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We owe it to a book to withhold judgment until we reach page
100.
Henrietta McNutt, George Johnson’s seventh-grade English
teacher

A Hamiltonian system is said to be ‘integrable’ if one can find a change
of coordinates to an action-angle coordinate frame where the phase
space dynamics is described by motion on circles, one circle for each
degree of freedom. In the same spirit, a natural description of a hyper-
bolic, unstable flow would be attained if one found a change of coor-
dinates into a frame where the stable/unstable manifolds are straight
lines, and the flow is along hyperbolas. Achieving this globally for any-
thing but a handful of contrived examples is too much to hope for. Still,
as we shall now show, we can make some headway on straightening
out the flow locally.

Even though such nonlinear coordinate transformations are very im-
portant, especially in celestial mechanics, we shall not necessarily use
them much in what follows, so you can safely skip this chapter on the
first reading. Except, perhaps, you might want to convince yourself
that cycle stabilities are indeed metric invariants of flows (Section 6.6),
and you might like transformations that turn a Keplerian ellipse into a
harmonic oscillator (Example 6.2) and regularize the 2-body Coulomb
collisions (Section 6.3) in classical helium.

fast track

Chapter 14, p. 201

6.1 Changing coordinates

Problems are handed down to us in many shapes and forms, and they
are not always expressed in the most convenient way. In order to sim-
plify a given problem, one may stretch, rotate, bend and mix the coor-
dinates, but in doing so, the vector field will also change. The vector
field lives in a (hyper)plane tangent to state space and changing the co-
ordinates of state space affects the coordinates of the tangent space as
well, in a way that we will now describe.

Denote by h the conjugation function which maps the coordinates of
the initial state space M into the reparametrized state space M′ =
h(M), with a point x ∈M related to a point y ∈M′ by

y = h(x) = (y1(x), y2(x), . . . , yd(x) .
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The change of coordinates must be one-to-one and span both M and
M′, so given any point y we can go back to x = h−1(y). For smooth
flows the reparametrized dynamics should support the same number
of derivatives as the initial one. If h is a (piecewise) analytic function,
we refer to h as a smooth conjugacy.

The evolution rule gt(y0) onM′ can be computed from the evolution
rule f t(x0) onM by taking the initial point y0 ∈ M′, going back toM,
evolving, and then mapping the final point x(t) back toM′:

y(t) = gt(y0) = h ◦ f t ◦ h−1(y0) . (6.1)

Here ‘◦’ stands for functional composition h ◦ f(x) = h(f(x)), so (6.1)
is a shorthand for y(t) = h(f t(h−1(y0))).

The vector field ẋ = v(x) inM, locally tangent to the flow ft, is re-
lated to the flow by differentiation (2.5) along the trajectory. The vector
field ẏ = w(y) inM′, locally tangent to gt follows by the chain rule:

w(y) =
dgt

dt
(y)

∣∣∣∣
t=0

=
d

dt

(
h ◦ f t ◦ h−1(y)

)∣∣∣∣
t=0

= h′(h−1(y))v(h−1(y)) = h′(x)v(x) . (6.2)

With the indices reinstated, this stands for6.1, page 88

wi(y) =
∂hi(x)
∂xj

vj(x) , yi = hi(x) . (6.3)

Imagine that the state space is a rubber sheet with the flow lines
drawn on it. A coordinate change h corresponds to pulling and tug-
ging on the rubber sheet smoothly, without cutting, glueing, or self-
intersections of the distorted rubber sheet. Trajectories that are closed
loops inMwill remain closed loops in the new manifoldM′, but their
shapes will change. Globally h deforms the rubber sheet in a highly
nonlinear manner, but locally it simply rescales and shears the tangent
field by ∂jhi, hence the simple transformation law (6.2) for the velocity
fields.

The time itself is a parametrization of points along flow lines, and it
can also be reparametrized, s = s(t), with the attendent modification of
(6.2). An example is the 2-body collision regularization of the helium
Hamiltonian (7.6), to be undertaken in Section 6.3 below.

6.2 Rectification of flows

A profitable way to exploit invariance of dynamics under smooth con-
jugacies is to use it to pick out the simplest possible representative of
an equivalence class. In general and globally these are just words, as
we have no clue how to pick such ‘canonical’ representative, but for
smooth flows we can always do it locally and for sufficiently short time,
by appealing to the rectification theorem, a fundamental theorem of ordi-
nary differential equations. The theorem assures us that there exists a
conjug - 15aug2006 ChaosBook.org version11.9.2, Aug 21 2007
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solution (at least for a short time interval) and what the solution looks
like. The rectification theorem holds in the neighborhood of points of
the vector field v(x) that are not singular, that is, everywhere except for
the equilibrium points (2.8), and points at which v is infinite. According
to the theorem, in a small neighborhood of a non-singular point there
exists a change of coordinates y = h(x) such that ẋ = v(x) in the new,
canonical coordinates takes form

ẏ1 = ẏ2 = · · · = ẏd−1 = 0
ẏ1 = d ,

(6.4)

with unit velocity flow along y1, and no flow along any of the remaining
directions. This is an example of a one-parameter Lie group of trans-
formations, with finite time τ action

y′
i = yi , i = 1, 2, . . . , d− 1

y′
d = yd + τ .

Example 6.1 Harmonic oscillator, rectified:
As a simple example of global rectification of a flow consider the harmonic

oscillator
q̇ = p , ṗ = −q . (6.5)

The trajectories x(t) = (q(t), p(t)) just go around the origin, so a fair guess
is that the system would have a simpler representation in polar coordinates
y = (r, θ):

h−1 :

{
q = h−1

1 (r, θ) = r cos θ
p = h−1

2 (r, θ) = r sin θ
. (6.6)

The fundamental matrix of the transformation is

h′ =

[
cos θ sin θ

− sin θ

r
− cos θ

r

]
(6.7)

resulting in (6.2) of rectified form
5.1, page 75

ṙ = 0 , θ̇ = −1 . (6.8)

In the new coordinates the radial coordinate r is constant, and the angular
coordinate θ wraps around a cylinder with constant angular velocity. There
is a subtle point in this change of coordinates: the domain of the map h−1

is not the plane R
2, but rather the plane minus the origin. We had mapped

a plane into a cylinder, and coordinate transformations should not change
the topology of the space in which the dynamics takes place; the coordinate
transformation is not defined on the equilibrium point x = (0, 0), or r = 0.

6.3 Classical dynamics of collinear helium

(G. Tanner)

So far much has been said about 1-dimensional maps, game of pinball
and other curious but rather idealized dynamical systems. If you have
become impatient and started wondering what good are the methods
ChaosBook.org version11.9.2, Aug 21 2007 conjug - 15aug2006
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learned so far in solving real life physical problems, good news are here.
We will apply here concepts of nonlinear dynamics to nothing less than
the helium, a dreaded three-body Coulomb problem.

Can we really jump from three static disks directly to three charged
particles moving under the influence of their mutually attracting or re-
pelling forces? It turns out, we can, but we have to do it with care. The
full problem is indeed not accessible in all its detail, but we are able to
analyze a somewhat simpler subsystem–collinear helium. This system
plays an important role in the classical and quantum dynamics of the
full three-body problem.

e

θ

++
He

r2
r1

e

Fig. 6.1 Coordinates for the helium three
body problem in the plane.

The classical helium system consists of two electrons of mass me and
charge−e moving about a positively charged nucleus of mass mhe and
charge +2e.

The helium electron-nucleus mass ratio mhe/me = 1836 is so large
that we may work in the infinite nucleus mass approximation mhe =
∞, fixing the nucleus at the origin. Finite nucleus mass effects can be
taken into account without any substantial difficulty. We are now left
with two electrons moving in three spatial dimensions around the ori-
gin. The total angular momentum of the combined electron system is
still conserved. In the special case of angular momentum L = 0, the
electrons move in a fixed plane containing the nucleus. The three body
problem can then be written in terms of three independent coordinates
only, the electron-nucleus distances r1 and r2 and the inter-electron an-
gle Θ, see Fig. 6.1.??, page ??

This looks like something we can lay our hands on; the problem has
been reduced to three degrees of freedom, six phase space coordinates
in all, and the total energy is conserved. But let us go one step further;
the electrons are attracted by the nucleus but repelled by each other.
They will tend to stay as far away from each other as possible, prefer-
ably on opposite sides of the nucleus. It is thus worth having a closer
look at the situation where the three particles are all on a line with the
nucleus being somewhere between the two electrons. If we, in addi-
tion, let the electrons have momenta pointing towards the nucleus as in
Fig. 6.2, then there is no force acting on the electrons perpendicular to
the common interparticle axis. That is, if we start the classical system
on the dynamical subspace Θ = π, d

dtΘ = 0, the three particles will
remain in this collinear configuration for all times.

He
++

e e

r r

- -

1 2

Fig. 6.2 Collinear helium, with the two
electrons on opposite sides of the nu-
cleus.

6.3.1 Scaling

In what follows we will restrict the dynamics to this collinear subspace.
It is a system of two degrees of freedom with the Hamiltonian

H =
1

2me

(
p2
1 + p2

2

)− 2e2

r1
− 2e2

r2
+

e2

r1 + r2
= E , (6.9)

where E is the total energy. As the dynamics is restricted to the fixed
energy shell, the four phase space coordinates are not independent; the
energy shell dependence can be made explicit by writing (r1, r2, p1, p2)→
conjug - 15aug2006 ChaosBook.org version11.9.2, Aug 21 2007



6.3. CLASSICAL DYNAMICS OF COLLINEAR HELIUM 81

(r1(E), r2(E), p1(E), p2(E)) .
We will first consider the dependence of the dynamics on the energy

E. A simple analysis of potential versus kinetic energy tells us that if
the energy is positive both electrons can escape to ri → ∞, i = 1, 2.
More interestingly, a single electron can still escape even if E is nega-
tive, carrying away an unlimited amount of kinetic energy, as the total
energy of the remaining inner electron has no lower bound. Not only
that, but one electron will escape eventually for almost all starting con-
ditions. The overall dynamics thus depends critically on whether E > 0
or E < 0. But how does the dynamics change otherwise with varying
energy? Fortunately, not at all. Helium dynamics remains invariant
under a change of energy up to a simple scaling transformation; a so-
lution of the equations of motion at a fixed energy E0 = −1 can be
transformed into a solution at an arbitrary energy E < 0 by scaling the
coordinates as

ri(E) =
e2

(−E)
ri, pi(E) =

√
−meE pi, i = 1, 2 ,

together with a time transformation t(E) = e2m
1/2
e (−E)−3/2 t. We in-

clude the electron mass and charge in the scaling transformation in or-
der to obtain a non–dimensionalized Hamiltonian of the form

H =
p2
1

2
+

p2
2

2
− 2

r1
− 2

r2
+

1
r1 + r2

= −1 . (6.10)

The case of negative energies chosen here is the most interesting one
for us. It exhibits chaos, unstable periodic orbits and is responsible for
the bound states and resonances of the quantum problem treated in
Section ??.

6.3.2 Regularization of two–body collisions

Next, we have a closer look at the singularities in the Hamiltonian
(6.10). Whenever two bodies come close to each other, accelerations
become large, numerical routines require lots of small steps, and nu-
merical precision suffers. No numerical routine will get us through the
singularity itself, and in collinear helium electrons have no option but
to collide with the nucleus. Hence a regularization of the differential
equations of motions is a necessary prerequisite to any numerical work
on such problems, both in celestial mechanics (where a spaceship exe-
cutes close approaches both at the start and its destiantion) and in quan-
tum mechanics (where much of semiclassical physics is dominated by
returning classical orbits that probe the quantum wave function at the
nucleus).

There is a fundamental difference between two–body collisions r1 =
0 or r2 = 0, and the triple collision r1 = r2 = 0. Two–body collisions can
be regularized, with the singularities in equations of motion removed
by a suitable coordinate transformation together with a time transfor-
mation preserving the Hamiltonian structure of the equations. Such
ChaosBook.org version11.9.2, Aug 21 2007 conjug - 15aug2006
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regularization is not possible for the triple collision, and solutions of
the differential equations can not be continued through the singularity
at the origin. As we shall see, the chaos in collinear helium originates
from this singularity of triple collisions.

A regularization of the two–body collisions is achieved by means of
the Kustaanheimo–Stiefel (KS) transformation, which consists of a co-
ordinate dependent time transformation which stretches the time scale
near the origin, and a canonical transformation of the phase space co-
ordinates. In order to motivate the method, we apply it first to the
1-dimensional Kepler problemRemark ??

H =
1
2
p2 − 2

x
= E . (6.11)

Example 6.2 Keplerian ellipse, rectified:
To warm up, consider the E = 0 case, starting at x = 0 at t = 0. Even though
the equations of motion are singular at the intial point, we can immediately
integrate

1

2
ẋ2 − 2

x
= 0

by means of separation of variables

√
xdx =

√
2dt , x = (3t)

2
3 , (6.12)

and observe that the solution is not singular. The aim of regularization is to
compensate for the infinite acceleration at the origin by introducing a ficti-
tious time, in terms of which the passage through the origin is smooth.
A time transformation dt = f(q, p)dτ for a system described by a Hamil-
tonian H(q, p) = E leaves the Hamiltonian structure of the equations of
motion unaltered, if the Hamiltonian itself is transformed into H(q, p) =
f(q, p)(H(q, p) − E). For the 1– dimensional Coulomb problem with (6.11)
we choose the time transformation dt = xdτ which lifts the |x| → 0 singular-
ity in (6.11) and leads to a new Hamiltonian

H =
1

2
xp2 − 2 − Ex = 0. (6.13)

The solution (6.12) is now parametrized by the fictitous time dτ through a
pair of equations

x = τ 2 , t =
1

3
τ 3 .

The equations of motion are, however, still singular as x→ 0:

d2x

dτ 2
= − 1

2x

dx

dτ
+ xE .

Appearance of the square root in (6.12) now suggests a canonical transfor-
mation of form

x = Q2 , p =
P

2Q
(6.14)

which maps the Kepler problem into that of a harmonic oscillator with Hamil-
tonian

H(Q,P ) =
1

8
P 2 − EQ2 = 2, (6.15)

with all singularities completely removed.

conjug - 15aug2006 ChaosBook.org version11.9.2, Aug 21 2007
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We now apply this method to collinear helium. The basic idea is
that one seeks a higher-dimensional generalization of the ‘square root
removal’ trick (6.14), by introducing a new vector Q with property r =
|Q|2 . In this simple 1-dimensional example the KS transformation can
be implemented by

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
(6.16)

and reparametrization of time by dτ = dt/r1r2. The singular behav-
??, page ??ior in the original momenta at r1 or r2 = 0 is again compensated by

stretching the time scale at these points. The Hamiltonian structure of
the equations of motions with respect to the new time τ is conserved, if
we consider the Hamiltonian

Hko =
1
8
(Q2

2P
2
1 + Q2

1P
2
2 )− 2R2

12 + Q2
1Q

2
2(−E + 1/R2

12) = 0 (6.17)

with R12 = (Q2
1 + Q2

2)
1/2, and we will take E = −1 in what follows.

The equations of motion now have the form

Ṗ1 = 2Q1

[
2− P 2

2

8
−Q2

2

(
1 +

Q2
2

R4
12

)]
; Q̇1 =

1
4
P1Q

2
2 (6.18)

Ṗ2 = 2Q2

[
2− P 2

1

8
−Q2

1

(
1 +

Q2
1

R4
12

)]
; Q̇2 =

1
4
P2Q

2
1.

Individual electron–nucleus collisions at r1 = Q2
1 = 0 or r2 = Q2

2 =
0 no longer pose a problem to a numerical integration routine. The
equations (6.18) are singular only at the triple collision R12 = 0, i.e.,
when both electrons hit the nucleus at the same time.

The new coordinates and the Hamiltonian (6.17) are very useful when
calculating trajectories for collinear helium; they are, however, less in-
tuitive as a visualization of the three-body dynamics. We will therefore
refer to the old coordinates r1, r2 when discussing the dynamics and
the periodic orbits.

To summarize, we have brought a 3-body problem into a form where
the 2-body collisions have been transformed away, and the phase space
trajectories computable numerically. To appreciate the full beauty of
what has been attained, you have to fast-forward to Chapter ??; we are
already ‘almost’ ready to quantize helium by semiclassical methods.

fast track

Chapter 5, p. 69

6.4 Rectification of maps

In Section 6.2 we had argued that nonlinear coordinate transformations
can be profitably employed to simplify the representation of a flow.
We shall now apply the same idea to nonlinear maps, and determine a
smooth nonlinear change of coordinates that flattens out the vicinity of
ChaosBook.org version11.9.2, Aug 21 2007 conjug - 15aug2006
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Fig. 6.3 (a) A typical trajectory in the
[r1, r2] plane; the trajectory enters here
along the r1 axis and escapes to infinity
along the r2 axis; (b) Poincaré map (r2=0)
for collinear helium. Strong chaos pre-
vails for small r1 near the nucleus.
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a fixed point and makes the map linear in an open neighborhood. In its
simplest form the idea can be implemented only for an isolated nonde-
generate fixed point (otherwise are needed in the normal form expan-
sion around the point), and only in a finite neigborhood of a point, as
the conjugating function in general has a finite radius of convergence.
In Section 6.5 we will extend the method to periodic orbits.

6.4.1 Rectification of a fixed point in one dimension
6.2, page 88

Consider a 1-dimensional map xn+1 = f(xn) with a fixed point at x =
0, with stability Λ = f ′(0). If |Λ| 
= 1, one can determine term-by-term
the power series for a smooth conjugation h(x) centered at the fixed
point, h(0) = 0, that flattens out the neighborhood of the fixed point

f(x) = h−1(Λh(x)) (6.19)

and replaces the nonlinear map f(x) by a linear map yn+1 = Λyn.
To compute the conjugation h we use the functional equation h−1(Λx) =

f(h−1(x)) and the expansions

f(x) = Λx + x2f2 + x3f3 + . . .

h−1(x) = x + x2h2 + x3h3 + . . . . (6.20)

Equating the coefficients of xk on both sides of the functional equation
yields hk order by order as a function of f2, f3, . . .. If h(x) is a conjuga-
tion, so is any scaling h(bx) of the function for a real number b. Hence
the value of h′(0) is not determined by the functional equation (6.19); it
is convenient to set h′(0) = 1.

The algebra is not particularly illuminating and best left to comput-
ers. In any case, for the time being we will not use much beyond the
first, linear term in these expansions.

Here we have assumed Λ 
= 1. If the fixed point has first k−1 deriva-
tives vanishing, the conjugacy is to the kth normal form.

In several dimensions, Λ is replaced by the Jacobian matrix, and one
has to check that the eigenvalues M are non-resonant, that is, there is
no integer linear relation between the stability exponents (5.4).
conjug - 15aug2006 ChaosBook.org version11.9.2, Aug 21 2007
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6.5 Rectification of a 1-dimensional periodic
orbit

In Section 6.4.1 we have constructed the conjugation function for a fixed
point. Here we turn to the problem of constructing it for periodic or-
bits. Each point around the cycle has a differently distorted neighbor-
hood, with differing second and higher order derivatives, so we need
to compute a different conjugation function ha at each cycle point xa.
We expand the map f around each cycle point along the cycle,

ya(φ) = fa(φ) − xa+1 = φfa,1 + φ2fa,2 + . . . (6.21)

where xa is a point on the cycle, fa(φ) = f(xa + φ) is centered on the
periodic orbit, and the index k in fa,k refers to the kth order in the ex-
pansion (6.20).

For a periodic orbit the conjugation formula (6.19) generalizes to

fa(φ) = h−1
a+1(f

′
a(0)ha(φ)) , a = 1, 2, · · · , n ,

point by point. The conjugationg functions ha are obtained in the same
way as before, by equating coefficients of the expansion (6.20), and
assuming that the cycle Floquet multiplier Λ =

∏n−1
a=0 f ′(xa) is not

marginal, |Λ| 
= 1. The explicit expressions for ha in terms of f are
obtained by iterating around the whole cycle,

fn(xa + φ) = h−1
a (Λha(φ)) + xa . (6.22)

evaluated at each cycle point a. Again we have the freedom to set
Remark 6.6

h′
a(0) = 1 for all a.

6.5.1 Repeats of cycles

We have traded in our initial nonlinear map f for a (locally) linear map
Λy and an equally complicated conjugation function h. What is gained
by rewriting the map f in terms of the conjugacy function h? Once
the neighborhood of a fixed point is linearized, the repeats of it are
trivialized; from the conjugation formula (6.20) one can compute the
derivatives of a function composed with itself r times:

f r(x) = h−1(Λrh(x)) .

One can already discern the form of the expansion for arbitrary repeats;
the answer will depend on the conjugacy function h(x) computed for
a single repeat, and all the dependence on the repeat number will be
carried by factors polynomial in Λr, a considerable simplification. The
beauty of the idea is difficult to gauge at this stage–an appreciation only
sets in when one starts computing perturbative corrections, be it in ce-
lestial mechanics (where the method was born), be it the quantum or
stochastic corrections to ‘semiclassical’ approximations.
ChaosBook.org version11.9.2, Aug 21 2007 conjug - 15aug2006
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6.6 Smooth conjugacies and cycle Floquet
multipliers

In Section 5.2 we have established that for a given flow the cycle Flo-
quet multipliers are intrinsic to a given cycle, independent of the staring
point along the cycle. Now we can prove a much stronger statement;
cycle Floquet multipliers are metric invariants of the flow, the same in
any representation of the dynamical system.

That the cycle Floquet multipliers are an invariant property of the
given dynamical system follows from elementary considerations of Sec-
tion 6.1: If the same dynamics is given by a map f in x coordinates, and
a map g in the y = h(x) coordinates, then f and g (or any other good
representation) are related by (6.2), a reparametrization and a coordi-
nate transformation g = h ◦ f ◦ h−1. As both f and g are arbitrary
representations of the dynamical system, the explicit form of the conju-
gacy h is of no interest, only the properties invariant under any trans-
formation h are of general import. Furthermore, a good representation
should not mutilate the data; h must be a smooth conjugacy which maps
nearby cycle points of f into nearby cycle points of g. This smoothness
guarantees that the cycles are not only topological invariants, but that
their linearized neighborhoods are also metrically invariant. For a fixed
point f(x) = x of a 1-dimensional map this follows from the chain rule
for derivatives,

g′(y) = h′(f ◦ h−1(y))f ′(h−1(y))
1

h′(x)

= h′(x)f ′(x)
1

h′(x)
= f ′(x) , (6.23)

and the generalization to the Floquet multipliers of periodic orbits of
d-dimensional flows is immediate.

As stability of a flow can always be rewritten as stability of a Poincaré
section return map, we find that a Floquet multiplier of any cycle, for
a flow or a map in arbitrary dimension, is a metric invariant of the
dynamical system.6.2, page 88

in depth:

Appendix B.1, p. 291

Summary

Dynamics (M, f) is invariant under the group of all smooth conjuga-
cies

(M, f) → (M′, g) = (h(M), h ◦ f ◦ h−1) .

This invariance can be used to (i) find a simplified representation for the
flow and (ii) identify a set of invariants, numbers computed within a
particular choice of (M, f), but invariant under allM→ h(M) smooth
conjugacies.
conjug - 15aug2006 ChaosBook.org version11.9.2, Aug 21 2007
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The 2D-dimensional phase space of an integrable Hamiltonian sys-
tem of D degrees of freedom is fully foliated by D-tori. In the same
spirit, for a uniformly hyperbolic, chaotic dynamical system one would
like to change into a coordinate frame where the stable/unstable man-
ifolds form a set of transversally intersecting hyper-planes, with the
flow everywhere locally hyperbolic. That cannot be achieved in gen-
eral: Fully globally integrable and fully globally chaotic flows are a
very small subset of all possible flows, a ‘set of measure zero’ in the
world of all dynamical systems.

What we really care about is developping invariant notions of what
a given dynamical system is. The totality of smooth one-to-one nonlin-
ear coordinate transformations h which map all trajectories of a given
dynamical system (M, f t) onto all trajectories of dynamical systems
(M′, gt) gives us a huge equivalence class, much larger than the equiv-
alence classes familiar from the theory of linear transformations, such
as the rotation group O(d) or the Galilean group of all rotations and
translations in Rd. In the theory of Lie groups, the full invariant speci-
fication of an object is given by a finite set of Casimir invariants. What
a good full set of invariants for a group of general nonlinear smooth
conjugacies might be is not known, but the set of all periodic orbits and
their stability eigenvalues will turn out to be a good start.

Further reading

Rectification of flows. See Section 2.2.5 of Ref. [12]
for a pedagogical introduction to smooth coordinate
reparametrizations. Explicit examples of transformations
into cannonical coordinates for a group of scalings and a
group of rotations are worked out.

Rectification of maps. The methods outlined above
are standard in the analysis of fixed points and construc-
tion of normal forms for bifurcations, see for example

Ref. [21,2,4–9,9]. The geometry underlying such methods
is pretty, and we enjoyed reading, for example, Percival
and Richards [10], chaps. 2 and 4 of Ozorio de Almeida’s
monograph [11], and, as always, Arnol’d [1].

Recursive formulas for evaluation of derivatives
needed to evaluate (6.20) are given, for example, in Ap-
pendix A of Ref. [5].

Exercises

(6.1) Coordinate transformations. Changing co-
ordinates is conceptually simple, but can become
confusing when carried out in detail. The difficulty
arises from confusing functional relationships, such
as x(t) = h−1(y(t)) with numerical relationships,

such as w(y) = h′(x)v(x). Working through an ex-
ample will clear this up.

(a) The differential equation in the M space is
ẋ = {2x1, x2} and the change of coordinates
from M to M′ is h(x1, x2) = {2x1 + x2, x1 −
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88 Exercises

x2}. Solve for x(t). Find h−1.
(b) Show that in the transformed space M′, the

differential equation is

d

dt

[
y1
y2

]
=

1

3

[
5y1 + 2y2
y1 + 4y2

]
. (6.24)

Solve this system. Does it match the solution
in the M space?

(6.2) Linearization for maps. Let f : C → C be a map
from the complex numbers into themselves, with a

fixed point at the origin and analytic there. By ma-
nipulating power series, find the first few terms of
the map h that conjugates f to αz, that is,

f(z) = h−1(αh(z)) .

There are conditions on the derivative of f at the
origin to assure that the conjugation is always pos-
sible. Can you formulate these conditions by exam-
ining the series?
(difficulty: medium)
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