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(F. Christiansen)

Having set up the dynamical context, now we turn to the key and
unavoidable piece of numerics in this subject; search for the solutions
(x, T), x ∈ R

d, T ∈ R of the periodic orbit condition

f t+T(x) = f t(x) , T > 0 (12.1)

for a given flow or mapping.
We know from Chapter ?? that cycles are the necessary ingredient

for evaluation of spectra of evolution operators. In Chapter 10 we have
developed a qualitative theory of how these cycles are laid out topolog-
ically.

This chapter is intended as a hands-on guide to extraction of periodic
orbits, and should be skipped on first reading - you can return to it
whenever the need for finding actual cycles arises. Sadly, searching
for periodic orbits will never become as popular as a week on Côte
d’Azur, or publishing yet another log-log plot in Phys. Rev. Letters. A

Chapter ??
serious cyclist might want to also learn about the variational methods
to find cycles, Chapter ??. They are particularly useful when little is
understood about the topology of a flow, such as in high-dimensional
periodic orbit searches.

fast track

Chapter ??, p. ??
A prime cycle p of period Tp is a single traversal of the periodic or-

bit, so our task will be to find a cycle point x ∈ p and the shortest time
Tp for which (12.1) has a solution. A cycle point of a flow f t which
crosses a Poincaré section np times is a fixed point of the Pnp iterate of
the Poincaré section return map P , hence we shall refer to all cycles as
“fixed points” in this chapter. By cyclic invariance, stability eigen- ⇒ Section 5.2values and the period of the cycle are independent of the choice of the
initial point, so it will suffice to solve (12.1) at a single cycle point.

If the cycle is an attracting limit cycle with a sizable basin of attrac-
tion, it can be found by integrating the flow for sufficiently long time. If
the cycle is unstable, simple integration forward in time will not reveal
it, and methods to be described here need to be deployed. In essence,
any method for finding a cycle is based on devising a new dynami-
cal system which possesses the same cycle, but for which this cycle is
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attractive. Beyond that, there is a great freedom in constructing such
systems, and many different methods are used in practice.

Due to the exponential divergence of nearby trajectories in chaotic
dynamical systems, fixed point searches based on direct solution of the
fixed-point condition (12.1) as an initial value problem can be numeri-
cally very unstable. Methods that start with initial guesses for a numberChapter ??

of points along the cycle, such as the multipoint shooting method de-
scribed here in Section 12.3, and the variational methods of Chapter ??,
are considerably more robust and safer.

A prerequisite for any exhaustive cycle search is a good understand-
ing of the topology of the flow: a preliminary step to any serious pe-
riodic orbit calculation is preparation of a list of all distinct admissible
prime periodic symbol sequences, such as the list given in Table 10.1.
The relations between the temporal symbol sequences and the spatial
layout of the topologically distinct regions of the state space discussed
in Chapters 10 and 11 should enable us to guess location of a series
of periodic points along a cycle. Armed with such informed guess we
proceed to improve it by methods such as the Newton-Raphson itera-
tion; we illustrate this by considering 1-dimensional and d-dimensional
maps.

12.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it
doesn’t converge? T.D. Lee: Well then you only have yourself
to blame.
T.D. Lee

Ergodic exploration of recurrences that we turn to now sometimes per-
forms admirably well in getting us started.

In the Rössler flow example we sketched the attractors by running a
long chaotic trajectory, and noted that the attractors are very thin, but
otherwise the return maps that we plotted were disquieting – Fig. 3.3
did not appear to be a 1-to-1 map. In this section we show how to use
such information to approximately locate cycles. In the remainder of
this chapter and in Chapter ?? we shall learn how to turn such guesses
into highly accurate cycles.

Example 12.1 Rössler attractor
(G. Simon and P. Cvitanović)

Run a long simulation of the Rössler flow f t, plot a Poincaré section, as in
Fig. 3.1, and extract the corresponding Poincaré return map P , as in Fig. 3.3.
Luck is with us; the Fig. 12.1 (a) return map y → P1(y, z) looks much like a
parabola, so we take the unimodal map symbolic dynamics, Section 10.2.1,
as our guess for the covering dynamics. Strictly speaking, the attractor is
“fractal”, but for all practical purposes the return map is 1-dimensional; your
printer will need a resolution better than 1014 dots per inch to start resolving
its structure.

cycles - 22apr2007 ChaosBook.org version11.9.2, Aug 21 2007
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Fig. 12.1 (a) y → P1(y, z) return map for x = 0, y > 0 Poincaré section of the Rössler
flow Fig. 2.3. (b) The 1-cycle found by taking the fixed point yk+n = yk together with
the fixed point of the z → z return map (not shown) an initial guess (0, y(0), z(0)) for the
Newton-Raphson search. (c) yk+3 = P 3

1 (yk , zk), the third iterate of Poincaré return map
(3.1) together with the corresponding plot for zk+3 = P 3

2 (yk, zk), is used to pick starting
guesses for the Newton-Raphson searches for the two 3-cycles: (d) the 001 cycle, and (e)
the 011 cycle. (G. Simon)

Periodic points of a prime cycle p of cycle length np for the x = 0, y > 0
Poincaré section of the Rössler flow Fig. 2.3 are fixed points (y, z) = P n(y, z)
of the nth Poincaré return map.
Using the fixed point yk+1 = yk in Fig. 12.1 (a) together with the simulta-
neous fixed point of the z → P1(y, z) return map (not shown) as a starting
guess (0, y(0), z(0)) for the Newton-Raphson search for the cycle p with sym-
bolic dynamics label 1, we find the cycle Fig. 12.1 (b) with the Poincaré sec-
tion point (0, yp, zp), period Tp, expanding, marginal, contracting stability
eigenvalues (Λp,e,Λp,m,Λp,c), and Lyapunov exponents (λp,e, λp,m, λp,c):

1-cycle: (x, y, z) = (0, 6.09176832, 1.2997319)

T1 = 5.88108845586

(Λ1,e,Λ1,m,Λ1,c) = (−2.40395353, 1 + 10−14,−1.29 × 10−14)

(λ1,e, λ1,m, λ1,c) = (0.149141556, 10−14,−5.44) . (12.2)

The Newton-Raphson method that we used is described in Section 12.5.
12.7, page 169As an example of a search for longer cycles, we use yk+3 = P 3

1 (yk, zk), the
third iterate of Poincaré return map (3.1) plotted in Fig. 12.1 (c), together with
a corresponding plot for zk+3 = f3(yk, zk), to pick starting guesses for the
Newton-Raphson searches for the two 3-cycles plotted in Fig. 12.1 (d), (e).
For a listing of the short cycles of the Rössler flow, consult Table ??.
The numerical evidence suggests (but a proof is lacking) that all cycles that
comprise the strange attractor of the Rössler system are hyperbolic, each with
an expanding eigenvalue |Λe| > 1, a contracting eigenvalue |Λc| < 1, and a
marginal eigenvalue |Λm| = 1 corresponding to displacements along the
direction of the flow.
For the Rössler system the contracting eigenvalues turn out to be insanely
contracting, a factor of e−32 per one par-course of the attractor, so their nu-
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merical determination is quite difficult. Fortunately, they are irrelevant; for
all practical purposes the strange attractor of the Rössler system is 1-dimensional,
a very good realization of a horseshoe template.

12.2 One-dimensional mappings

12.2.1 Inverse iteration
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Fig. 12.2 The inverse time path to the 01-
cycle of the logistic map f(x) = 4x(1−x)
from an initial guess of x = 0.2. At each
inverse iteration we chose the 0, respec-
tively 1 branch.

Let us first consider a very simple method to find unstable cycles of
a 1-dimensional map such as the logistic map. Unstable cycles of 1-d
maps are attracting cycles of the inverse map. The inverse map is not
single valued, so at each backward iteration we have a choice of branch
to make. By choosing branch according to the symbolic dynamics of
the cycle we are trying to find, we will automatically converge to the
desired cycle. The rate of convergence is given by the stability of the
cycle, i.e., the convergence is exponentially fast. Figure 12.2 shows such
path to the 01-cycle of the logistic map.

12.10, page 169

The method of inverse iteration is fine for finding cycles for 1-d maps
and some 2-d systems such as the repeller of Exercise 12.10. It is not
particularly fast, especially if the inverse map is not known analyt-
ically. However, it completely fails for higher dimensional systems
where we have both stable and unstable directions. Inverse iteration
will exchange these, but we will still be left with both stable and un-
stable directions. The best strategy is to directly attack the problem of
finding solutions of fT (x) = x.

12.2.2 Newton’s method
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Fig. 12.3 Convergence of Newton’s
method (♦) vs. inverse iteration (+).
The error after n iterations searching for
the 01-cycle of the logistic map f(x) =
4x(1 − x) with an initial starting guess
of x1 = 0.2, x2 = 0.8. y-axis is log10 of
the error. The difference between the ex-
ponential convergence of the inverse iter-
ation method and the super-exponential
convergence of Newton’s method is dra-
matic.

Newton’s method for determining a zero x∗ of a function F (x) of one
variable is based on a linearization around a starting guess x0:

F (x) ≈ F (x0) + F ′(x0)(x − x0). (12.3)

An approximate solution x1 of F (x) = 0 is

x1 = x0 − F (x0)/F ′(x0). (12.4)

The approximate solution can then be used as a new starting guess in
an iterative process. A fixed point of a map f is a solution to F (x) =
x− f(x) = 0. We determine x by iterating

xm = g(xm−1) = xm−1 − F (xm−1)/F ′(xm−1)

= xm−1 − 1
1− f ′(xm−1)

(xm−1 − f(xm−1)) . (12.5)

Provided that the fixed point is not marginally stable, f ′(x) 
= 1 at
the fixed point x, a fixed point of f is a super-stable fixed point of the
Newton-Raphson map g, g′(x) = 0, and with a sufficiently good initial
guess, the Newton-Raphson iteration will converge super-exponentially
fast.
cycles - 22apr2007 ChaosBook.org version11.9.2, Aug 21 2007



12.3. MULTIPOINT SHOOTING METHOD 161

To illustrate the efficiency of the Newton’s method we compare it to
the inverse iteration method in Fig. 12.3. Newton’s method wins hands
down: the number of significant digits of the accuracy of x estimate
doubles with each iteration.

In order to avoid jumping too far from the desired x∗ (see Fig. 12.4),
one often initiates the search by the damped Newton’s method,

Δxm = xm+1 − xm = − F (xm)
F ′(xm)

Δτ , 0 < Δτ ≤ 1 ,

takes small Δτ steps at the beginning, reinstating to the full Δτ = 1
jumps only when sufficiently close to the desired x∗.

12.3 Multipoint shooting method

Periodic orbits of length n are fixed points of fn so in principle we could
use the simple Newton’s method described above to find them. How-
ever, this is not an optimal strategy. fn will be a highly oscillating func-
tion with perhaps as many as 2n or more closely spaced fixed points,
and finding a specific periodic point, for example one with a given sym-
bolic sequence, requires a very good starting guess. For binary symbolic
dynamics we must expect to improve the accuracy of our initial guesses
by at least a factor of 2n to find orbits of length n. A better alternative
is the multipoint shooting method. While it might very hard to give a
precise initial point guess for a long periodic orbit, if our guesses are
informed by a good state space partition, a rough guess for each point
along the desired trajectory might suffice, as for the individual short
trajectory segments the errors have no time to explode exponentially.

x(b)
x

F(x)

x

(m)F(x    )

(m+1)

x(m)

x
x xxc *

R

L(b+1)x

Fig. 12.4 Newton method: bad initial
guess x(b) leads to the Newton estimate
x(b+1) far away from the desired zero of
F (x). Sequence · · · , x(m), x(m+1), · · ·,
starting with a good guess converges
super-exponentially to x∗. The method
diverges if it iterates into the basin of at-
traction of a local minimum xc.

A cycle of length n is a zero of the n-dimensional vector function F :

F (x) = F

⎛
⎜⎜⎝

x1

x2

·
xn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x1 − f(xn)
x2 − f(x1)
· · ·

xn − f(xn−1)

⎞
⎟⎟⎠ .

The relations between the temporal symbol sequences and the spatial
layout of the topologically distinct regions of the state space discussed
in Chapter 10 enable us to guess location of a series of periodic points
along a cycle. Armed with such informed initial guesses we can initiate
a Newton-Raphson iteration. The iteration in the Newton’s method
now takes the form of

d

dx
F (x)(x′ − x) = −F (x), (12.6)

ChaosBook.org version11.9.2, Aug 21 2007 cycles - 22apr2007
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where d
dxF (x) is an [n× n] matrix:

d
dxF (x) =

⎛
⎜⎜⎜⎜⎝

1 −f ′(xn)
−f ′(x1) 1

· · · 1
· · · 1

−f ′(xn−1) 1

⎞
⎟⎟⎟⎟⎠ .

(12.7)
This matrix can easily be inverted numerically by first eliminating the
elements below the diagonal. This creates non-zero elements in the nth
column. We eliminate these and are done. Let us take it step by step for
a period 3 cycle. Initially the setup for the Newton step looks like this:⎛

⎝ 1 0 −f ′(x3)
−f ′(x1) 1 0

0 −f ′(x2) 1

⎞
⎠
⎛
⎝ δ1

δ2

δ3

⎞
⎠ =

⎛
⎝ −F1

−F2

−F3

⎞
⎠ , (12.8)

where δi = x′
i−xi is the correction of our guess for a solution and where

Fi = xi − f(xi−1). First we eliminate the below diagonal elements by
adding f ′(x1) times the first row to the second row, then adding f ′(x2)
times the second row to the third row. We then have⎛

⎝ 1 0 −f ′(x3)
0 1 −f ′(x1)f ′(x3)
0 0 1− f ′(x2)f ′(x1)f ′(x3)

⎞
⎠
⎛
⎝ δ1

δ2

δ3

⎞
⎠ =⎛

⎝ −F1

−F2 − f ′(x1)F1

−F3 − f ′(x2)F2 − f ′(x2)f ′(x1)F1

⎞
⎠ . (12.9)

The next step is to invert the last element in the diagonal, i.e., divide
the third row by 1 − f ′(x2)f ′(x1)f ′(x3). It is clear that if this element
is zero at the periodic orbit this step might lead to problems. In many
cases this will just mean a slower convergence, but it might throw the
Newton iteration completely off. We note that f ′(x2)f ′(x1)f ′(x3) is the
stability of the cycle (when the Newton iteration has converged) and
that this therefore is not a good method to find marginally stable cycles.
We now have⎛

⎝ 1 0 −f ′(x3)
0 1 −f ′(x1)f ′(x3)
0 0 1

⎞
⎠
⎛
⎝ δ1

δ2

δ3

⎞
⎠ =

⎛
⎝ −F1

−F2 − f ′(x1)F1
−F3−f ′(x2)F2−f ′(x2)f

′(x1)F1
1−f ′(x2)f ′(x1)f ′(x3)

⎞
⎠ . (12.10)

Finally we add f ′(x3) times the third row to the first row and f ′(x1)f ′(x3)
times the third row to the second row. On the left hand side the matrix
is now the unit matrix, on the right hand side we have the corrections
to our initial guess for the cycle, i.e., we have gone through one step of
the Newton iteration scheme.
cycles - 22apr2007 ChaosBook.org version11.9.2, Aug 21 2007
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When one sets up the Newton iteration on the computer it is not
necessary to write the left hand side as a matrix. All one needs is a
vector containing the f ′(xi)’s, a vector containing the n’th column, that
is the cumulative product of the f ′(xi)’s and a vector containing the
right hand side. After the iteration the vector containing the right hand
side should be the correction to the initial guess.

12.1, page 168

12.4 d-dimensional mappings

(F. Christiansen)

Armed with symbolic dynamics informed initial guesses we can utilize
the Newton-Raphson iteration in d-dimensions as well.

12.4.1 Newton’s method for d-dimensional mappings

Newton’s method for 1-dimensional mappings is easily extended to
higher dimensions. In this case f ′(xi) is a [d× d] matrix. d

dxF (x) is then
an [nd×nd] matrix. In each of the steps that we went through above we
are then manipulating d rows of the left hand side matrix. (Remember
that matrices do not commute - always multiply from the left.) In the
inversion of the n’th element of the diagonal we are inverting a [d× d]
matrix (1 −∏

f ′(xi)) which can be done if none of the eigenvalues of∏
f ′(xi) equals 1, i.e., the cycle must not have any marginally stable

directions.
Some d-dimensional mappings (such as the Hénon map (3.15)) can

be written as 1-dimensional time delay mappings of the form

f(xi) = f(xi−1, xi−2, . . . , xi−d). (12.11)

In this case d
dxF (x) is an [n×n] matrix as in the case of usual 1-dimensional

maps but with non-zero matrix elements on d off-diagonals. In the
elimination of these off-diagonal elements the last d columns of the ma-
trix will become non-zero and in the final cleaning of the diagonal we
will need to invert a [d×d] matrix. In this respect, nothing is gained nu-
merically by looking at such maps as 1-dimensional time delay maps.

12.5 Flows

(F. Christiansen)

Further complications arise for flows due to the fact that for a peri-
odic orbit the stability eigenvalue corresponding to the flow direction
of necessity equals unity; the separation of any two points along a cycle
remains unchanged after a completion of the cycle. More unit eigenval- ⇒ Section 5.2.1ues can arise if the flow satisfies conservation laws, such as the energy
invariance for Hamiltonian systems. We now show how such problems
are solved by increasing the number of fixed point conditions.
ChaosBook.org version11.9.2, Aug 21 2007 cycles - 22apr2007
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12.5.1 Newton’s method for flows

A flow is equivalent to a mapping in the sense that one can reduce the
flow to a mapping on the Poincaré surface of section. An autonomous
flow (2.6) is given as

ẋ = v(x), (12.12)

The corresponding fundamental matrix M (4.32) is obtained by inte-
grating the linearized equation (4.9)

Ṁ = AM , Aij(x) =
∂vi(x)
∂xj

along the trajectory. The flow and the corresponding fundamental ma-
trix are integrated simultaneously, by the same numerical routine. Inte-
grating an initial condition on the Poincaré surface until a later crossing
of the same and linearizing around the flow we can write

f(x′) ≈ f(x) + M(x′ − x). (12.13)

Notice here, that, even though all of x′, x and f(x) are on the Poincaré
surface, f(x′) is usually not. The reason for this is that M corresponds
to a specific integration time and has no explicit relation to the arbitrary
choice of Poincaré section. This will become important in the extended
Newton’s method described below.

To find a fixed point of the flow near a starting guess x we must solve
the linearized equation

(1−M)(x′ − x) = −(x− f(x)) = −F (x) (12.14)

where f(x) corresponds to integrating from one intersection of the Poincaré
surface to another and M is integrated accordingly. Here we run into
problems with the direction along the flow, since - as shown in Sec-
tion 5.2.1 - this corresponds to a unit eigenvector of M . The matrix
(1 −M) does therefore not have full rank. A related problem is that
the solution x′ of (12.14) is not guaranteed to be in the Poincaré sur-
face of section. The two problems are solved simultaneously by adding
a small vector along the flow plus an extra equation demanding that
x be in the Poincaré surface. Let us for the sake of simplicity assume
that the Poincaré surface is a (hyper)-plane, i.e., it is given by the linear
equation

(x− x0) · a = 0, (12.15)

where a is a vector normal to the Poincaré section and x0 is any point
in the Poincaré section. (12.14) then becomes(

1−M v(x)
a 0

)(
x′ − x

δT

)
=
( −F (x)

0

)
. (12.16)

The last row in this equation ensures that x will be in the surface of
section, and the addition of v(x)δT, a small vector along the direction
cycles - 22apr2007 ChaosBook.org version11.9.2, Aug 21 2007
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of the flow, ensures that such an x can be found at least if x is sufficiently
close to a solution, i.e., to a fixed point of f .

To illustrate this little trick let us take a particularly simple exam-
ple; consider a 3-d flow with the (x, y, 0)-plane as Poincaré section.
Let all trajectories cross the Poincaré section perpendicularly, i.e., with
v = (0, 0, vz), which means that the marginally stable direction is also
perpendicular to the Poincaré section. Furthermore, let the unstable di-
rection be parallel to the x-axis and the stable direction be parallel to
the y-axis. In this case the Newton setup looks as follows⎛

⎜⎜⎝
1− Λ 0 0 0

0 1− Λs 0 0
0 0 0 vz

0 0 1 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

δx

δy

δz

δt

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−Fx

−Fy

−Fz

0

⎞
⎟⎟⎠ . (12.17)

If you consider only the upper-left [3 × 3] matrix (which is what we
would have without the extra constraints that we have introduced)
then this matrix is clearly not invertible and the equation does not have
a unique solution. However, the full [4×4] matrix is invertible, as det (·) =
vzdet (1 −M⊥), where M⊥ is the monodromy matrix for a surface of
section transverse to the orbit, see for ex. (??).

For periodic orbits (12.16) generalizes in the same way as (12.7), but
with n additional equations – one for each point on the Poincaré sur-
face. The Newton setup looks like this⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −Jn

−J1 1
· · · 1

· · · 1
−Jn−1 1

v1

. . .
vn

a
. . .

a

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1

δ2

·
·

δn

δt1
·

δtn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−F1

−F2

·
·
−Fn

0
.
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Solving this equation resembles the corresponding task for maps. How-
ever, in the process we will need to invert an [(d+1)n×(d+1)n] matrix
rather than a [d× d] matrix. The task changes with the length of the cy-
cle.

This method can be extended to take care of the same kind of prob-
lems if other eigenvalues of the fundamental matrix equal 1. This hap-
pens if the flow has an invariant of motion, the most obvious example
being energy conservation in Hamiltonian systems. In this case we add
an extra equation for x to be on the energy shell plus and extra vari-
able corresponding to adding a small vector along the gradient of the
Hamiltonian. We then have to solve(

1−M v(x) ∇H(x)
a 0 0

)⎛
⎝ x′ − x

δt
δE

⎞
⎠ =

⎛
⎝ −(x− f(x))

0
0

⎞
⎠ (12.18)
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Fig. 12.5 Illustration of the optimal Poincaré surface. The original surface y = 0 yields a
large distance x − f(x) for the Newton iteration. A much better choice is y = 0.7.

simultaneously with
H(x′)−H(x) = 0. (12.19)

The last equation is nonlinear. It is often best to treat this equation
separately and solve it in each Newton step. This might mean putting
in an additional Newton routine to solve the single step of (12.18) and
(12.19) together. One might be tempted to linearize (12.19) and put it
into (12.18) to do the two different Newton routines simultaneously,
but this will not guarantee a solution on the energy shell. In fact, it may
not even be possible to find any solution of the combined linearized
equations, if the initial guess is not very good.

12.5.2 Newton’s method with optimal surface of section

(F. Christiansen)

In some systems it might be hard to find a good starting guess for
a fixed point, something that could happen if the topology and/or the
symbolic dynamics of the flow is not well understood. By changing the
Poincaré section one might get a better initial guess in the sense that
x and f(x) are closer together. In Fig. 12.5.2 there is an illustration of
this. The figure shows a Poincaré section, y = 0, an initial guess x, the
corresponding f(x) and pieces of the trajectory near these two points.

If the Newton iteration does not converge for the initial guess x we
might have to work very hard to find a better guess, particularly if
this is in a high-dimensional system (high-dimensional might in this
context mean a Hamiltonian system with 3 degrees of freedom.) But
clearly we could easily have a much better guess by simply shifting the
Poincaré section to y = 0.7 where the distance x− f(x) would be much
smaller. Naturally, one cannot see by eye the best surface in higher
dimensional systems. The way to proceed is as follows: We want to
have a minimal distance between our initial guess x and the image of
this f(x). We therefore integrate the flow looking for a minimum in
the distance d(t) = |f t(x) − x|. d(t) is now a minimum with respect to
variations in f t(x), but not necessarily with respect to x. We therefore
integrate x either forward or backward in time. Doing this we mini-
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mize d with respect to x, but now it is no longer minimal with respect
to f t(x). We therefore repeat the steps, alternating between correcting
x and f t(x). In most cases this process converges quite rapidly. The
result is a trajectory for which the vector (f(x)− x) connecting the two
end points is perpendicular to the flow at both points. We can now
choose to define a Poincaré surface of section as the hyper-plane that
goes through x and is normal to the flow at x. In other words the sur-
face of section is determined by

(x′ − x) · v(x) = 0. (12.20)

Note that f(x) lies on this surface. This surface of section is optimal in
the sense that a close return on the surface is a local minimum of the
distance between x and f t(x). But more importantly, the part of the
stability matrix that describes linearization perpendicular to the flow
is exactly the stability of the flow in the surface of section when f(x)
is close to x. In this method, the Poincaré surface changes with each
iteration of the Newton scheme. Should we later want to put the fixed
point on a specific Poincaré surface it will only be a matter of moving
along the trajectory.

Summary

There is no general computational algorithm that is guaranteed to find
all solutions (up to a given period Tmax) to the periodic orbit condition

f t+T(x) = f t(x) , T > 0

for a general flow or mapping. Due to the exponential divergence of
nearby trajectories in chaotic dynamical systems, direct solution of the
periodic orbit condition can be numerically very unstable.

A prerequisite for a systematic and complete cycle search is a good
(but hard to come by) understanding of the topology of the flow. Usu-
ally one starts by - possibly analytic - determination of the equilibria
of the flow. Their locations, stabilities, stability eigenvectors and in-
variant manifolds offer skeletal information about the topology of the
flow. Next step is numerical long-time evolution of “typical” trajec-
tories of the dynamical system under investigation. Such numerical
experiments build up the “natural measure”, and reveal regions most
frequently visited. The periodic orbit searches can then be initial- ⇒ Section ??ized by taking nearly recurring orbit segments and deforming them
into a closed orbits. With a sufficiently good initial guess the Newton-
Raphson formula (12.16)(

1−M v(x)
a 0

)(
δx
δT

)
=
(

f(x)− x
0

)

yields improved estimate x′ = x+ δx, T′ = T + δT. Iteration then yields
the period T and the location of a periodic point xp in the Poincaré
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surface (xp − x0) · a = 0, where a is a vector normal to the Poincaré
section at x0.

The problem one faces with high-dimensional flows is that their topol-
ogy is hard to visualize, and that even with a decent starting guess for
a point on a periodic orbit, methods like the Newton-Raphson method
are likely to fail. Methods that start with initial guesses for a numberChapter ??

of points along the cycle, such as the multipoint shooting method of
Section 12.3, are more robust. The relaxation (or variational) methods
take this strategy to its logical extreme, and start by a guess of not a
few points along a periodic orbit, but a guess of the entire orbit. As
these methods are intimately related to variational principles and path
integrals, we postpone their introduction to Chapter ??.

Further reading

Piece-wise linear maps. The Lozi map (3.17) is linear, and
100,000’s of cycles can be easily computed by [2x2] matrix

multiplication and inversion.

Exercises

(12.1) Cycles of the Ulam map. Test your cycle-
searching routines by computing a bunch of short
cycles and their stabilities for the Ulam map

f(x) = 4x(1 − x) . (12.21)

(12.2) Cycles stabilities for the Ulam map, exact. In
Exercise 12.1 you should have observed that the
numerical results for the cycle stability eigenvalues
(4.38) are exceptionally simple: the stability eigen-
value of the x0 = 0 fixed point is 4, while the eigen-
value of any other n-cycle is ±2n. Prove this. (Hint:
the Ulam map can be conjugated to the tent map
(10.6). This problem is perhaps too hard, but give it
a try - the answer is in many introductory books on
nolinear dynamics.)

(12.3) Stability of billiard cycles. Compute stabilities
of few simple cycles.

(a) A simple scattering billiard is the two-disk bil-
liard. It consists of a disk of radius one cen-
tered at the origin and another disk of unit

radius located at L + 2. Find all periodic or-
bits for this system and compute their stabili-
ties. (You might have done this already in Ex-
ercise 1.2; at least now you will be able to see
where you went wrong when you knew noth-
ing about cycles and their extraction.)

(b) Find all periodic orbits and stabilities for a bil-
liard ball bouncing between the diagonal y =
x and one of the hyperbola branches y = 1/x.

(12.4) Cycle stability. Add to the pinball simulator of
Exercise 8.1 a routine that evaluates the expanding
eigenvalue for a given cycle.

(12.5) Pinball cycles. Determine the stability and length
exerCycles - 1feb2007 ChaosBook.org version11.9.2, Aug 21 2007
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of all fundamental domain prime cycles of the bi-
nary symbol string lengths up to 5 (or longer) for
R : a = 6 3-disk pinball.

(12.6) Newton-Raphson method. Implement the
Newton-Raphson method in 2-d and apply it to de-
termination of pinball cycles.

(12.7) Rössler system cycles. (continuation of Exer-
cise 4.4)

Determine all cycles up to 5 Poincaré sections re-
turns for the Rössler system (2.15), as well as their
stabilities. (Hint: implement (12.16), the multipoint
shooting methods for flows; you can cross-check
your shortest cycles against the ones listed in Ta-
ble ??.)

(12.8) Cycle stability, helium. Add to the helium inte-
grator of Exercise 2.10 a routine that evaluates the
expanding eigenvalue for a given cycle.

(12.9) Colinear helium cycles. Determine the stability
and length of all fundamental domain prime cy-
cles up to symbol sequence length 5 or longer for
collinear helium of Fig. ??.

(12.10) Uniqueness of unstable cycles∗∗∗. Prove
that there exists only one 3-disk prime cycle for a
given finite admissible prime cycle symbol string.
Hints: look at the Poincaré section mappings; can
you show that there is exponential contraction to a

unique periodic point with a given itinerary? Exer-
cise ?? might be helpful in this effort.

(12.11) Inverse iteration method for a Hamiltonian re-
peller. Consider the Hénon map (3.15) for
area-preserving (“Hamiltonian”) parameter value
b = −1. The coordinates of a periodic orbit of length
np satisfy the equation

xp,i+1 +xp,i−1 = 1−ax2
p,i , i = 1, ..., np , (12.22)

with the periodic boundary condition xp,0 = xp,np .
Verify that the itineraries and the stabilities of the
short periodic orbits for the Hénon repeller (12.22)
at a = 6 are as listed in Table ??.
Hint: you can use any cycle-searching routine you
wish, but for the complete repeller case (all binary
sequences are realized), the cycles can be evalu-
ated simply by inverse iteration, using the inverse
of (12.22)

x′′
p,i = Sp,i

√
1 − x′

p,i+1 − x′
p,i−1

a
, i = 1, ..., np .

Here Sp,i are the signs of the corresponding cycle
point coordinates, Sp,i = xp,i/|xp,i|.

(G. Vattay)

(12.12) “Center of mass” puzzle∗∗. Why is the “center of
mass”, listed in Table ??, a simple rational every so
often?

References

[1] M. Baranger and K.T.R. Davies Ann. Physics 177, 330 (1987).
[2] B.D. Mestel and I. Percival, Physica D 24, 172 (1987); Q. Chen, J.D.

Meiss and I. Percival, Physica D 29, 143 (1987).
[3] find Helleman et all Fourier series methods
[4] J.M. Greene, J. Math. Phys. 20, 1183 (1979)
[5] H.E. Nusse and J. Yorke, “A procedure for finding numerical tra-

jectories on chaotic saddles” Physica D 36, 137 (1989).
[6] D.P. Lathrop and E.J. Kostelich, “Characterization of an experi-

mental strange attractor by periodic orbits”
[7] T. E. Huston, K.T.R. Davies and M. Baranger Chaos 2, 215 (1991).
[8] M. Brack, R. K. Bhaduri, J. Law and M. V. N. Murthy, Phys. Rev.

Lett. 70, 568 (1993).
[9] Z. Gills, C. Iwata, R. Roy, I.B. Scwartz and I. Triandaf, “Tracking

Unstable Steady States: Extending the Stability Regime of a Multi-
mode Laser System”, Phys. Rev. Lett. 69, 3169 (1992).
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