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You might think that the strangeness of contracting flows, flows such as
the Rössler flow of Fig. 2.4 is of concern only to chemists; real physicists
do Hamiltonians, right? Not at all - while it is easier to visualize aperi-
odic dynamics when a flow is contracting onto a lower-dimensional at-
tracting set, there are plenty examples of chaotic flows that do preserve
the full symplectic invariance of Hamiltonian dynamics. The truth is,
the whole story started with Poincaré’s restricted 3-body problem, a re-
alization that chaos rules also in general (non-Hamiltonian) flows came
much later.

Here we briefly review parts of classical dynamics that we will need
later on; symplectic invariance, canonical transformations, and stability
of Hamiltonian flows. We discuss billiard dynamics in some detail in
Chapter 8.

7.1 Hamiltonian flows

(P. Cvitanović and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by a Hamil-
Appendix 20

tonian H(q, p) together with the Hamilton’s equations of motion

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (7.1)

with the 2D phase space coordinates x split into the configuration space
coordinates and the conjugate momenta of a Hamiltonian system with
D degrees of freedom (dof): ⇒ Section ??

x = (q,p) , q = (q1, q2, . . . , qD) , p = (p1, p2, . . . , pD) . (7.2)

The energy, or the value of the Hamiltonian function at the state space
point x = (q,p) is constant along the trajectory x(t),

d

dt
H(q(t),p(t)) =

∂H

∂qi
q̇i(t) +

∂H

∂pi
ṗi(t)

=
∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi
= 0 , (7.3)

so the trajectories lie on surfaces of constant energy, or level sets of the
Hamiltonian {(q, p) : H(q, p) = E}. For 1-dof Hamiltonian systems this
is basically the whole story.
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Example 7.1 Unforced undamped Duffing oscillator:
When the damping term is removed from the Duffing oscillator (2.7), the

system can be written in Hamiltonian form with the Hamiltonian

H(q, p) =
p2

2
− q2

2
+
q4

4
. (7.4)

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the
plane (q, p). The Hamilton’s equations (7.1) are

q̇ = p , ṗ = q − q3 . (7.5)

For 1-dof systems, the ‘surfaces’ of constant energy (7.3) are simply curves
in the phase plane (q, p), and the dynamics is very simple: the curves of
constant energy are the trajectories, as shown in Fig. 7.1.

−2 −1 0 1 2

−1

0

1

q

p

Fig. 7.1 Phase plane of the unforced, un-
damped Duffing oscillator. The trajecto-
ries lie on level sets of the Hamiltonian
(7.4).

Thus all 1-dof systems are integrable, in the sense that the entire phase
plane is foliated by curves of constant energy, either periodic – as is the
case for the harmonic oscillator (a ‘bound state’)–or open (a ‘scattering

Example 6.1

trajectory’). Add one more degree of freedom, and chaos breaks loose.

Example 7.2 Collinear helium:
In Chapter ??, we shall apply the periodic orbit theory to the quantization

of helium. In particular, we will study collinear helium, a doubly charged
nucleus with two electrons arranged on a line, an electron on each side of the
nucleus. The Hamiltonian for this system is

Chapter ??

H =
1

2
p2
1 +

1

2
p2
2 −

2

r1
− 2

r2
+

1

r1 + r2
. (7.6)

Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which
energy conservation reduces to 3 dimensions. The dynamics can be projected
onto the 2-dimensional configuration plane, the (r1, r2), ri ≥ 0 quadrant,
Fig. 7.2. It looks messy, and, indeed, it will turn out to be no less chaotic
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Fig. 7.2 A typical collinear helium tra-
jectory in the [r1, r2] plane; the trajectory
enters along the r1-axis and then, like al-
most every other trajectory, after a few
bounces escapes to infinity, in this case
along the r2-axis.

than a pinball bouncing between three disks. As always, a Poincaré section
will be more informative than this rather arbitrary projection of the flow.

Note an important property of Hamiltonian flows: if the Hamilton
equations (7.1) are rewritten in the 2D phase space form ẋi = vi(ssp),
the divergence of the velocity field v vanishes, namely the flow is in-
compressible. The symplectic invariance requirements are actually more
stringent than just the phase space volume conservation, as we shall see
in the next section.

7.2 Stability of Hamiltonian flows

Hamiltonian flows offer an illustration of the ways in which an invari-
ance of equations of motion can affect the dynamics. In the case at
hand, the symplectic invariance will reduce the number of independent
stability eigenvalues by a factor of 2 or 4.
newton - 25sep2007 ChaosBook.org version11.9.2, Aug 21 2007
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7.2.1 Canonical transformations

The equations of motion for a time-independent, D-dof Hamiltonian
(7.1) can be written

ẋi = ωijHj(x) , ω =
(

0 I
−I 0

)
, Hj(x) =

∂

∂xj
H(x) , (7.7)

where x = (q,p) ∈ M is a phase space point, Hk = ∂kH is the column
vector of partial derivatives of H , I is the [D×D] unit matrix, and ω the
[2D×2D] symplectic form

ωT = −ω , ω2 = −1 . (7.8)

To stress the peculiar properties of Hamiltonian flows, we change the
notation slightly, and denote the fundamental matrix (4.6) by M t(x).
The evolution of M t is again determined by the stability matrix A, (4.9):

d

dt
M t(x) = A(x)M t(x) , Aij(x) = ωik Hkj(x) , (7.9)

where the matrix of second derivatives Hkn = ∂k∂nH is called the Hes-
sian matrix. From the symmetry of Hkn it follows that

AT ω + ωA = 0 . (7.10)

This is the defining property for infinitesimal generators of symplectic
(or canonical) transformations, transformations which leave the sym-
plectic form ω invariant.

Symplectic matrices are by definition linear transformations that leave
the (antisymmetric) quadratic form xiωijyj invariant. This immediately
implies that any symplectic matrix satisfies

QT ωQ = ω , (7.11)

and – when Q is close to the identity Q = 1 + δtA – it follows that that
A must satisfy (7.10).

In group language this means that the property (7.11) defines the
symplectic group Sp(2D), just as the Lie group of orthogonal matrices
O(d) is defined by linear transformations that preserve the (symmetric)
quadratic form x2 = xiδijxj , The symplectic Lie algebra sp(2D) fol-
lows by writing Q = exp(δtA) and linearizing Q = 1 + δtA. This yields
(7.10) as the defining property of infinitesimal symplectic transforma-
tions.

7.2, page 97Consider now a smooth nonlinear change of variables of form yi =
hi(x), and define a new function K(x) = H(h(x)). Under which con-
ditions does K generate a Hamiltonian flow? In what follows we will
use the notation ∂̃j = ∂/∂yj: by employing the chain rule we have that

ωij∂jK = ωij
∂hl

∂xj
∂̃lH (7.12)

ChaosBook.org version11.9.2, Aug 21 2007 newton - 25sep2007
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By virtue of (7.1) ∂̃lH = −ωlmẏm, so that, again by employing the chain
rule, we obtain

ωij∂jK = −ωij
∂hl

∂xj
ωlm

∂hm

∂xn
ẋn (7.13)

The right hand side simplifies to ẋi (yielding Hamiltonian structure)
only if

−ωij
∂hl

∂xj
ωlm

∂hm

∂xn
= δin (7.14)

or, in compact notation, by defining (∂h)ij = ∂hi

∂xj

−ω(∂h)T ω(∂h) = 1 (7.15)

which is equivalent to the requirement that ∂h is symplectic. h is then
called a canonical transformation. We care about canonical transforma-
tions for two reasons. First (and this is a dark art), if the canonical trans-Example 6.1

formation h is very cleverly chosen, the flow in new coordinates might
be considerably simpler than the original flow. Second, Hamiltonian
flows themselves are a prime example of canonical transformations.

Example 7.3 Hamiltonian flows are canonical:
For Hamiltonian flows it follows from (7.10) that d

dt

(
MTωM

)
= 0, and since

at the initial time M0(x0) = 1, M is a symplectic transformation (7.11). This
equality is valid for all times, so a Hamiltonian flow f t(x) is a canonical
transformation, with the linearization ∂xf

t(x) a symplectic transformation
(7.11): For notational brevity here we have suppressed the dependence
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generic center degenerate center
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Fig. 7.3 Stability exponents of a Hamilto-
nian equilibrium point, 2-dof.

on time and the initial point, M = Mt(x0). By elementary properties of
determinants it follows from (7.11) that Hamiltonian flows are phase space
volume preserving:

|detM | = 1 . (7.16)

Actually it turns out that for symplectic matrices (on any field) one always
has detM = +1.

7.4, page 98

7.2.2 Stability of equilibria of Hamiltonian flows

Section 4.3.1←−

For an equilibrium point xq the stability matrix A is constant. Its eigen-
values describe the linear stability of the equilibrium point. In the case
of Hamiltonian flows, from (7.10) it follows that the characteristic poly-
nomial of A for an equilibrium xq satisfies

7.5, page 98

det (A− λ1) = det (ω−1(A− λ1)ω) = det (−ωAω − λ1)
= −det (AT + λ1) = −det (A + λ1) . (7.17)

A is the matrix (7.10) with real matrix elements, so its eigenvalues (the
stability exponents of (4.27)) are either real or come in complex pairs.
Symplectic invariance implies in addition that if λ is an eigenvalue,
then −λ, λ∗ and −λ∗ are also eigenvalues. Distinct symmetry classes
of the stability exponents of an equilibrium point in a 2-dof system are
displayed in Fig. 7.3. It is worth noting that while the linear stability of
equilibria in a Hamiltonian system always respects this symmetry, the
nonlinear stability can be completely different.
newton - 25sep2007 ChaosBook.org version11.9.2, Aug 21 2007
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7.3 Symplectic maps

A stability eigenvalue Λ = Λ(x0, t) associated to a trajectory is an eigen-
value of the monodromy matrix M . As M is symplectic, (7.11) implies
that

M−1 = −ωMT ω , (7.18)

so the characteristic polynomial is reflexive, namely it satisfies

det (M − Λ1) = det (MT − Λ1) = det (−ωMT ω − Λ1)
= det (M−1 − Λ1) = det (M−1) det (1− ΛM)
= Λ2D det (M − Λ−11) . (7.19)

Hence if Λ is an eigenvalue of M , so are 1/Λ, Λ∗ and 1/Λ∗. Real

complex saddle saddle−center

degenerate saddle

(2) (2)

real saddle

generic center degenerate center

(2)

(2)

Fig. 7.4 Stability of a symplectic map in
R4.

8.6, page 104

(non-marginal, |Λ| 
= 1) eigenvalues always come paired as Λ, 1/Λ. The
Liouville conservation of phase space volumes (7.16) is an immediate
consequence of this pairing up of eigenvalues. The complex eigenval-
ues come in pairs Λ, Λ∗, |Λ| = 1, or in loxodromic quartets Λ, 1/Λ, Λ∗

and 1/Λ∗. These possibilities are illustrated in Fig. 7.4.

Example 7.4 Hamiltonian Hénon map, reversibility:
By (4.41) the Hénon map (3.15) for b = −1 value is the simplest 2-d ori-

entation preserving area-preserving map, often studied to better understand
topology and symmetries of Poincaré sections of 2 dof Hamiltonian flows.
We find it convenient to multiply (3.16) by a and absorb the a factor into x in
order to bring the Hénon map for the b = −1 parameter value into the form

xi+1 + xi−1 = a− x2
i , i = 1, ..., np , (7.20)

The 2-dimensional Hénon map for b = −1 parameter value

xn+1 = a− x2
n − yn

yn+1 = xn . (7.21)

is Hamiltonian (symplectic) in the sense that it preserves area in the [x, y]
plane.
For definitiveness, in numerical calculations in examples to follow we shall
fix (arbitrarily) the stretching parameter value to a = 6, a value large enough
to guarantee that all roots of 0 = fn(x) − x (periodic points) are real.

Example 7.5 2-dimensional symplectic maps:
In the 2-dimensional case the eigenvalues (5.2) depend only on trM t

Λ1,2 =
1

2

(
trM t ±

√
(trM t − 2)(trM t + 2)

)
. (7.22)

The trajectory is elliptic if the stability residue |trM t| − 2 ≤ 0, with complex
eigenvalues Λ1 = eiθt, Λ2 = Λ∗

1 = e−iθt. If |trM t| − 2 > 0, λ is real, and the
trajectory is either

hyperbolic Λ1 = eλt , Λ2 = e−λt , or (7.23)

inverse hyperbolic Λ1 = −eλt , Λ2 = −e−λt . (7.24)

ChaosBook.org version11.9.2, Aug 21 2007 newton - 25sep2007
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7.3.1 The standard map

Truth is rarely pure, and never simple.
Oscar Wilde

Given a smooth function g(x), the map

xn+1 = xn + yn+1

yn+1 = yn + g(xn) (7.25)

is an area-preserving map. The corresponding monodromy matrix is

M(x, y) =
(

1 + g′(x) 1
g′(x) 1

)
(7.26)

det M = 1 so the map preserves areas, moreover one can easily check
that M is symplectic. In particular one can consider x as an angle, and
y as the conjugate angular momentum, with a function g periodic, with
period 2π. The phase space of the map is thus the cylinder S1 ×R (S1

being the 1-torus): by taking (7.25) mod 2π the map can be reduced on
the 2-torus S2. Note that the mapping provides a stroboscopic view of
the flow generated by a pulsed Hamiltonian

H(x, y; t) =
1
2
y2 + G(x)δ1(t) (7.27)

where δ1 denotes the periodic delta function

δ1(t) =
∞∑

m=−∞
δ(t−m) (7.28)

and
G′(x) = −g(x) . (7.29)

The standard map corresponds to the choice g(x) = k sin(x): the corre-
sponding map will be denoted by A. When k = 0 angular momen-
tum is conserved, and orbits are pure rotations, motion is periodic or
quasiperiodic according to y0 being rational or irrational; invariant tori
are straight lines in the (x, y) phase plane.

Despite the simple structure of the standard mapping, a complete
description of its dynamics for arbitrary values of the nonlinear param-
eter k is fairly complex: small k regime falls within KAM scheme, yet
any perturbative regime fails very soon as k increases. It turns out
that interesting features of this map, including transition to global chaos
(destruction of the last deformed invariant torus), may be tackled by
detailed investigation of the stability of periodic orbits. A compact
index of stability of a Q-periodic orbit is provided by the residue:

RQ =
1
4
(
2− tr MQ

)
; (7.30)

newton - 25sep2007 ChaosBook.org version11.9.2, Aug 21 2007
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as a matter of fact if RQ ∈ (0, 1) the orbit is elliptic, RQ > 1 corresponds
to hyperbolic orbits and, finally, RQ < 0 marks the case of inverse hy-
perbolic orbits.

For k = 0 all orbits with y0 = P/Q are periodic with period Q (and
winding number P/Q): since x0 is arbitrary, actually they are organized
in families (and they all have RQ = 0). As soon as k increases there is
only a finite number of such orbits that survive, according to Poincaré-
Birkhoff theorem, half of them are elliptic, and half hyperbolic. If we
further vary k in such a way that the residue of the elliptic Q cycle go
to 1 a bifurcation takes place, and two or more periodic orbits of higher
period are generated.

In practice the search for remarkable classes of periodic orbits for the
standard map takes advantage of an important symmetry property: A
can be written as the product of two involutions T1 and T2 (involution
means that the square of the map is the identity):

A = T2 · T1 (7.31)

where
T1

(
x y

)
=

( −x y − k sinx
)

(7.32)

and
T2

(
x y

)
=

( −x + y y
)

. (7.33)

Now define symmetry lines L1 and L2 as the set of fixed points of the
corresponding involution: L1 consists of the lines x = 0, π, L2 of x =
y/2 mod (2π). There are deep connections between symmetry lines and
periodic orbits: we just give an example with the following statement:
if (x0, y0) ∈ L1 and AM (x0, y0) ∈ L1 (i.e. they are both fixed points of
T1), then (x0, y0) is a periodic point of period 2M . As a matter of fact

A2M (x0, y0) = AM−1T2T1A
M−1T2T1(x0, y0)

= AM−1T2A
M−1T2(x0, y0) (7.34)

by the fixed point property. Now the involution property implies

T2A = T1 AT1 = T2 (7.35)

and thus
AT2AT2 = AT1T2 = 1 (7.36)

and
AP T2A

P T2 = AP−1T2A
P−1T2 (7.37)

from which it easily follows that (x0, y0) belongs to a 2M cycle.

7.3.2 Poincaré invariants

Let C a region in the phase space and V (0) its volume. Denoting the
flow of the Hamiltonian system by ft(x), the volume of C after a time
ChaosBook.org version11.9.2, Aug 21 2007 newton - 25sep2007
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t is V (t) = f t(C), and using (7.16) we derive the Liouville theorem:

V (t) =
∫

ft(C)

dx =
∫

C

∥∥∥∥∂f t(x′)
∂x

∥∥∥∥ dx′

∫
C

det (M)dx′ =
∫

C

dx′ = V (0) , (7.38)

Hamiltonian flows preserve phase space volumes.
The symplectic structure of Hamilton’s equations buys us much more

than the ‘incompressibility,’ or the phase space volume conservation.
Consider the symplectic product of two infinitesimal vectors

(δx, δx̂) = δxT ωδx̂ = δpiδq̂i − δqiδp̂i

=
D∑

i=1

{oriented area in the (qi, pi) plane} . (7.39)

Time t later we have

(δx′, δx̂′) = δxT MT ωMδx̂ = δxT ωδx̂ .

This has the following geometrical meaning. We imagine there is a ref-
erence phase space point. We then define two other points infinitesi-
mally close so that the vectors δx and δx̂ describe their displacements
relative to the reference point. Under the dynamics, the three points
are mapped to three new points which are still infinitesimally close to
one another. The meaning of the above expression is that the area of
the parallelopiped spanned by the three final points is the same as that
spanned by the inital points. The integral (Stokes theorem) version of
this infinitesimal area invariance states that for Hamiltonian flows the
D oriented areasVi bounded by D loops ΩVi, one per each (qi, pi) plane,
are separately conserved:∫

V
dp ∧ dq =

∮
ΩV

p · dq = invariant . (7.40)

Morally a Hamiltonian flow is really D-dimensional, even though its
phase space is 2D-dimensional. Hence for Hamiltonian flows one em-
phasizes D, the number of the degrees of freedom.

in depth:

Appendix B.1, p. 291

In theory there is no difference between theory and practice. In
practice there is.
Yogi Berra
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Further reading

Hamiltonian dynamics literature. If you are reading
this book, in theory you already know everything that is
in this chapter. In practice you do not. Try this: Put your
right hand on your heart and say: “I understand why na-
ture prefers symplectic geometry”. Honest? We make an
attempt in Section ??. Out there there are about 2 centuries
of accumulated literature on Hamilton, Lagrange, Jacobi
etc. formulation of mechanics, some of it excellent. In
context of what we will need here, we make a very sub-
jective recommendation–we enjoyed reading Percival and
Richards [10] and Ozorio de Almeida [11].

Symplectic. The term symplectic–Greek for twining
or plaiting together–was introduced into mathematics by
Hermann Weyl. ‘Canonical’ lineage is church-doctrinal:

Greek ‘kanon,’ referring to a reed used for measurement,
came to mean in Latin a rule or a standard.

The sign convention of ω. The overall sign of ω, the
symplectic invariant in (7.7), is set by the convention that
the Hamilton’s principal function (for energy conserving
flows) is given by R(q, q′, t) =

∫ q′
q
pidqi − Et. With this

sign convention the action along a classical path is mini-
mal, and the kinetic energy of a free particle is positive.

Symmetries of the symbol square. For a more de-
tailed discussion of symmetry lines see Refs. [4, 8, 49, 9].

Standard map. Standard maps have been very ex-
tensively studied (also in their quantum counterpart): as
a starting point see the reviews Refs. [10, 11].

Exercises

(7.1) Complex nonlinear Schrödinger equation. Con-
sider the complex nonlinear Schrödinger equation
in one spatial dimension [1]:

i
∂φ

∂t
+
∂2φ

∂x2
+ βφ|φ|2 = 0, β �= 0.

(a) Show that the function ψ : R → C defining
the traveling wave solution φ(x, t) = ψ(x−ct)
for c > 0 satisfies a second-order complex dif-
ferential equation equivalent to a Hamiltonian
system in R

4 relative to the noncanonical sym-
plectic form whose matrix is given by

wc =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
−1 0 0 −c
0 −1 c 0

⎤
⎥⎥⎦ .

(b) Analyze the equilibria of the resulting Hamil-
tonian system in R

4 and determine their linear
stability properties.

(c) Let ψ(s) = eics/2a(s) for a real function a(s)
and determine a second order equation for
a(s). Show that the resulting equation is
Hamiltonian and has heteroclinic orbits for
β < 0. Find them.

(d) Find ‘soliton’ solutions for the complex non-
linear Schrödinger equation.

(Luz V. Vela-Arevalo)
(7.2) Symplectic group/algebra

Show that if a matrixC satisfies (7.10), then exp(sC)
is a symplectic matrix.

(7.3) When is a linear transformation canonical?

(a) Let A be a [n× n] invertible matrix. Show that
the map φ : R

2n → R
2n given by (q,p) �→

(Aq, (A−1)T p) is a canonical transformation.
(b) If R is a rotation in R

3, show that the map
(q,p) �→ (Rq,Rp) is a canonical transforma-
tion.

(Luz V. Vela-Arevalo)
(7.4) Determinant of symplectic matrices. Show that

the determinant of a symplectic matrix is +1, by go-
ing through the following steps:

(a) use (7.19) to prove that for eigenvalue pairs
each member has the same multiplicity (the
same holds for quartet members),

(b) prove that the joint multiplicity of λ = ±1 is
even,

ChaosBook.org version11.9.2, Aug 21 2007 exerNewton - 13jun2004
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(c) show that the multiplicities of λ = 1 and
λ = −1 cannot be both odd. (Hint: write

P (λ) = (λ− 1)2m+1(λ+ 1)2l+1Q(λ)

and show that Q(1) = 0).

(7.5) Cherry’s example. What follows Refs. [2, 3]
is mostly a reading exercise, about a Hamiltonian
system that is linearly stable but nonlinearly unstable.
Consider the Hamiltonian system on R

4 given by

H =
1

2
(q21 +p2

1)− (q22 +p2
2)+

1

2
p2(p

2
1 − q21)− q1q2p1.

(a) Show that this system has an equilibrium at
the origin, which is linearly stable. (The lin-
earized system consists of two uncoupled os-
cillators with frequencies in ratios 2:1).

(b) Convince yourself that the following is a fam-
ily of solutions parametrized by a constant τ :

q1 = −
√

2
cos(t− τ )

t− τ
, q2 =

cos 2(t− τ )

t− τ
,

p1 =
√

2
sin(t− τ )

t− τ
, p2 =

sin 2(t− τ )

t− τ
.

These solutions clearly blow up in finite time;
however they start at t = 0 at a distance

√
3/τ

from the origin, so by choosing τ large, we can
find solutions starting arbitrarily close to the
origin, yet going to infinity in a finite time, so
the origin is nonlinearly unstable.

(Luz V. Vela-Arevalo)
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