
Quantum Field Theory Mark Srednicki

8: The Path Integral for Free Field Theory

Prerequisite: 3, 7

Our results for the harmonic oscillator can be straightforwardly general-

ized to a free field theory with hamiltonian density

H0 = 1
2
Π2 + 1

2
(∇ϕ)2 + 1

2
m2ϕ2 . (184)

The dictionary we need is

q(t) −→ ϕ(x, t) (classical field)

Q(t) −→ ϕ(x, t) (operator field)

f(t) −→ J(x, t) (classical source) (185)

The distinction between the classical field ϕ(x) and the corresponding oper-

ator field should be clear from context.

To employ the ǫ trick, we multiply H0 by 1−iǫ. The results are equivalent

to replacing m2 in H0 with m2 − iǫ. From now on, for notational simplicity,

we will write m2 when we really mean m2 − iǫ.

Let us write down the path integral (also called the functional integral)

for our free field theory:

Z0(J) ≡ 〈0|0〉J =
∫

Dϕ ei
∫

d4x[L0+Jϕ] , (186)

where

L0 = −1
2
∂µϕ∂µϕ− 1

2
m2ϕ2 . (187)

Note that when we say path integral , we now mean a path in the space of

field configurations.
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We can evaluate Z0(J) by mimicking what we did for the harmonic oscil-

lator in section 7. We introduce four-dimensional Fourier transforms,

ϕ̃(k) =
∫
d4x e−ikx ϕ(x) , ϕ(x) =

∫
d4k

(2π)4
eikx ϕ̃(k) , (188)

where kx = −k0t + k ·x, and k0 is an integration variable. Then, starting

with S0 =
∫
d4x [L0 + Jϕ], we get

S0 =
1

2

∫
d4k

(2π)4

[
−ϕ̃(k)(k2 +m2)ϕ̃(−k) + J̃(k)ϕ̃(−k) + J̃(−k)ϕ̃(k)

]
, (189)

where k2 = k2 − (k0)2. We now change path integration variables to

χ̃(k) = ϕ̃(k) − J̃(k)

k2 +m2
. (190)

Since this is merely a shift by a constant, we have Dϕ = Dχ. The action

becomes

S0 =
1

2

∫ d4k

(2π)4

[
J̃(k)J̃(−k)
k2 +m2

− χ̃(k)(k2 +m2)χ̃(−k)
]
. (191)

Just as for the harmonic oscillator, the integral over χ simply yields a factor

of Z0(0) = 〈0|0〉J=0 = 1. Therefore

Z0(J) = exp

[
i

2

∫ d4k

(2π)4

J̃(k)J̃(−k)
k2 +m2 − iǫ

]

= exp
[
i

2

∫
d4x d4x′ J(x)∆(x− x′)J(x′)

]
. (192)

Here we have defined the Feynman propagator,

∆(x− x′) =
∫

d4k

(2π)4

eik(x−x′)

k2 +m2 − iǫ
. (193)

The Feynman propagator is a Green’s function for the Klein-Gordon equa-

tion,

(−∂2
x +m2)∆(x− x′) = δ4(x− x′) . (194)
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This can be seen directly by plugging eq. (193) into eq. (194) and then taking

the ǫ → 0 limit. We can also evaluate ∆(x − x′) explicitly by treating the

k0 integral on the right-hand side of eq. (193) as a contour integration in the

complex k0 plane, and then evaluating the contour integral via the residue

theorem. The result is

∆(x− x′) =
∫
d̃k eik·(x−x′)−iω|t−t′|

= iθ(t−t′)
∫
d̃k eik(x−x′) + iθ(t′−t)

∫
d̃k e−ik(x−x′) , (195)

where θ(t) is the unit step function. The integral over d̃k can also be per-

formed in terms of Bessel functions; see section 4.

Now, by analogy with the formula for the ground-state expectation value

of a time-ordered product of operators for the harmonic oscillator, we have

〈0|Tϕ(x1) . . . |0〉 =
1

i

δ

δJ(x1)
. . . Z0(J)

∣∣∣
J=0

. (196)

Using our explicit formula, eq. (192), we have

〈0|Tϕ(x1)ϕ(x2)|0〉 =
1

i

δ

δJ(x1)

1

i

δ

δJ(x2)
Z0(J)

∣∣∣
J=0

=
1

i

δ

δJ(x1)

[∫
d4x′∆(x2 − x′)J(x′)

]
Z0(J)

∣∣∣
J=0

=
[

1
i
∆(x2 − x1) + (term with J ’s)

]
Z0(J)

∣∣∣
J=0

= 1
i
∆(x2 − x1) . (197)

We can continue in this way to compute the ground-state expectation value

of the time-ordered product of more ϕ’s. If the number of ϕ’s is odd, then

there is always a left-over J in the prefactor, and so the result is zero. If the

number of ϕ’s is even, then we must pair up the functional derivatives in an

appropriate way to get a nonzero result. Thus, for example,

〈0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)|0〉 =
1

i2

[
∆(x1−x2)∆(x3−x4)

+ ∆(x1−x3)∆(x2−x4)

+ ∆(x1−x4)∆(x2−x3)
]
. (198)
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More generally,

〈0|Tϕ(x1) . . . ϕ(x2n)|0〉 =
1

in
∑

pairings

∆(xi1−xi2) . . .∆(xi2n−1−xi2n) . (199)

This result is known as Wick’s theorem.

Problems

8.1) Starting with eq. (193), verify eq. (194).

8.2) Starting with eq. (193), verify eq. (195).

8.3) Use eq. (86), the commutation relations eq. (95), and a(k)|0〉 = 0,

〈0|a†(k) = 0 to verify the last line of eq. (197).

8.4) The retarded and advanced Green’s functions for the Klein-Gordon

wave operator satisfy ∆ret(x − y) = 0 for x0 ≥ y0 and ∆adv(x − y) = 0 for

x0 ≤ y0. Find the pole prescriptions on the right-hand side of eq. (193) that

yield these Green’s functions.

8.5) Let Z0(J) = exp iW0(J), and evaluate the real and imaginary parts

of W0(J).

8.6) Repeat the analysis of this section for the complex scalar field that

was introduced in problem 3.3, and further studied in problem 5.1. Write

your source term in the form J†ϕ + Jϕ†, and find an explicit formula, anal-

ogous to eq. (192), for Z0(J
†, J). Write down the appropriate generalization

of eq. (196), and use it to compute 〈0|Tϕ(x1)ϕ(x2)|0〉, 〈0|Tϕ†(x1)ϕ(x2)|0〉,
and 〈0|Tϕ†(x1)ϕ

†(x2)|0〉. Then verify your results by using the method of

problem 8.3. Finally, give the appropriate generalization of eq. (199).
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