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Topological features of a dynamical system–singularities, periodic or-
bits, and the ways in which the orbits intertwine – are invariant under
a general continuous change of coordinates. Surprisingly, there exist
quantities that depend on the notion of metric distance between points,
but nevertheless do not change value under a smooth change of coor-
dinates. Local quantities such as the eigenvalues of equilibria and peri-
odic orbits, and global quantities such as Lyapunov exponents, metric
entropy, and fractal dimensions are examples of properties of dynami-
cal systems independent of coordinate choice.

We now turn to the first, local class of such invariants, linear stability
of periodic orbits of flows and maps. This will give us metric informa-
tion about local dynamics. If you already know that the eigenvalues of
periodic orbits are invariants of a flow, skip this chapter.

fast track

Chapter 14, p. 201

5.1 Stability of periodic orbits

As noted on page 31, a trajectory can be stationary, periodic or aperi-
odic. For chaotic systems almost all trajectories are aperiodic–nevertheless,
equilibria and periodic orbits will turn out to be the key to unraveling
chaotic dynamics. Here we note a few of the properties that makes
them so precious to a theorist.

An obvious virtue of periodic orbits is that they are topological invari-
ants: a fixed point remains a fixed point for any choice of coordinates,
and similarly a periodic orbit remains periodic in any representation of
the dynamics. Any re-parametrization of a dynamical system that pre-
serves its topology has to preserve topological relations between peri-
odic orbits, such as their relative inter-windings and knots. So the mere
existence of periodic orbits suffices to partially organize the spatial lay-
out of a non–wandering set. No less important, as we shall now show,
is the fact that cycle eigenvalues are metric invariants: they determine
the relative sizes of neighborhoods in a non–wandering set.

To prove this, we start by noting that due to the multiplicative struc-
ture (4.33) of fundamental matrices, the fundamental matrix for the rth
repeat of a prime cycle p of period Tp is

JrTp(x) = JTp(f (r−1)Tp(x)) · · · JTp(fTp(x))JTp(x) = (Jp(x))r , (5.1)
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where Jp(x) = JTp(x) is the fundamental matrix for a single traversal
of the prime cycle p, x ∈ p is any point on the cycle, and frTp(x) = x as
f t(x) returns to x every multiple of the period Tp. Hence, it suffices to
restrict our considerations to the stability of prime cycles.

5.1.1 Fundamental matrix eigenvalues and exponents
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Fig. 5.1 For a prime cycle p, funda-
mental matrix Jp returns an infinitesi-
mal spherical neighborhood of x0 ∈ p
stretched into an ellipsoid, with overlap
ratio along the eigenvector ei of Jp(x)
given by the eigenvalue Λp,i. These ra-
tios are invariant under smooth nonlin-
ear reparametrizations of state space co-
ordinates, and are intrinsic property of
cycle p.

We sort the Floquet multipliers Λp,1, Λp,2, . . ., Λp,d of the [d×d] funda-
mental matrix Jp evaluated on the p-cycle into sets {e, m, c}

expanding: {Λp}e = {Λp,j : |Λp,j| > 1}
marginal: {Λp}m = {Λp,j : |Λp,j| = 1} (5.2)

contracting: {Λp}c = {Λp,j : |Λp,j| < 1} .

and denote by Λp (no jth eigenvalue index) the product of expanding
Floquet multipliers

Λp =
∏
e

Λp,e . (5.3)

As Jp is a real matrix, complex eigenvalues always come in complex
conjugate pairs, Λp,i+1 = Λ∗

p,i, so the product of expanding eigenvalues
Λp is always real.

Cycle Floquet exponents are the stretching/contraction rates per unit
time

μp,i =
1
Tp

ln |Λp,i| . (5.4)

This definition is motivated by the form of the Floquet exponents for
the linear dynamical systems, for example (4.16), as well as the fact that
exponents so defined can be interpreted as Lyapunov exponents (15.32)
evaluated on the prime cycle p. As in the three cases of (5.2), we sort
the Floquet exponents λ = μ ± ν into three setsSection 15.3←−

expanding: {λp}e = {λp,i : μp,i > 0}
marginal: {λp}m = {λp,i : μp,i = 0}

contracting: {λp}c = {λp,i : μp,i < 0} . (5.5)

A periodic orbit p of a d-dimensional flow or a map is stable if all
its Floquet exponents (other than the vanishing longitudinal exponent,
to be explained in Section 5.2.1 below) are strictly negative, μp,i < 0.
The region of system parameter values for which a periodic orbit p is
stable is called the stability window of p. The setMp of initial points that
are asymptotically attracted to p as t → +∞ (for a fixed set of system
parameter values) is called the basin of attraction of p.

If all Floquet exponents (other than the vanishing longitudinal expo-
nent) of all periodic orbits of a flow are strictly bounded away from
zero, |μi| ≥ μmin > 0, the flow is said to be hyperbolic. Otherwise the
flow is said to be nonhyperbolic. In particular, if all μi = 0, the orbit is
said to be elliptic. Such orbits proliferate in Hamiltonian flows.Section 7.3←−
invariants - 4mar2007 ChaosBook.org version11.9.2, Aug 21 2007
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We often do care about the sign of Λp,i and, if Λp,i is complex, its
phase

Λp,j = ±eλp,jTp = e(μp,j±iνp,j)Tp . (5.6)

Keeping track of this by case-by-case enumeration is a self-inflicted, ⇒ Section 7.2unnecessary nuisance, followed in much of the literature. To avoid this,
almost all of our formulas will be stated in terms of the Floquet multi-
pliers Λj rather than in the terms of the overall signs, Floquet exponents
λj and phases θj .

Example 5.1 Stability of 1-d map cycles:
The simplest example of cycle stability is afforded by 1-dimensional maps.
The stability of a prime cycle p follows from the chain rule (4.38) for stability
of the npth iterate of the map

Λp =
d

dx0
fnp (x0) =

np−1∏
m=0

f ′(xm) , xm = fm(x0) . (5.7)

Λp is a property of the cycle, not the initial point, as taking any periodic point
in the p cycle as the initial point yields the same result.
A critical point xc is a value of x for which the mapping f(x) has vanishing
derivative, f ′(xc) = 0. For future reference we note that a periodic orbit of a
1-dimensional map is stable if

|Λp| =
∣∣f ′(xnp)f ′(xnp−1) · · · f ′(x2)f

′(x1)
∣∣ < 1 ,

and superstable if the orbit includes a critical point, so that the above product
vanishes. For a stable periodic orbit of period n the slope of the nth iterate
fn(x) evaluated on a periodic point x (fixed point of the nth iterate) lies
between −1 and 1. If |Λp| > 1, p-cycle is unstable.

Example 5.2 Stability of cycles for maps:
No matter what method we had used to determine the unstable cycles, the
theory to be developed here requires that their Floquet multipliers be eval-
uated as well. For maps a fundamental matrix is easily evaluated by pick-
ing any cycle point as a starting point, running once around a prime cycle,
and multiplying the individual cycle point fundamental matrices according
to (4.39). For example, the fundamental matrix Mp for a Hénon map (3.15)
prime cycle p of length np is given by (4.40),

Mp(x0) =

1∏
k=np

(
−2axk b

1 0

)
, xk ∈ p ,

and the fundamental matrixMp for a 2-dimensional billiard prime cycle p of
length np

Mp = (−1)np

1∏
k=np

(
1 τk

0 1

)(
1 0
rk 1

)

follows from (8.11). We shall compute Floquet multipliers of Hénon map
cycles once we learn how to find their periodic orbits, see Exercise 12.10.

ChaosBook.org version11.9.2, Aug 21 2007 invariants - 4mar2007
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5.2 Cycle Floquet multipliers are cycle
invariants

The 1-dimensional map cycle Floquet multiplier Λp is a product of deriva-
tives over all points around the cycle, and is therefore independent of
which periodic point is chosen as the initial one. In higher dimensions
the form of the fundamental matrix Jp(x0) in (5.1) does depend on the
choice of coordinates and the initial point x0 ∈ p. Nevertheless, as we
shall now show, the cycle Floquet multipliers are intrinsic property of
a cycle also for multi-dimensional flows. Consider the ith eigenvalue,
eigenvector pair (Λp,i, ei) computed from Jp evaluated at a cycle point,

Jp(x)ei(x) = Λp,iei(x) , x ∈ p . (5.8)

Consider another point on the cycle at time t later, x′ = f t(x) whose
fundamental matrix is Jp(x′). By the group property (4.33), JTp+t =
J t+Tp , and the fundamental matrix at x′ can be written either as

JTp+t(x) = JTp(x′)J t(x) = Jp(x′)J t(x) , or Jp(x′)J t(x) = J t(x)Jp(x) .

Multiplying (5.8) by J t(x), we find that the fundamental matrix evalu-
ated at x′ has the same eigenvalue,

Jp(x′)ei(x′) = Λp,iei(x′) , ei(x′) = J t(x)ei(x) , (5.9)

but with the eigenvector ei transported along the flow x→ x′ to ei(x′) =
J t(x)ei(x). Hence, Jp evaluated anywhere along the cycle has the same
set of Floquet multipliers {Λp,1, Λp,2, · · ·Λp,d−1, 1}. As quantities such
as tr Jp(x), det Jp(x) depend only on the eigenvalues of Jp(x) and not
on the starting point x, in expressions such as det

(
1−M r

p (x)
)

we may
omit reference to any particular cycle point x:

det
(
1−M r

p

)
= det

(
1−M r

p (x)
)

for any x ∈ p . (5.10)

We postpone the proof that the cycle Floquet multipliers are smooth
conjugacy invariants of the flow to Section 6.6.

5.2.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either a continuous sym-
metry of the flow (which one should immediately exploit to simplify
the problem), or a non-hyperbolicity of a flow (a source of much pain,
hard to avoid).Chapter ??

5.1, page 75 Example 5.3 A periodic orbit of a flow has a marginal eigenvalue:
As Jt(x) transports the velocity field v(x) by (4.7), after a complete period

Jp(x)v(x) = v(x) , (5.11)

so a periodic orbit of a flow always has an eigenvector ed(x) = v(x) parallel
to the local velocity field with the unit eigenvalue

Λp,d = 1 . (5.12)
invariants - 4mar2007 ChaosBook.org version11.9.2, Aug 21 2007
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The continuous invariance that gives rise to this marginal eigenvalues is6.2, page 88
the invariance of a cycle under a translation of its points along the cycle: two
points on the cycle (see Fig. 4.3) initially distance δx apart, x′(0) − x(0) =
δx(0), are separated by the exactly same δx after a full period Tp. As we
shall see in Section 5.3, this marginal stability direction can be eliminated
by cutting the cycle by a Poincaré section and eliminating the continuous
flow fundamental matrix in favor of the fundamental matrix of the Poincaré
return map.

If the flow is governed by a time-independent Hamiltonian, the en-
ergy is conserved, and that leads to an additional marginal eigenvalue
(remember, by symplectic invariance (7.19) real eigenvalues come in
pairs).

5.3 Stability of Poincaré map cycles

(R. Paškauskas and P. Cvitanović)

If a continuous flow periodic orbit p pierces the Poincaré sectionP once,
the section point is a fixed point of the Poincaré return map P with
stability (4.44)

Ĵij =
(

δik − vi Uk

(v · U)

)
Jkj , (5.13)

with all primes dropped, as the initial and the final points coincide,
x′ = fTp(x) = x. If the periodic orbit p pierces the set of Poincaré
sections P n times, the same observation applies to the nth iterate of P .

We have already established in (4.45) that the velocity v(x) is a zero-
eigenvector of the Poincaré section fundamental matrix, Ĵv = 0. Con-
sider next (Λp,α, eα), the full state space αth (eigenvalue, eigenvector)
pair (5.8), evaluated at a cycle point on a Poincaré section,

J(x)eα(x) = Λαeα(x) , x ∈ P . (5.14)

Multiplying (5.13) by eα and inserting (5.14), we find that the full state
space fundamental matrix and the Poincaré section fundamental matrix
Ĵ has the same eigenvalue

Ĵ(x)êα(x) = Λαêα(x) , x ∈ P , (5.15)

where êα is a projection of the full state space eigenvector onto the
Poincaré section:

(êα)i =
(

δik − vi Uk

(v · U)

)
(eα)k . (5.16)

Hence, Ĵp evaluated on any Poincaré section point along the cycle p has
the same set of Floquet multipliers {Λp,1, Λp,2, · · ·Λp,d} as the full state
space fundamental matrix Jp.
ChaosBook.org version11.9.2, Aug 21 2007 invariants - 4mar2007
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5.4 There goes the neighborhood

In what follows, our task will be to determine the size of a neighborhood
of x(t), and that is why we care about the Floquet multipliers, and espe-
cially the unstable (expanding) ones. Nearby points aligned along the
stable (contracting) directions remain in the neighborhood of the tra-
jectory x(t) = f t(x0); the ones to keep an eye on are the points which
leave the neighborhood along the unstable directions. The sub-volume
|Mi| =

∏e
i Δxi of the set of points which get no further away from

f t(x0) than L, the typical size of the system, is fixed by the condition
that ΔxiΛi = O(L) in each expanding direction i. Hence the neigh-
borhood size scales as ∝ 1/|Λp| where Λp is the product of expanding
eigenvalues (5.3) only; contracting ones play a secondary role. So sec-
ondary that even infinitely many of them will not matter.

So the physically important information is carried by the expanding
sub-volume, not the total volume computed so easily in (4.36). That is
also the reason why the dissipative and the Hamiltonian chaotic flows
are much more alike than one would have naively expected for ‘com-
pressible’ vs. ‘incompressible’ flows. In hyperbolic systems what mat-
ters are the expanding directions. Whether the contracting eigenvalues
are inverses of the expanding ones or not is of secondary importance.
As long as the number of unstable directions is finite, the same theory
applies both to the finite-dimensional ODEs and infinite-dimensional
PDEs.

Summary

Periodic orbits play a central role in any invariant characterization of
the dynamics, because (a) their existence and inter-relations are a topo-
logical, coordinate-independent property of the dynamics, and (b) their
Floquet multipliers form an infinite set of metric invariants: The Floquet
multipliers of a periodic orbit remain invariant under any smooth non-
linear change of coordinates f → h ◦ f ◦ h−1 .

We shall show in Chapter 10 that extending their local stability eigendi-
rections into stable and unstable manifolds yields important global in-
formation about the topological organization of state space.

In hyperbolic systems what matters are the expanding directions.
The physically important information is carried by the unstable man-
ifold, and the expanding sub-volume characterized by the product of
expanding eigenvalues of Jp. As long as the number of unstable di-
rections is finite, the theory can be applied to flows of arbitrarily high
dimension.

invariants - 4mar2007 ChaosBook.org version11.9.2, Aug 21 2007
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Exercises

(5.1) A limit cycle with analytic stability exponent.
There are only two examples of nonlinear flows for
which the stability eigenvalues can be evaluated an-
alytically. Both are cheats. One example is the 2-d
flow

q̇ = p+q(1−q2 −p2) , ṗ = −q+p(1−q2 −p2) .
(5.17)

Determine all periodic solutions of this flow,
and determine analytically their stability expo-
nents. Hint: go to polar coordinates (q, p) =
(r cos θ, r sin θ).

G. Bard Ermentrout

(5.2) The other example of a limit cycle with analytic
stability exponent. What is the other example
of a nonlinear flow for which the stability eigenval-
ues can be evaluated analytically? Hint: email G.B.
Ermentrout.

(5.3) Yet another example of a limit cycle with analytic
stability exponent. Prove G.B. Ermentrout wrong
by solving a third example (or more) of a nonlinear
flow for which the stability eigenvalues can be eval-
uated analytically.
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