-momentum,

−k′
i.

5) For each incoming photon, draw a wavy line with an arrow pointed

towards the vertex, and label it with the photon’s four-momentum, ki.

6) For each outgoing photon, draw a wavy line with an arrow pointed

away from the vertex, and label it with the photon’s four-momentum, k′
i.

7) There are three allowed vertices, shown in fig. (4). Using these vertices,

join up all the external lines, including extra internal lines as needed. In this

way, draw all possible diagrams that are topologically inequivalent.

8) Assign each internal line its own four-momentum. Think of the four-

momenta as flowing along the arrows, and conserve four-momentum at each
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Figure 4: The three vertices of scalar electrodynamics; the corresponding
vertex factors are ie(k1 + k2)µ, −2ie2gµν , and −iλ.
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vertex. For a tree diagram, this fixes the momenta on all the internal lines.

9) The value of a diagram consists of the following factors:

for each incoming photon, εµ∗
λi

(ki);

for each outgoing photon, εµ
λi

(ki);

for each incoming or outgoing selectron or spositron, 1;

for each vertex, ie(k1 + k2)µ, −2ie2gµν , or −iλ,

according to the type of vertex;

for each internal photon line, −igµν/(k2 − iε),

where k is the four-momentum of that line;

for each internal scalar , −i/(k2 + m2 − iε),

where k is the four-momentum of that line.

10) The vector index on each vertex is contracted with the vector index

on either the photon propagator (if the attached photon line is internal) or

the photon polarization vector (if the attached photon line is external).

11) The value of iT (at tree level) is given by a sum over the values of all

the contributing diagrams.

Let us compute the scattering amplitude for a particular process, ẽ+ẽ− →
γγ, where ẽ− denotes a selectron. We have the diagrams of fig. (5).

The amplitude is

T = (ie)2 1

i

(2k1−k′
3)µεµ

3′(k1−k′
3−k2)νε

ν
4′

M2 − t
+ (3 ↔ 4)

− 2ie2gµνε
µ
3′ε

ν
4′ , (186)

where t = −(k1−k′
3)

2 and u = −(k1−k′
4)

2. This expression can be simplified

by noting that k1 − k′
3 − k2 = k′

4 − 2k2, and that ki ·εi = 0. Then we have

T = −ie2

[
4(k1 ·ε3′)(k2 ·ε4′)

M2 − t
+

4(k1 ·ε4′)(k2 ·ε3′)

M2 − u
+ 2(ε3′ ·ε4′)

]
. (187)

To get the polarization-summed cross section, we take the absolute square of

eq. (187), and use the substitution rule

∑

λ=±
εµ

λ(k)ερ∗
λ (k) → gµρ . (188)

This is a straightforward calculation.
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Figure 5: Diagrams for ẽ+ẽ− → γγ.
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Problems

61.1) Compute the polarization-summed squared amplitude 〈|T |2〉 for

eq. (187), and express your answer in terms of the Mandelstam variables.

61.2) Compute the scattering amplitude T and polarization averaged

squared amplitude 〈|T |2〉 for the process ẽ−γ → ẽ−γ.
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Notes on Quantum Field Theory Mark Srednicki

62: Loop Corrections in Quantum Electrodynamics

Prerequisite: 51, 59

In this section we will compute the one-loop corrections in quantum elec-

trodynamics of electrons and positrons, represented by a Dirac field.

First let us note that the general discussion of sections 18 and 29 leads

us to expect that we will need to add to the lagrangian all possible terms

whose coefficients have positive or zero mass dimension, and that respect the

symmetries of the original lagrangian. These include Lorentz symmetry, the

U(1) gauge symmetry, and the discrete symmetries of parity, time reversal,

and charge conjugation.

The mass dimensions of the fields (in four spacetime dimensions) are

[Aµ] = 1 and [Ψ] = 3
2
. Gauge invariance requires that Aµ appear only in

the form of a covariant derivative Dµ. (Recall that the field strength F µν

can be expressed as the commutator of two covariant derivatives.) The only

possible term we can write down that does not involve the Ψ field, and that

has mass dimension four or less, is εµνρσF µνF ρσ. This term, however, is odd

under parity and time reversal. Similarly, there are no terms meeting all

the requirements that involve Ψ: the only candidates contain either γ5 (e.g.,

iΨγ5Ψ) and are forbidden by parity, or C (e.g, ΨTCΨ) and are forbidden by

the U(1) symmetry.

Therefore, the theory we will consider is

L = L0 + L1 , (189)

L0 = iΨ/∂Ψ − mΨΨ − 1
4
F µνFµν , (190)

L1 = iZ1eΨ /AΨ + Lct , (191)

Lct = i(Z2−1)Ψ/∂Ψ − (Zm−1)mΨΨ − 1
4
(Z3−1)F µνFµν . (192)
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We will use an on-shell renormalization scheme: the lagrangian parameter

m is the actual mass of the electron, α = e2/4π is the coefficient of 1/r2 in

Coulomb’s Law (as determined by doing electron-electron scattering at very

low energy), and the fields are normalized according to the requirements of

the LSZ formula.

We can write the exact photon propagator (in momentum space) as a

geometric series of the form

∆̃µν(k) = ∆̃µν(k) + ∆̃µρ(k)Πρσ(k)∆̃σν(k) + . . . , (193)

where iΠµν(k) is given by a sum of 1PI diagrams with two external photon

lines (and the external propagators removed), and ∆̃µν(k) is the free photon

propagator,

∆̃µν(k) =
1

k2 − iε

(
gµν − (1−ξ)

kµkν

k2

)
. (194)

Here we have allowed ourselves some freedom of choice for the gauge by

including the arbitrary parameter ξ multiplying a kµkν term; observable

squared amplitudes should not depend on ξ.

This suggests that Πµν(k) should be transverse,

kµΠµν(k) = kνΠ
µν(k) = 0 , (195)

so that the kµkν terms in ∆̃µν(k) vanish when attached to the fermion lines

in Πµν(k). Eq. (195) is in fact valid; we will give a proof of it, based on the

Ward identity for the electromagnetic current, in section ??. For now, we

will take eq. (195) as given. This implies that we can write

Πµν(k) = Π(k2)
(
k2gµν − kµkν

)
(196)

= k2 Π(k2)P µν(k) , (197)

where Π(k2) is a scalar function, and P µν(k) = gµν−kµkν/k2 is the projection

matrix introduced in section 57.

Note that we can also write

∆̃µν(k) =
1

k2 − iε

(
Pµν(k) + ξ

kµkν

k2

)
. (198)
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Figure 6: The one-loop and counterterm corrections to the photon propagator
in QED.

Then, using eqs. (197) and (198) in eq. (193), and summing the geometric

series, we find

∆̃µν(k) =
Pµν(k)

k2[1 − Π(k2)] − iε
+ ξ

kµkν/k
2

k2 − iε
. (199)

The ξ dependent term should be physically irrelevant (and can be set to zero

by the gauge choice ξ = 0, corresponding to Lorentz gauge). The remaining

term has a pole at k2 = 0 with residue Pµν(k)/[1 − Π(0)]. In our on-shell

renormalization scheme, we should have Π(0) = 0; this corresponds to the

field normalization that is needed for the validity of the LSZ formula. (This

is most easily checked in Coulomb gauge.)

Let us now turn to the calculation of Πµν(k). The one-loop and countert-

erm contributions are shown in fig. (6). We have

iΠµν(k) = (−1)(iZ1e)
2
(

1
i

)2 ∫ d4`

(2π)4
Tr
[
S̃(/̀+/k)γµS̃(/̀)γν

]

− i(Z3−1)(k2gµν − kµkµ) + O(e4) , (200)

where the factor of minus one is for the closed fermion loop, and S̃(/p) =

(−/p+m)/(p2+m2−iε) is the free fermion propagator in momentum space.

Anticipating that Z1 = 1 + O(e2), we can set Z1 = 1 in the first term.
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We can write

Tr
[
S̃(/̀+/k)γµS̃(/̀)γν

]
=
∫ 1

0
dx

4N

(q2 + D)2
, (201)

where we have combined denominators in the usual way: q = ` + xk and

D = x(1−x)k2 + m2 − iε . (202)

The numerator is

4N = Tr
[
S̃(−/̀−/k+m)γµS̃(−/̀+m)γν

]
(203)

Completing the trace, we get

N = (`+k)µkν + kµ(`+k)ν − [`(`+k) + m2]gµν . (204)

Setting ` = q−xk and and dropping terms linear in q (because they integrate

to zero), we find

N → 2qµqν − 2x(1−x)kµkν − [q2 − x(1−x)k2 + m2]gµν . (205)

The integrals diverge, and so we analytically continue to d = 4−ε dimensions,

and replace e with eµ̃ε/2 (so that e remains dimensionless for any d).

Next we recall a result from section 31:
∫

ddq qµqνf(q2) =
1

d
gµν

∫
ddq q2f(q2) . (206)

This allows the replacement

N → −2x(1−x)kµkν +
[(

2
d
− 1

)
q2 + x(1−x)k2 − m2

]
gµν . (207)

Using the results of section 14, along with a little manipulation of gamma

functions, we can show that

(
2

d
− 1

) ∫ ddq

(2π)d

q2

(q2 + D)2
= 2D

∫ ddq

(2π)d

1

(q2 + D)2
. (208)

Thus we can make the replacement (2/d − 1)q2 → 2D in eq. (??), and we

find

N → 2x(1−x)(k2gµν − kµkν) . (209)
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This guarantees that the one-loop contribution to Πµν(k) is transverse (as

we expected) in any number of spacetime dimensions.

Now we evaluate the integral over q, using

µ̃ε
∫

ddq

(2π)d

1

(q2 + D)2
=

i

16π2
Γ( 2

ε)
(
4πµ̃2/D

)ε

=
i

8π2

[
1

ε
− 1

2
ln(D/µ2)

]
, (210)

where µ2 = 4πe−γµ̃2, and we have dropped terms of order ε in the last line.

Combining eqs. (196), (200), (201), (209), and (210), we get

Π(k2) = − e2

π2

∫ 1

0
dx x(1−x)

[
1

ε
− 1

2
ln(D/µ2)

]
− (Z3−1) + O(e4) . (211)

Imposing Π(0) = 0 fixes

Z3 = 1 − e2

6π2

(
1

ε
+ finite

)
+ O(e4) (212)

and

Π(k2) =
e2

2π2

∫ 1

0
dx x(1−x) ln(D/m2) + O(e4) . (213)

Next we turn to the fermion propagator. The exact propagator can be

written in Lehmann-Källén form as

S̃(/p) =
1

/p + m − iε
+
∫ ∞

m2
th

ds
ρΨ(s)

/p +
√

s − iε
. (214)

We see that the first term has a pole at /p = −m with residue one. This

residue corresponds to the field normalization that is needed for the validity

of the LSZ formula.

There is a problem, however: for QED, the threshold mass mth is m,

corresponding to the contribution of a fermion and a zero-energy photon.

Thus the second term has a branch point at /p = −m. The pole in the first

term is therefore not isolated, and its residue is ill defined.

This is a reflection of an underlying infrared divergence, associated with

the massless photon. To sidestep it, we will have to impose an infrared cutoff

that moves the branch point away from the pole. The simplest method is to
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change the denominator of the photon propagator from k2 to k2 + λ2, where

λ plays the role of a fictitious photon mass. Ultimately, as in section 25, we

must deal with this issue by computing cross-sections that take into account

detector inefficiencies. In the case of QED, we must specify the lowest photon

energy ωmin that can be detected. Only after computing cross sections with

extra undectable photons, and then summing over them, is it safe to take

the limit λ → 0.

An alternative is to use dimensional regularization for the infrared diver-

gences as well as the ultraviolet ones. As discussed in section 25, there are

no soft-particle infrared divergences for d > 4 (and no colinear divergences at

all in QED with massive electrons). In practice, infrared-divergent integrals

are finite away from even-integer dimensions, just like ultraviolet-divergent

integrals. Thus we simply keep d = 4 − ε all the way through to the very

end, taking the ε → 0 limit only after summing over cross sections with

extra undetectable photons, all computed in 4− ε dimensions. This method

is calculationally the simplest, but requires careful bookkeeping to segregate

the infrared and ultraviolet singularities. For that reason, we will not pursue

it further.

We can write the exact fermion propagator in the form

S̃(/p)−1 = /p + m − iε − Σ(/p) , (215)

where iΣ(/p) is given by the sum of 1PI diagrams with two external fermion

lines (and the external propagators removed). The fact that S̃(/p) has a pole

at /p = −m with residue one implies that Σ(−m) = 0 and Σ′(−m) = 0; this

fixes the coefficients Z2 and Zm. As we will see, we must have an infrared

cutoff in place in order to have a finite value for Σ′(−m).

Let us now turn to the calculation of Σ(/p). The one-loop and counterterm

contributions are shown in fig. (7). We have

iΣ(/p) = (ie)2
(

1
i

)2 ∫ d4`

(2π)4

[
γνS̃(/p + /̀)γµ

]
∆̃µν(`)

− (Z2−1)/p − (Zm−1)m + O(e4) . (216)

It is simplest to work in Feynman gauge, where we take

∆̃µν(`) =
gµν

`2 + λ2 − iε
; (217)
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Figure 7: The one-loop and counterterm corrections to the fermion propaga-
tor in QED.

here we have included the fictitious photon mass λ as an infrared cutoff.

We now apply the usual bag of tricks to get

iΣ(/p) = −e2µ̃ε
∫ 1

0
dx
∫

ddq

(2π)d

N

(q2 + D)2

− (Z2−1)/p − (Zm−1)m + O(e4) , (218)

where q = ` + xk and

D = x(1−x)p2 + xm2 + (1−x)λ2 , (219)

N = γµ(−/p − /̀ + m)γµ

= −(d−2)(/p + /̀) − dm

= −(d−2)[/q + (1−x)/p] − dm , (220)

where we have used (from section 47) γµγ
µ = −d and γµ/pγµ = (d−2)/p. The

term linear in q integrates to zero, and then, using eq. (210), we get

Σ(/p) = − e2

8π2

∫ 1

0
dx
(
(2−ε)(1−x)/p + (4−ε)m

)[ 1

ε
− 1

2
ln(D/µ2)

]

− (Z2−1)/p − (Zm−1)m + O(e4) . (221)

We see that finiteness of Σ(/p) requires

Z2 = 1 − e2

8π2

(
1

ε
+ finite

)
+ O(e4) , (222)

Zm = 1 − e2

2π2

(
1

ε
+ finite

)
+ O(e4) . (223)
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Figure 8: The one-loop correction to the photon-fermion-fermion vertex in
QED.

We can impose Σ(−m) = 0 by writing

Σ(/p) =
e2

8π2

[∫ 1

0
dx
(
(1−x)/p + 2m

)
ln(D/D0) + κ2(/p + m)

]
, (224)

where D0 is D evaluated at p2 = −m2,

D0 = x2m2 + (1 − x)λ2 , (225)

and κ2 is a constant to be determined. We fix κ2 by imposing Σ′(−m) = 0.

In differentiating with respect to /p, we take the p2 in D, eq. (219), to be −/p2;

we find

κ2 = −2
∫ 1

0
dx x(1−x2)m2/D0

= −2 ln(m/λ) + 1 , (226)

where we have dropped terms that go to zero with the infrared cutoff λ.

Next we turn to the loop correction to the vertex. We define the vertex

function iVµ(p′, p) as the sum of one-particle irreducible diagrams with one

incoming fermion with momentum p, one outgoing fermion with momentum

p′, and one incoming photon with momentum k = p′−p. The original vertex

iZ1eγ
µ is the first term in this sum, and the diagram of fig. (8) is the second.

Thus we have

iVµ(p′, p) = iZ1eγ
µ + iVµ

1 loop(p
′, p) + O(e5) , (227)
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where

iVµ
1 loop(p

′, p) = (ie)3
(

1
i

)3 ∫ dd`

(2π)d

[
γρS̃(/p ′+/̀)γµS̃(/p+/̀)γν

]
∆̃νρ(`) . (228)

We again use eq. (217) for the photon propagator, and combine denominators

in the usual way. We then get

iVµ
1 loop(p

′, p)/e = e2
∫

dF3

∫
d4q

(2π)4

Nµ

(q2 + D)3
, (229)

where the integral over Feynman parameters is

∫
dF3 ≡ 2

∫ 1

0
dx1dx2dx3 δ(x1+x2+x3−1) , (230)

and

q = ` + x1p + x2p
′ , (231)

D = x1(1−x1)p
2 + x2(1−x2)p

′2 − 2x1x2p·p′ + (x1+x2)m
2 + x3λ

2 ,(232)

Nµ = γν(−/p ′ − /̀ + m)γµ(−/p − /̀ + m)γν

= γν [−/q + x1/p − (1−x2)/p
′ + m]γµ[−/q − (1−x1)/p + x2/p ′ + m]γν

= γν/qγ
µ/qγν + Ñµ + (linear in q) , (233)

where

Ñµ = γν [x1/p − (1−x2)/p
′ + m]γµ[−(1−x1)/p + x2/p ′ + m]γν . (234)

The terms linear in q in eq. (233) integrate to zero, and only the first term

is divergent. After continuing to d dimensions, we can use eq. (206) to make

the replacement

γν/qγ
µ/qγν → 1

d
q2 γνγργ

µγργν . (235)

Then we use γργ
µγρ = (d−2)γµ twice to get

γν/qγ
µ/qγν → (d−2)2

d
q2 γµ . (236)
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Performing the usual manipulations, we find

V
µ
1 loop(p

′, p)/e =
e2

8π2

[(
1

ε
− 1 − 1

2

∫
dF3 ln(D/µ2)

)
γµ + 1

4

∫
dF3

Ñµ

D

]
.

(237)

From eq. (227), we see that finiteness of Vµ(p′, p) requires

Z1 = 1 − e2

8π2

(
1

ε
+ finite

)
+ O(e4) . (238)

To completely fix Vµ(p′, p), we need a suitable condition to impose on it. We

take this up in the next section.

Problems
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Notes on Quantum Field Theory Mark Srednicki

63: The Vertex Function in Quantum Electrodynamics

Prerequisite: 62

In the last section, we computed the one-loop contribution to the ver-

tex function Vµ(p′, p) in quantum electrodynamics, where p is the four-

momentum of an incoming electron (or outgoing positron), and p′ is the

four-momentum of an outgoing electron (or incoming positron). We left open

the issue of the renormalization condition we wish to impose on Vµ(p′, p).

For the theories we have studied previously, we have usually made the

mathematically convenient (but physically obscure) choice to define the cou-

pling constant as the value of the vertex function when all external four-

momenta are set to zero. However, in the case of quantum electrodynamics,

the masslessness of the photon gives us the opportunity to do something more

physically meaningful: we can define the coupling constant as the value of

the vertex function when all three particles are on shell: p2 = p′2 = −m2, and

q2 = 0, where q ≡ p′ − p is the photon four-momentum. Because the photon

is massless, these three on-shell conditions are compatible with momentum

conservation.

Of course, the vertex function Vµ(p′, p) is a four-vector of 4×4 matrices, so

we are speaking schematically when we talk of its value. To be more precise,

let us sandwich Vµ(p′, p) between the spinor factors that are appropriate

for an incoming electron with momentum p and an outgoing electron with

momentum p′, impose the on-shell conditions, and define the electron charge

e via

us′(p
′)Vµ(p′, p)us(p)

∣∣∣∣p2=p′2=−m2

(p′−p)2=0

= e us′(p
′)γµus(p)

∣∣∣∣ p2=p′2=−m2

(p′−p)2=0

. (239)

This definition is in accord with the usual one provided by Coulomb’s

law. To see why, consider the process of electron-electron scattering, com-

puted with the exact propagators and vertices of the quantum action. The
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contributing Feynman diagrams are the usual ones at tree-level, shown in

fig. (??), but with each vertex representing the exact vertex fuction Vµ(p′, p),

and the wavy internal line representing the exact photon propagator ∆̃µν(q).

(There is also a contribution, not shown, from a four-point vertex connecting

all four lines, but this vertex does not have the 1/q2 from the photon propa-

gator, and so does not contribute to the Coulomb force.) In the last section,

we renormalized the photon propagator so that it approaches its tree-level

value ∆̃µν(q) when q2 → 0. And we have just chosen to renormalize the ver-

tex function by requiring it to approach its tree-level value when q2 → 0, and

when sandwiched between external spinors for on-shell incoming and outgo-

ing electrons. Therefore, as q2 → 0, the exact electron-electron scattering

amplitude approaches what we get from the tree diagrams, with the electron

charge equal to e. Physically, q2 → 0 means that the electron’s momentum

changes very little during the scattering. Measuring a slight deflection in the

trajectory of one charged particle (due to the presence of another) is how

we measure the coefficient in Coulomb’s law. Thus, eq. (239) corresponds to

this traditional definition of the charge of the electron.

We can simplify eq. (239) by noting that the on-shell conditions actually

enforce p′ = p. So we can rewrite eq. (239) as

us(p)Vµ(p, p)us(p) = e us(p)γµus(p)

= 2epµ , (240)

where p2 = −m2 is implicit. We have taken s′ = s, because otherwise the

right-hand side vanishes (and hence does not specify a value for e).

Now we can use eq. (240) to completely determine Vµ(p′, p). Using the

freedom to choose the finite part of Z1, we first write it as

Vµ(p′, p) = eγµ − e3

16π2

∫
dF3

[(
ln(D/D0) + κ1

)
γµ − Nµ

2D

]
+ O(e5) , (241)

where

D = x1(1−x1)p
2 + x2(1−x2)p

′2 − 2x1x2p·p′

+ (x1+x2)m
2 + x3λ

2 , (242)
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D0 is D evaluated at p′ = p and p2 = −m2,

D0 = (x1+x2)
2m2 + x3λ

2

= (1−x3)
2m2 + x3λ

2 , (243)

and

Nµ = γν [x1/p − (1−x2)/p
′ + m]γµ[−(1−x1)/p + x2/p ′m]γν ; (244)

Nµ was called Ñµ in section 62, but we have dropped the tilde for notational

convenience.

We fix the constant κ1 in eq. (241) by imposing eq. (240). This yields

2κ1p
µ =

∫
dF3

us(p)Nµ
0 us(p)

2D0

, (245)

where Nµ
0 is Nµ with p′ = p and p2 = p′2 = −m2.

So now we must evaluate uNµ
0 u. To do so, we first write

Nµ = γν(/a1+m)γµ(/a2+m)γν , (246)

where

a1 = x1p − (1−x2)p
′ ,

a2 = x2p
′ − (1−x1)p . (247)

Now we use the gamma matrix contraction identities to get

Nµ = 2/a2γ
µ/a1 + 4m(a1+a2)

µ + 2m2γµ . (248)

Here we have set d = 4, because we have already removed the divergence and

taken the limit ε → 0. Setting p′ = p, and using /pu = −mu and u/p = −mu,

along with uγµu = 2pµ and uu = 2m, and recalling that x1+x2+x3 = 1, we

find

uNµ
0 u = 4(1−4x3+x2

3)m
2pµ . (249)
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Using eqs. (243), (245), and (249), we get

κ1 =
∫

dF3
1−4x3+x2

3

(1−x3)2 + x3λ2/m2

= 2
∫ 1

0
dx3 (1−x3)

1−4x3+x2
3

(1−x3)2 + x3λ2/m2

= −4 ln(m/λ) + 5 (250)

in the limit of λ → 0. We see that an infrared regulator is necessary for the

vertex function as well as the fermion propagator.

Now that we have Vµ(p′, p), we can extract some physics from it. Con-

sider again the process of electron-electron scattering, shown in fig. (??). In

order to compute the contributions of these diagrams, we must evaluate

u ′ V µ u ≡ us′(p
′)Vµ(p′, p)us(p) , (251)

with p2 = −p′2 = −m2, but with q2 = (p′ − p)2 arbitrary.

To evaluate u ′Nµu, we first use the anticommutation relations of the

gamma matrices to move all the /p’s in Nµ to the far right, where we can use

/pu = −mu, and all the /p ′’s to the far left, where we can use u ′/p ′ = −mu ′.

This results in

Nµ → [4(1−x1−x2+x1x2)p·p′ + 2(2x1−x2
1+2x2−x2

2)m
2]γµ

+ 4m(x2
1−x2+x1x2)p

µ + 4m(x2
2−x1+x1x2)p

′µ . (252)

Next, replace p ·p′ with −1
2
q2−m2, group the pµ and p′µ terms into p′ + p

and p′ − p combinations, and make use of x1+x2+x3 = 1 to simplify some

coefficients. The result is

Nµ → 2[(1−2x3−x2
3)m

2 − (x3+x1x2)q
2]γµ

− 2m(x3−x2
3)(p

′ + p)µ

− 2m[(x1+x2
1) − (x2+x2

2)](p
′ − p)µ . (253)

In the denominator, set p2 = p′2 = −m2 and p·p′ = −1
2
q2−m2 to get

D → x1x2q
2 + (1−x3)

2m2 + x3λ
2 . (254)
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Now we note that the right-hand side of eq. (254) is symmetric under x1 ↔ x2.

Thus the last line of eq. (253) will vanish when we integrate u ′Nµu/D over

the Feynman parameters. Finally, we use the Gordon identity from section

38,

u ′(p′ + p)µu = u ′[2mγµ + 2iSµνqν ]u , (255)

where Sµν = i
4
[γµ, γν ], to get

Nµ → 2[(1−4x3+x2
3)m

2 − (x3+x1x2)q
2]γµ

− 4im(x3−x2
3)S

µνqν . (256)

So now we have

us′(p
′)Vµ(p′, p)us(p) = eu ′

[
F1(q

2)γµ + i
mF2(q

2)Sµνqν

]
u , (257)

where we have defined the form factors

F1(q
2) = 1 − e2

16π2

∫
dF3

[
ln

(
1 +

x1x2q
2/m2

(1−x3)2

)
+

1−4x3+x2
3

(1−x3)2 + x3λ2/m2

+
(x3+x1x2)q

2/m2 − (1−4x3+x2
3)

x1x2q2/m2 + (1−x3)2 + x3λ2/m2

]
+ O(e4) , (258)

F2(q
2) =

e2

8π2

∫
dF3

x3−x2
3

x1x2q2/m2 + (1−x3)2
+ O(e4) . (259)

We have set λ = 0 in eq. (259), and in the logarithm term in eq. (258), because

these terms do not suffer from infrared divergences.

We can simplify F2(q
2) by using the delta function in dF3 to do the

integral over x2 (which replaces x2 with 1−x3−x1), making the change of

variable x1 = y(1−x3), and performing the integral over x3 from zero to one;

the result is

F2(q
2) =

e2

8π2

∫ 1

0

dy

1 − y(1−y)q2/m2
+ O(e4) . (260)

This last integral can also be done in closed form, but we will be mostly

interested in its value at q2 = 0, corresponding to an on-shell photon:

F2(0) = α
2π

+ O(α2) , (261)

where α = e2/4π = 1/137.036 is the fine-structure constant. We will explore

the physical consequences of eq. (261) in the next section.
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Notes on Quantum Field Theory Mark Srednicki

64: The Magnetic Moment of the Electron

Prerequisite: 63

In the last section, we computed the one-loop contribution to the ver-

tex function Vµ(p′, p) in quantum electrodynamics, where p is the four-

momentum of an incoming electron, and p′ is the four-momentum of an

outgoing electron. We found

us′(p
′)Vµ(p′, p)us(p) = eu ′

[
F1(q

2)γµ + i
mF2(q

2)Sµνqν

]
u , (262)

where q = p′ − p is the four-momentum of the photon (treated as incoming),

and with complicated expressions for the form factors F1(q
2) and F2(q

2). For

our purposes in this section, all we will need to know is that

F1(0) = 1 exactly,

F2(0) = α
2π

+ O(α2) . (263)

Eq. (262) corresponds to terms in the quantum action of the form

Γ =
∫

d4x
[
eF1(0)Ψ /AΨ + 1

2m
F2(0)FµνΨSµνΨ + . . .

]
, (264)

where the ellipses stand for terms with more derivatives. Applied to Γ, the

usual procedure for extracting the Feynman rules from an action yield a

vertex factor that corresponds to eq. (262) with q2 = 0. To see this, recall

that an incoming photon translates into a factor of Aµ ∼ ε∗µeiqx, and therefore

of Fµν ∼ i(qµε∗ν−qνε
∗
µ)eiqx; the two terms in Fµν cancel the extra factor of

one half in the second term in eq. (264).

Now we will see what eq. (264) predicts for the magnetic moment of the

electron. We define the magnetic moment by the following procedure. We
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take the photon field Aµ be a classical field that corresponds to a constant

magnetic field in the z direction: A0 = 0 and A = (0, Bx, 0); this yields

F12 = −F21 = B, with all other components of Fµν vanishing. Then we

define a normalized state of an electron at rest, with spin up along the z

axis:

|e〉 ≡
∫

d̃p f(p)b†+(p)|0〉 , (265)

where the wave packet is rotationally invariant (so that there is no orbital

angular momentum) and sharply peaked at p = 0, something like

f(p) ∼ exp(−a2p2/2) (266)

with a � 1/m. We normalize the wave packet by
∫

d̃p |f(p)|2 = 1; then we

have 〈e|e〉 = 1.

Now we define the interaction hamiltonian as what we get from the two

displayed terms in eq. (264), using our specified field Aµ, and with the form-

factor values of eq. (263):

H1 ≡ −eB
∫

d3x Ψ
[
xγ2 + α

2πm
S12

]
Ψ . (267)

Then the electron’s magnetic moment µ is specified by

µB ≡ −〈e|H1|e〉 . (268)

Eq. (268) is the standard definition of the magnetic moment of a normalized

quantum state with angular momentum in the positive z direction.

Now we turn to the computation. We need to evaluate 〈e|Ψα(x)Ψβ(x)|e〉.
Using the usual plane-wave expansions, we have

〈0|b+(p′)Ψα(x)Ψβ(x)b†+(p)|0〉 = u+(p′)αu+(p)β ei(p−p′)x . (269)

Thus we get

〈e|H1|e〉 = −eB
∫

d̃p d̃p′ d3x ei(p−p′)x

× f ∗(p′)u+(p′)
[
xγ2 + α

2πm
S12

]
u+(p)f(p) . (270)

We can write the factor of x as −i∂p1 acting on ei(p−p′)x, and integrate by parts

to put this derivative onto u+(p)f(p); the wave packets kill any surface terms.
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Then we can complete the integral over d3x to get a factor of (2π)3δ3(p′−p),

and do the integral over d̃p′. The result is

〈e|H1|e〉 = −eB
∫

d̃p

2ω
f ∗(p)u+(p)

[
iγ2∂p1 + α

2πm
S12

]
u+(p)f(p) . (271)

Suppose the ∂p1 acts on f(p). Since f(p) is rotationally invariant, the result

is odd in p1. We then use u+(p)γiu+(p) = 2pi to conclude that this term is

odd in both p1 and p2, and hence integrates to zero.

The remaining contribution from the first term has the ∂p1 acting on

u+(p). Recall from section 38 that

us(p) = exp(iη p̂·K)us(0) , (272)

where Kj = Sj0 = i
2
γjγ0 is the boost matrix, p̂ is a unit vector in the p

direction, and η = sinh−1(|p|/m) is the rapidity. Since the wave packet is

sharply peaked at p = 0, we can expand eq. (272) to linear order in p, take

the derivative with respect to p1, and then set p = 0; the result is

∂p1u+(p)
∣∣∣
p=0

= i
mK1u+(0)

= − 1
2m

γ1γ0u+(0)

= − 1
2m

γ1u+(0) , (273)

where we used γ0us(0) = us(0) to get the last line. Then we have

u+(p)iγ2∂p1u+(p)
∣∣∣
p=0

= u+(0) −i
2m

γ2γ1u+(0)

= 1
m u+(0)S12u+(0) (274)

Plugging this into eq. (271) yields

〈e|H1|e〉 = −eB
∫

d̃p

2ω
|f(p)|2

(
1 + α

2π

)
1
m u+(0)S12u+(0) .

= − eB

2m2

(
1 + α

2π

)
u+(0)S12u+(0) . (275)

Next we use S12u±(0) = ±1
2
u±(0) and u±(0)u±(0) = 2m to get

〈e|H1|e〉 = − eB

2m

(
1 + α

2π

)
. (276)
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Comparing with eq. (268), we see that the magnetic moment of the electron

is

µ = g
1

2

eB

2m
, (277)

where eB/2m is the Bohr magneton, the extra factor of 1/2 is for the elec-

tron’s spin (a classical spinning ball of charge would have a magnetic mo-

ment equal to the Bohr magneton times its angular momemtum), and g is

the Landé g factor, given by

g = 2
(
1 + α

2π
+ O(α2)

)
. (278)

Since g can be measured to high precision, calculations of µ provide a strin-

gent test of quantum electrodynamics. Corrections up through the α4 term

have been computed; the result is currently in good agreement with experi-

ment.

Problems
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