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I.1. Introduction to conjugacy problems for diffeomor-
phisms. This is a survey article on the area of global analy-
sis defined by differentiable dynamical systems or equivalently
the action (differentiable) of a Lie group G on a manifold M .
Here Diff(M ) is the group of all diffeomorphisms of M and a
diffeomorphism is a differentiable map with a differentiable in-
verse. (. . .) Our problem is to study the global structure, i.e., all
of the orbits of M .
Stephen Smale, Differentiable Dynamical Systems

In Sections ?? and 10.1 we introduced the concept of partitioning the
state space, in any way you please. In Chapter 5 we established that
stability eigenvalues of periodic orbits are invariants of a given flow.
The invariance of stabilities of a periodic orbit is a local property of the
flow.

For the Rössler flow of Example 3.3, we have learned that the attrac-
tor is very thin, but otherwise the return maps that we found were dis-
quieting – Fig. 3.3 did not appear to be a one-to-one map. This apparent
loss of invertibility is an artifact of projection of higher-dimensional re-
turn maps onto lower-dimensional subspaces. As the choice of lower-
dimensional subspace is arbitrary, the resulting snapshots of return
maps look rather arbitrary, too. Other projections might look even less
suggestive.

Such observations beg a question: Does there exist a “natural”, intrin-
sically optimal coordinate system in which we should plot of a return
map?

As we shall now argue (see also Section 12.1), the answer is yes: The
intrinsic coordinates are given by the stable/unstable manifolds, and
a return map should be plotted as a map from the unstable manifold
back onto the immediate neighborhood of the unstable manifold.

In this chapter we show that every equilibrium point and every peri-
odic orbit carries with it stable and unstable manifolds which provide
a topologically invariant global foliation of the state space. This qualita-
tive dynamics of stretching and mixing enables us to partition the state
space and assign symbolic dynamics itineraries to trajectories.

Given an itinerary, the topology of stretching and folding fixes the
relative spatial ordering of trajectories, and separates the admissible
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and inadmissible itineraries. The level is distinctly cyclist, in distinc-
tion to the pedestrian tempo of the preceding chapter. Skip this chapter
unless you really need to get into nitty-gritty details of symbolic dy-
namics.

fast track

Chapter 13, p. 173

11.1 Recoding, symmetries, tilings

In Chapter 9 we made a claim that if there is a symmetry of dynamics,
we must use it. So let’s take the old pinball game and “quotient the
state space by the symmetry or “desymmetrize.”
Though a useful tool, Markov partitioning is not without drawbacks.
One glaring shortcoming is that Markov partitions are not unique: any
of many different partitions might do the job. The 3-disk system offers
a simple illustration of different Markov partitioning strategies for the
same dynamical system.

The A = {1, 2, 3} symbolic dynamics for 3-disk system is neither
unique, nor necessarily the smartest one - before proceeding it pays
to exploit the symmetries of the pinball in order to obtain a more effi-
cient description. In Chapter ?? we shall be handsomely rewarded for
our labors.

Fig. 11.1 Binary labeling of trajectories of
the symmetric 3-disk pinball; a bounce in
which the trajectory returns to the pre-
ceding disk is labeled 0, and a bounce
which results in continuation to the third
disk is labeled 1.

As the three disks are equidistantly spaced, our game of pinball has
a sixfold symmetry. For instance, the cycles 12, 23, and 13 are related
to each other by rotation by ±2π/3 or, equivalently, by a relabeling of
the disks. The disk labels are arbitrary; what is important is how a
trajectory evolves as it hits subsequent disks, not what label the starting
disk had. We exploit this symmetry by recoding, in this case replacing
the absolute disk labels by relative symbols, indicating the type of the
collision. For the 3-disk game of pinball there are two topologically

10.1, page 133

distinct kinds of collisions, Fig. 11.1:

9.1, page 115

si =
{

0 : pinball returns to the disk it came from
1 : pinball continues to the third disk .

(11.1)

This binary symbolic dynamics has two immediate advantages over the
ternary one; the prohibition of self-bounces is automatic, and the cod-
ing utilizes the symmetry of the 3-disk pinball game in elegant manner.
If the disks are sufficiently far apart there are no further restrictions on
symbols, the symbolic dynamics is complete, and all binary sequences
(see Table 10.1) are admissible itineraries.10.2, page 133

Example 11.1 Recoding ternary symbolic dynamics in binary:
Given a ternary sequence and labels of 2 preceding disks, rule (11.1) fixes the
subsequent binary symbols. Here we list an arbitrary ternary itinerary, and
the corresponding binary sequence:

ternary : 3 1 2 1 3 1 2 3 2 1 2 3 1 3 2 3

binary : · 1 0 1 0 1 1 0 1 0 1 1 0 1 0 (11.2)
smale - 5jun2005 ChaosBook.org version11.9.2, Aug 21 2007
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(a) (b)

Fig. 11.2 The 3-disk game of pinball with the disk radius : center separation ratio
a:R = 1:2.5. (a) 2-cycles 12, 13, 23, and 3-cycles 123 and 132 (not drawn). (b) The fun-
damental domain, i.e., the small 1/6th wedge indicated in (a), consisting of a section of a
disk, two segments of symmetry axes acting as straight mirror walls, and an escape gap.
The above five cycles restricted to the fundamental domain are the two fixed points 0, 1.
See Fig. 9.2 for cycle 10 and further examples.

The first 2 disks initialize the trajectory and its direction; 3 �→ 1 �→ 2 �→ · · ·.
Due to the 3-disk symmetry the six distinct 3-disk sequences initialized by 12,
13, 21, 23, 31, 32 respectively have the same weights, the same size partitions,
and are coded by a single binary sequence. For periodic orbits, the equiva-
lent ternary cycles reduce to binary cycles of 1/3, 1/2 or the same length.
How this works is best understood by inspection of Table 11.1, Fig. 11.1 and
Fig. 9.5.

The 3-disk game of pinball is tiled by six copies of the fundamental
domain, a one-sixth slice of the full 3-disk system, with the symmetry
axes acting as reflecting mirrors, see Fig. 11.1 (b). Every global 3-disk
trajectory has a corresponding fundamental domain mirror trajectory
obtained by replacing every crossing of a symmetry axis by a reflec-
tion. Depending on the symmetry of the full state space trajectory, a
repeating binary symbols block corresponds either to the full periodic
orbit or to a relative periodic orbit (examples are shown in Fig. 11.1 and
Table 11.1). An irreducible segment corresponds to a periodic orbit in
the fundamental domain. Table 11.1 lists some of the shortest binary
periodic orbits, together with the corresponding full 3-disk symbol se-
quences and orbit symmetries. For a number of deep reasons that will

9.2, page 115be elucidated in Chapter ??, life is much simpler in the fundamental do-
main than in the full system, so whenever possible our computations
will be carried out in the fundamental domain.

Example 11.2 C2 recoded:

As the simplest example of implementing the above scheme consider the C2

symmetry of Example 9.3. For our purposes, all that we need to know here is
that each orbit or configuration is uniquely labeled by an infinite string {si},
si = +,− and that the dynamics is invariant under the + ↔ − interchange,
i.e., it isC2 symmetric. TheC2 symmetry cycles separate into two classes, the
self-dual configurations +−, ++−−, +++−−−, +−−+−++−, · · ·, with

ChaosBook.org version11.9.2, Aug 21 2007 smale - 5jun2005
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p̃ p gp̃

0 1 2 σ12

1 1 2 3 C3

01 12 13 σ23

001 121 232 313 C3

011 121 323 σ13

0001 1212 1313 σ23

0011 1212 3131 2323 C2
3

0111 1213 2123 σ12

00001 12121 23232 31313 C3

00011 12121 32323 σ13

00101 12123 21213 σ12

00111 12123 e
01011 12131 23212 31323 C3

01111 12132 13123 σ23

p̃ p gp̃

000001 121212 131313 σ23
000011 121212 313131 232323 C2

3

000101 121213 e
000111 121213 212123 σ12
001011 121232 131323 σ23
001101 121231 323213 σ13
001111 121231 232312 313123 C3

010111 121312 313231 232123 C2
3

011111 121321 323123 σ13

0000001 1212121 2323232 3131313 C3

0000011 1212121 3232323 σ13
0000101 1212123 2121213 σ12
0000111 1212123 e
· · · · · · · · ·

Table 11.1C3v correspondence between the binary labeled fundamental domain
prime cycles p̃ and the full 3-disk ternary labeled cycles p, together with the
C3v transformation that maps the end point of the p̃ cycle into the irreducible
segment of the p cycle, see Section 9.2. Breaks in the above ternary sequences
mark repeats of the irreducible segment. The multiplicity of p cycle is mp =
6np̃/np. The shortest pair of the fundamental domain cycles related by time
reversal (but no spatial symmetry) are the 6-cycles 001011 and 001101.

smale - 5jun2005 ChaosBook.org version11.9.2, Aug 21 2007
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p̃ p mp

1 + 2
0 −+ 1

01 −− ++ 1

001 − + + 2
011 −−− + ++ 1

0001 − + −− + − ++ 1
0011 − + ++ 2
0111 −−−− + + ++ 1

00001 − + − + − 2
00011 − + −−− + − + ++ 1
00101 − + + −− + −− ++ 1
00111 − + −−− + − + ++ 1
01011 −− + + + 2
01111 −−−−− + + + ++ 1

001011 − + + −−− + −− + ++ 1
001101 − + + + −− + −−− ++ 1

Table 11.2 Correspondence between the C2 symmetry reduced cycles p̃ and the
standard Ising model periodic configurations p, together with their multiplici-
ties mp. Also listed are the two shortest cycles (length 6) related by time rever-
sal, but distinct under C2.

multiplicitymp = 1, and the asymmetric pairs +, −, + +−, −− +, · · ·, with
multiplicitymp = 2. For example, as there is no absolute distinction between
the “up” and the “down” spins, or the “left” or the “right” lobe, Λ+ = Λ−,
Λ++− = Λ+−−, and so on.

??, page ??The symmetry reduced labeling ρi ∈ {0, 1} is related to the standard si ∈
{+,−} Ising spin labeling by

If si = si−1 then ρi = 1

If si �= si−1 then ρi = 0 (11.3)

For example, + = · · · + + + + · · · maps into · · · 111 · · · = 1 (and so does −),
−+ = · · · − + − + · · · maps into · · · 000 · · · = 0, − + +− = · · · − − + + −
− + + · · · maps into · · · 0101 · · · = 01, and so forth. A list of such reductions
is given in Table 11.2.

Example 11.3 C3v recoded - 3-disk game of pinball:

TheC3v recoding can be worked out by a glance at Fig. 11.1 (a) (continuation
of Example 9.4). For the symmetric 3-disk game of pinball the fundamen-
tal domain is bounded by a disk segment and the two adjacent sections of

ChaosBook.org version11.9.2, Aug 21 2007 smale - 5jun2005
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the symmetry axes that act as mirrors (see Fig. 11.1 (b)). The three symme-
try axes divide the space into six copies of the fundamental domain. Any
trajectory on the full space can be pieced together from bounces in the fun-
damental domain, with symmetry axes replaced by flat mirror reflections.
The binary {0, 1} reduction of the ternary three disk {1, 2, 3} labels has a
simple geometric interpretation: a collision of type 0 reflects the projectile
to the disk it comes from (back–scatter), whereas after a collision of type 1
projectile continues to the third disk. For example, 23 = · · · 232323 · · · maps
into · · · 000 · · · = 0 (and so do 12 and 13), 123 = · · · 12312 · · · maps into
· · · 111 · · · = 1 (and so does 132), and so forth. A list of such reductions for
short cycles is given in Table 11.1, Fig. 11.1 and Fig. 9.5.

11.2 Going global: Stable/unstable manifolds

A neighborhood of a trajectory deforms as it is transported by the flow.
In the linear approximation, the stability matrix A describes this shear-
ing of an infinitesimal neighborhood in an infinitesimal time step. The
shearing after finite time is described by the fundamental matrix M t.
Its eigenvalues and eigendirections describe deformation of an initial
infinitesimal sphere of neighboring trajectories into an ellipsoid time t
later. Nearby trajectories separate exponentially along the unstable di-
rections, approach each other along the stable directions, and maintain
their distance along the marginal directions.

The fixed or periodic point x∗ fundamental matrix Mp(x∗) eigenvec-
tors (5.9) form a rectilinear coordinate frame in which the flow into,
out of, or encircling the fixed point is linear in the sense of Section 4.2.
These eigendirections are numerically continued into global curvilinear
invariant manifolds as follows.

The global continuations of the local stable, unstable eigendirections
are called the stable, respectively unstable manifolds. They consist of
all points which march into the fixed point forward, respectively back-
ward in time

W s =
{
x ∈M : f t(x)− x∗ → 0 as t→∞}

Wu =
{
x ∈M : f−t(x)− x∗ → 0 as t→∞}

. (11.4)

The stable/unstable manifolds of a flow are rather hard to visualize, so
as long as we are not worried about a global property such as the num-
ber of times they wind around a periodic trajectory before completing
a par-course, we might just as well look at their Poincaré section return
maps. Stable, unstable manifolds for maps are defined by

W s = {x ∈ P : fn(x)− x∗ → 0 as n→∞}
Wu =

{
x ∈ P : f−n(x) − x∗ → 0 as n→∞}

. (11.5)

Eigenvectors (real or complex pairs) of fundamental matrix Mp(x∗) play
a special role - on them the action of the dynamics is the linear multi-
plication by Λi (for a real eigenvector) along 1-d invariant curve W u,s

(i)

or spiral in/out action in a 2-D surface (for a complex pair). For n→∞
smale - 5jun2005 ChaosBook.org version11.9.2, Aug 21 2007
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a finite segment on W s
(e), respectively W u

(c) converges to the linearized
map eigenvector e(e), respectively e(c). In this sense each eigenvector
defines a (curvilinear) axis of the stable, respectively unstable manifold.

Conversely, we can use an arbitrarily small segment of a fixed point
eigenvector to construct a finite segment of the associated manifold.
Precise construction depends on the type of the eigenvalue(s).

Expanding real and positive eigendirection. Consider ith expand-
ing eigenvalue, eigenvector pair (Λi, ei) computed from J evaluated at
a cycle point,

J(x)ei(x) = Λiei(x) , x ∈ p , Λi > 1 . (11.6)

Take an infinitesimal eigenvector ε ei(x), ε � 1, and its image Jp(x)ε ei(x) =
Λiε ei(x) . Sprinkle the interval |Λi − 1|ε with a large number of points
xm, equidistantly spaced on logarithmic scale ln |Λi−1|+ln ε . The suc-
cessive images of these points f(xj), f2(xj), · · ·, fm(xj) trace out the
curvilinear unstable manifold in direction ei. Repeat for −ε ei(x).

Contracting real, positive eigendirection. Reverse the action of the
map backwards in time. This turns a contracting direction into an ex-
panding one, tracing out the curvilinear stable manifold in continuation
of ε ej .

Expanding/contracting real negative eigendirection. As above, but
every even iterate f 2(xj), f4(xj), f6(xj) continues in the direction ei,
every odd one in the direction −ei.

Complex eigenvalue pair. Construct an orthonormal pair of eigen-
vectors spanning the plane {ε ej, ε ej+1}. Iteration of the annulus be-
tween an infinitesimal circle and its image by J spans the spiralling/circle
unstable manifold of the complex eigenvalue pair {Λi, Λi+1 = Λ∗

i }.

11.3 Horseshoes

If a flow is locally unstable but globally bounded, any open ball of ini-
tial points will be stretched out and then folded back. An example is
a 3-dimensional invertible flow sketched in Fig. 10.2 which returns an
area of a Poincaré section of the flow stretched and folded into a “horse-
shoe”, such that the initial area is intersected at most twice. Run back-
wards, the flow generates the backward horseshoe which intersects the
forward horseshoe at most 4 times, and so forth. Such flows exist, and
are easily constructed - an example is the Rössler system , discussed in

11.1, page 152Example 3.3.
Now we shall construct an example of a locally unstable but globally

bounded mapping which returns an initial area stretched and folded
into a “horseshoe”, such that the initial area is intersected at most twice.
We shall refer to such mappings with at most 2n transverse self-intersections
at the nth iteration as the once-folding maps.

As an example is afforded by the 2-dimensional Hénon map
3.5, page 50

xn+1 = 1− ax2
n + byn

yn+1 = xn . (11.7)
ChaosBook.org version11.9.2, Aug 21 2007 smale - 5jun2005



144 CHAPTER 11. QUALITATIVE DYNAMICS, FOR CYCLISTS

The Hénon map models qualitatively the Poincaré section return map
of Fig. 10.2. For b = 0 the Hénon map reduces to the parabola (10.7),
and, as shown in Sections 3.3 and ??, for b 
= 0 it is kind of a fattened
parabola; by construction, it takes a rectangular initial area and returns
it bent as a horseshoe.

For definitiveness, fix the parameter values to a = 6, b = 0.9. The
map is quadratic, so it has 2 fixed points x0 = f (x0), x1 = f (x1) indi-
cated in Fig. 11.3 (a). For the parameter values at hand, they are both
unstable. If you start with a small ball of initial points centered around
x1, and iterate the map, the ball will be stretched and squashed along
the line Wu

1 . Similarly, a small ball of initial points centered around the
other fixed point x0 iterated backward in time,

xn−1 = yn

yn−1 = −1
b
(1− ay2

n − xn) , (11.8)

traces out the line W s
0 . W s

0 is the stable manifold of x0 fixed point, and
Wu

1 is the unstable manifold of x1 fixed point, defined in Section 11.2.
Their intersections enclose the crosshatched region M. . Any point

outside Wu
1 border ofM. escapes to infinity forward in time, while any

point outside W s
0 border escapes to infinity backwards in time. In this

way the unstable - stable manifolds define topologically, invariant and
optimalM. initial region; all orbits that stay confined for all times are
confined toM. .

Iterated one step forward, the region M. is stretched and folded
into a smale horseshoe drawn in Fig. 11.3 (b). The horseshoe fattened
parabola shape is the consequence of the quadratic form x2 in (11.7).
Parameter a controls the amount of stretching, while the parameter b
controls the amount of compression of the folded horseshoe. The case
a = 6, b = 0.9 considered here corresponds to strong stretching and
weak compression. Label the two forward intersections f (M.)∩M. by
Ms., with s ∈ {0, 1}, Fig. 11.3 (b). The horseshoe consists of the two
strips M0.,M1. , and the bent segment that lies entirely outside the
Wu

1 line. As all points in this segment escape to infinity under forward
iteration, this region can safely be cut out and thrown away.

Iterated one step backwards, the region M. is again stretched and
folded into a horseshoe, Fig. 11.3 (c). As stability and instability are in-
terchanged under time reversal, this horseshoe is transverse to the for-
ward one. Again the points in the horseshoe bend wonder off to infinity
as n → −∞, and we are left with the two (backward) stripsM.0,M.1 .
Iterating two steps forward we obtain the four stripsM11.,M01.,M00.,M10.,
and iterating backwards we obtain the four stripsM.00,M.01,M.11,M.10

transverse to the forward ones just as for 3-disk pinball game Fig. 10.9.
Iterating three steps forward we get an 8 strips, and so on ad infinitum.

What is the significance of the subscript .011 which labels theM.011

backward strip? The two stripsM.0,M.1 partition the state space into
two regions labeled by the two-letter alphabet A = {0, 1}. S+ = .011
is the future itinerary for all x ∈ M.011. Likewise, for the forward strips
smale - 5jun2005 ChaosBook.org version11.9.2, Aug 21 2007
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(a)

s

0

u

1W

W

1

0

(b) (c)

Fig. 11.3 The Hénon map for a = 6, b = .9. (a) The fixed points 0, 1, and the segments
of the W s

0 stable manifold, W u
1 unstable manifold that enclose the initial (crosshatched)

region M.. (b) The forward horseshoe f (M.). (c) The backward horseshoe f−1(M.).
Iteration yields a complete Smale horseshoe, with every forward fold intersecting every
backward fold.

all x ∈ Ms−m···s−1s0. have the past itinerary S- = s−m · · · s−1s0 . Which
partition we use to present pictorially the regions that do not escape in
m iterations is a matter of taste, as the backward strips are the preim-
ages of the forward ones

M0. = f (M.0) , M1. = f (M.1) .

Ω, the non-wandering set (2.2) ofM., is the union of all points whose
forward and backward trajectories remain trapped for all time. given
by the intersections of all images and preimages ofM:

Ω =
{

x : x ∈ lim
m,n→∞ fm(M.)

⋂
f−n(M.)

}
. (11.9)

Two important properties of the Smale horseshoe are that it has a
complete binary symbolic dynamics and that it is structurally stable.

For a complete Smale horseshoe every forward fold f n(M) intersects
transversally every backward fold f−m(M), so a unique bi-infinite bi-
nary sequence can be associated to every element of the non-wandering
set. A point x ∈ Ω is labeled by the intersection of its past and future
itineraries S(x) = · · · s−2s−1s0.s1s2 · · ·, where sn = s if fn(x) ∈ M.s ,
s ∈ {0, 1} and n ∈ Z. For sufficiently separated disks, the 3-disk game
of pinball Fig. 10.9, is another example of a complete Smale horseshoe;
in this case the “folding” region of the horseshoe is cut out of the pic-
ChaosBook.org version11.9.2, Aug 21 2007 smale - 5jun2005
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ture by allowing the pinballs that fly between the disks to fall off the
table and escape.

The system is said to be structurally stable if all intersections of for-
ward and backward iterates of M remain transverse for sufficiently
small perturbations f → f + δ of the flow, for example, for slight dis-
placements of the disks, or sufficiently small variations of the Hénon
map parameters a, b while structural stability is exceedingly desirable,
it is also exceedingly rare. About this, more later.

11.4 Spatial ordering

Consider a system for which you have succeeded in constructing a cov-
ering symbolic dynamics, such as a well-separated 3-disk system. Now
start moving the disks toward each other. At some critical separation
a disk will start blocking families of trajectories traversing the other
two disks. The order in which trajectories disappear is determined
by their relative ordering in space; the ones closest to the intervening
disk will be pruned first. Determining inadmissible itineraries requires
that we relate the spatial ordering of trajectories to their time ordered
itineraries.11.8, page 153

So far we have rules that, given a state space partition, generate a
temporally ordered itinerary for a given trajectory. Our next task is the
reverse: given a set of itineraries, what is the spatial ordering of corre-
sponding points along the trajectories? In answering this question we
will be aided by Smale’s visualization of the relation between the topol-
ogy of a flow and its symbolic dynamics by means of “horseshoes”.

11.4.1 Symbol square

For a better visualization of 2-dimensional non-wandering sets, fatten
the intersection regions until they completely cover a unit square, as in
Fig. 11.4. We shall refer to such a “map” of the topology of a given
‘stretch & fold’ dynamical system as the symbol square. The symbol
square is a topologically accurate representation of the non-wandering
set and serves as a street map for labeling its pieces. Finite memory
of m steps and finite foresight of n steps partitions the symbol square
into rectangles [s−m+1 · · · s0.s1s2 · · · sn]. In the binary dynamics symbol
square the size of such rectangle is 2−m × 2−n; it corresponds to a re-
gion of the dynamical state space which contains all points that share
common n future and m past symbols. This region maps in a non-11.2, page 152

trivial way in the state space, but in the symbol square its dynamics is
exceedingly simple; all of its points are mapped by the decimal point
shift (10.18)

σ(· · · s−2s−1s0.s1s2s3 · · ·) = · · · s−2s−1s0s1.s2s3 · · · , (11.10)

For example, the square [01.01] gets mapped into the rectangle σ[01.01] =
[010.1].11.3, page 152
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Fig. 11.4 Kneading Danish Pastry: sym-
bol square representation of an orien-
tation reversing once-folding map ob-
tained by fattening the Smale horse-
shoe intersections of Fig. 11.3 into a unit
square. In the symbol square the dynam-
ics maps rectangles into rectangles by a
decimal point shift.

As the horseshoe mapping is a simple repetitive operation, we ex-
pect a simple relation between the symbolic dynamics labeling of the
horseshoe strips, and their relative placement. The symbol square

11.4, page 153points γ(S+) with future itinerary S+ are constructed by converting the
sequence of sn’s into a binary number by the algorithm (10.9). This fol-
lows by inspection from Fig. 11.4. In order to understand this relation
between the topology of horseshoes and their symbolic dynamics, it
might be helpful to backtrace to Section 10.2.2 and work through and
understand first the symbolic dynamics of one-dimensional unimodal
mappings.

Under backward iteration the roles of 0 and 1 symbols are inter-
changed;M−1

0 has the same orientation asM, whileM−1
1 has the op-

posite orientation. We assign to an orientation preserving once-folding
11.5, page 153map the past topological coordinate δ = δ(S -) by the algorithm:

wn−1 =
{

wn if sn = 0
1− wn if sn = 1 , w0 = s0

δ(S-) = 0.w0w−1w−2 . . . =
∞∑

n=1

w1−n/2n . (11.11)

Such formulas are best derived by quiet contemplation of the action
of a folding map, in the same way we derived the future topological
coordinate (10.9).

The coordinate pair (δ, γ) maps a point (x, y) in the state space Cantor
ChaosBook.org version11.9.2, Aug 21 2007 smale - 5jun2005
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set of Fig. 11.3 into a point in the symbol square of Fig. 11.4, preserving
the topological ordering; (δ, γ) serves as a topologically faithful repre-
sentation of the non-wandering set of any once-folding map, and aids
us in partitioning the set and ordering the partitions for any flow of this
type.

11.5 Pruning

The complexity of this figure will be striking, and I shall not
even try to draw it.

H. Poincaré, on his discovery of homoclinic tangles, Les
méthodes nouvelles de la méchanique céleste

In general, not all possible itineraries are realized as physical trajec-
tories. Trying to get from “here” to “there” we might find that a short
path is excluded by some obstacle, such as a disk that blocks the path,
or a potential ridge. To count correctly, we need to prune the inadmis-
sible trajectories, i.e., specify the grammar of the admissible itineraries.

While the complete Smale horseshoe dynamics discussed so far is
rather straightforward, we had to get through it in order to be able
to approach a situation that resembles more the real life: adjust the
parameters of a once-folding map so that the intersection of the back-
ward and forward folds is still transverse, but no longer complete, as in
Fig. 13.3.1 (a). The utility of the symbol square lies in the fact that the
surviving, admissible itineraries still maintain the same relative spatial
ordering as for the complete case.

In the example of Fig. 13.3.1 (a) the rectangles [10.1], [11.1] have been
pruned, and consequently any trajectory containing blocks b1 = 101,
b2 = 111 is pruned. We refer to the border of this primary pruned re-
gion as the pruning front; another example of a pruning front is drawn
in Fig. 13.3.1 (d). We call it a “front” as it can be visualized as a border
between admissible and inadmissible; any trajectory whose periodic
point would fall to the right of the front in Fig. 13.3.1 is inadmissible,
i.e., pruned. The pruning front is a complete description of the sym-
bolic dynamics of once-folding maps. For now we need this only as a
concrete illustration of how pruning rules arise.

In the example at hand there are total of two forbidden blocks 101,
111, so the symbol dynamics is a subshift of finite type (10.22). For
now we concentrate on this kind of pruning because it is particularly
clean and simple. Unfortunately, for a generic dynamical system a sub-
shift of finite type is the exception rather than the rule. Only some
repelling sets (like our game of pinball) and a few purely mathemat-
ical constructs (called Anosov flows) are structurally stable - for most
systems of interest an infinitesimal perturbation of the flow destroys
and/or creates an infinity of trajectories, and specification of the gram-
mar requires determination of pruning blocks of arbitrary length. The
repercussions are dramatic and counterintuitive; for example, due to
the lack of structural stability the transport coefficients such as the de-
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terministic diffusion constant of Section ?? are emphatically not smooth
functions of the system parameters. This generic lack of structural sta-
bility is what makes nonlinear dynamics so hard.

The conceptually simpler finite subshift Smale horseshoes suffice to
motivate most of the key concepts that we shall need for time being.

11.5.1 Converting pruning blocks into Markov graphs

The complete binary symbolic dynamics is too simple to be illuminat-
ing, so we turn next to the simplest example of pruned symbolic dy-
namics, the finite subshift obtained by prohibition of repeats of one of
the symbols, let us say 00 . This situation arises, for example, in stud-

13.7, page 192ies of the circle maps, where this kind of symbolic dynamics describes
“golden mean” rotations (we shall return to this example in Chapter ??).
Now the admissible itineraries are enumerated by the pruned binary

13.9, page 193tree of Fig. 10.9 (a), or the corresponding Markov graph Fig. 10.9 (b).
We recognize this as the Markov graph example of Fig. 10.5.

So we can already see the main ingredients of a general algorithm:
(1) Markov graph encodes self-similarities of the tree of all itineraries,
and (2) if we have a pruning block of length M , we need to descend M
levels before we can start identifying the self-similar sub-trees.

Suppose now that, by hook or crook, you have been so lucky fishing
for pruning rules that you now know the grammar (10.21) in terms of
a finite set of pruning blocks G = {b1, b2, · · · bk}, of lengths nbm ≤ M .
Our task is to generate all admissible itineraries. What to do?

A Markov graph algorithm.

(1) Starting with the root of the tree, delineate all branches that corre-
spond to all pruning blocks; implement the pruning by removing
the last node in each pruning block.

(2) Label all nodes internal to pruning blocks by the itinerary con-
necting the root point to the internal node. Why? So far we
have pruned forbidden branches by looking nb steps into future
for all pruning blocks. into future for pruning block b = 10010.
However, the blocks with a right combination of past and future
[1.0110], [10.110], [101.10] and [1011.0] are also pruned. In other
words, any node whose near past coincides with the beginning of
a pruning block is potentially dangerous - a branch further down
the tree might get pruned.

(3) Add to each internal node all remaining branches allowed by the
alphabet, and label them. Why? Each one of them is the begin-
ning point of an infinite tree, a tree that should be similar to an-
other one originating closer to the root of the whole tree.

(4) Pick one of the free external nodes closest to the root of the entire
tree, forget the most distant symbol in its past. Does the truncated
itinerary correspond to an internal node? If yes, identify the two
nodes. If not, forget the next symbol in the past, repeat. If no such
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truncated past corresponds to any internal node, identify with the
root of the tree.
This is a little bit abstract, so let’s say the free external node in
question is [1010.]. Three time steps back the past is [010.]. That
is not dangerous, as no pruning block in this example starts with
0. Now forget the third step in the past: [10.] is dangerous, as that
is the start of the pruning block [10.110]. Hence the free external
node [1010.] should be identified with the internal node [10.].

(5) Repeat until all free nodes have been tied back into the internal
nodes.

(6) Clean up: check whether every node can be reached from every
other node. Remove the transient nodes, i.e., the nodes to which
dynamics never returns.

(7) The result is a Markov diagram. There is no guarantee that this
is the smartest, most compact Markov diagram possible for given
pruning (if you have a better algorithm, teach us), but walks around
it do generate all admissible itineraries, and nothing else.

Heavy pruning.

We complete this training by examples by implementing the pruning
of Fig. 13.3.1 (d). The pruning blocks are

[100.10], [10.1], [010.01], [011.01], [11.1], [101.10]. (11.12)

Blocks 01101, 10110 contain the forbidden block 101, so they are redun-
dant as pruning rules. Draw the pruning tree as a section of a binary tree
with 0 and 1 branches and label each internal node by the sequence of
0’s and 1’s connecting it to the root of the tree (Fig. 13.3.1 (a). These
nodes are the potentially dangerous nodes - beginnings of blocks that
might end up pruned. Add the side branches to those nodes (Fig. 13.3.1 (b).
As we continue down such branches we have to check whether the
pruning imposes constraints on the sequences so generated: we do this
by knocking off the leading bits and checking whether the shortened
strings coincide with any of the internal pruning tree nodes: 00 → 0;
110 → 10; 011 → 11; 0101 → 101 (pruned); 1000 → 00 → 00 → 0;
10011→ 0011→ 011→ 11; 01000→ 0.

As in the previous two examples, the trees originating in identified
nodes are identical, so the tree is “self-similar”. Now connect the side
branches to the corresponding nodes, Fig. 13.3.1 (d). Nodes “.” and 1
are transient nodes; no sequence returns to them, and as you are in-
terested here only in infinitely recurrent sequences, delete them. The
result is the finite Markov graph of Fig. 13.3.1 (d); the admissible bi-
infinite symbol sequences are generated as all possible walks along this
graph.
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Summary

Given a partition A of the state space M, a dynamical system (M, f)
induces topological dynamics (Σ, σ) on the space Σ of all admissible
bi–infinite itineraries. The itinerary describes the time evolution of an
orbit, while (for 2-d hyperbolic maps) the symbol square describes the
spatial ordering of points along the orbit. The rule that everything to
one side of the pruning front is forbidden might (in hindsight) seem
obvious, but if you have ever tried to work out symbolic dynamics of
some “generic” dynamical system, you should be struck by its sim-
plicity: instead of pruning a Cantor set embedded within some larger
Cantor set, the pruning front cleanly cuts out a compact region in the
symbol square and that is all - there are no additional pruning rules.

The symbol square is a useful tool in transforming topological prun-
ing into pruning rules for inadmissible sequences; those are imple-
mented by constructing transition matrices and/or Markov graphs. These
matrices are the simplest examples of evolution operators prerequisite
to developing a theory of averaging over chaotic flows.

Importance of symbolic dynamics is often grossly unappreciated; as
we shall see in Chapters ?? and ??, coupled with uniform hyperbolicity,
the existence of a finite grammar is the crucial prerequisite for construc-
tion of zeta functions with nice analyticity properties.

Further reading

Smale horseshoe. S. Smale understood clearly that the
crucial ingredient in the description of a chaotic flow is
the topology of its non-wandering set, and he provided
us with the simplest visualization of such sets as intersec-
tions of Smale horseshoes. In retrospect, much of the ma-
terial covered here can already be found in Smale’s fun-
damental paper [22], but a physicist who has run into a
chaotic time series in his laboratory might not know that
he is investigating the action (differentiable) of a Lie group
G on a manifold M , and that the Lefschetz trace formula
is the way to go. If you find yourself mystified by Smale’s
article abstract about “the action (differentiable) of a Lie
group G on a manifold M”, quoted on page 143, reread-
ing Chapter ?? might help; for example, the Liouville op-
erators form a Lie group (of symplectic, or canonical trans-
formations) acting on the manifold (p, q).

Kneading theory. The admissible itineraries are
studied in Refs. [15, 14, 16, 17], as well as many others.
We follow here the Milnor-Thurston exposition [16]. They
study the topological zeta function for piecewise mono-
tone maps of the interval, and show that for the finite sub-

shift case it can be expressed in terms of a finite dimen-
sional kneading determinant. As the kneading determinant
is essentially the topological zeta function that we intro-
duce in (13.4), we shall not discuss it here. Baladi and Ru-
elle have reworked this theory in a series of papers [18–20]
and in Ref. [21] replaced it by a power series manipulation.
The kneading theory is covered here in P. Dahlqvist’s Ap-
pendix ??.

Pruning fronts. The notion of a pruning front was
introduced in Ref. [22], and developed by K.T. Hansen for
a number of dynamical systems in his Ph.D. thesis [7] and
a series of papers [29]- [33]. Detailed studies of pruning
fronts are carried out in Refs. [23,25,24]; Ref. [?] is the most
detailed study carried out so far. The rigorous theory of
pruning fronts has been developed by Y. Ishii [26, 27] for
the Lozi map, and A. de Carvalho [28] in a very general
setting.

The unbearable growth of Markov graphs. A
construction of finite Markov partitions is described in
Refs. [10, 11], as well as in the innumerably many other
references.
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If two regions in a Markov partition are not disjoint but
share a boundary, the boundary trajectories require spe-
cial treatment in order to avoid overcounting, see Sec-
tion ??. If the image of a trial partition region cuts across
only a part of another trial region and thus violates the
Markov partition condition (10.4), a further refinement of
the partition is needed to distinguish distinct trajectories -
Fig. 13.3.1 is an example of such refinements.

The finite Markov graph construction sketched above is
not necessarily the minimal one; for example, the Markov
graph of Fig. 13.3.1 does not generate only the “funda-
mental” cycles (see Chapter ??), but shadowed cycles as
well, such as t00011 in (13.17). For methods of reduction
to a minimal graph, consult Refs. [6, 54, 7]. Furthermore,
when one implements the time reversed dynamics by the
same algorithm, one usually gets a graph of very different
topology even though both graphs generate the same ad-

missible sequences, and have the same determinant. The
algorithm described here makes some sense for 1-d dy-
namics, but is unnatural for 2-d maps whose dynamics
it treats as one-dimensional. In practice, generic prun-
ing grows longer and longer, and more plentiful pruning
rules. For generic flows the refinements might never stop,
and almost always we might have to deal with infinite
Markov partitions, such as those that will be discussed in
Section 13.6. Not only do the Markov graphs get more
and more unwieldy, they have the unpleasant property
that every time we add a new rule, the graph has to be
constructed from scratch, and it might look very different
form the previous one, even though it leads to a minute
modification of the topological entropy. The most deter-
mined effort to construct such graphs may be the one of
Ref. [23]. Still, this seems to be the best technology avail-
able, unless the reader alerts us to something superior.

Exercises

(11.1) A Smale horseshoe. The Hénon map[
x′

y′

]
=

[
1 − ax2 + y
bx

]
(11.13)

maps the (x, y) plane into itself - it was constructed
by Hénon [2] in order to mimic the Poincaré section
of once-folding map induced by a flow like the one
sketched in Fig. 10.2. For definitiveness fix the pa-
rameters to a = 6, b = −1.

a) Draw a rectangle in the (x, y) plane such that
its nth iterate by the Hénon map intersects the
rectangle 2n times.

b) Construct the inverse of the (11.13).

c) Iterate the rectangle back in the time; how
many intersections are there between the n
forward and m backward iterates of the rect-
angle?

d) Use the above information about the intersec-
tions to guess the (x, y) coordinates for the
two fixed points, a 2-cycle point, and points
on the two distinct 3-cycles from Table 10.1.
The exact cycle points are computed in Exer-
cise 12.10.

(11.2) Kneading Danish pastry. Write down the
(x, y) → (x, y) mapping that implements the

baker’s map of Fig. 11.4, together with the inverse
mapping. Sketch a few rectangles in symbol square
and their forward and backward images. (Hint: the
mapping is very much like the tent map (10.6)).

(11.3) Kneading Danish without flipping. The baker’s
map of Fig. 11.4 includes a flip - a map of this type
is called an orientation reversing once-folding map.
Write down the (x, y) → (x, y) mapping that im-
plements an orientation preserving baker’s map (no
flip; Jacobian determinant = 1). Sketch and label the
first few foldings of the symbol square.

(11.4) Fix this manuscript. Check whether the layers
of the baker’s map of Fig. 11.4 are indeed or-
dered as the branches of the alternating binary tree
of Fig. 10.7. (They might not be - we have not
rechecked them). Draw the correct binary trees that
order both the future and past itineraries.

For once-folding maps there are four topologically
distinct ways of laying out the stretched and folded
image of the starting region,

(a) orientation preserving: stretch, fold upward,
as in Fig. ??

(b) orientation preserving: stretch, fold down-
ward, as in Fig. 13.3.1
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(c) orientation reversing: stretch, fold upward,
flip, as in Fig. ??

(d) orientation reversing: stretch, fold down-
ward, flip, as in Fig. 11.4,

with the corresponding four distinct binary-labeled
symbol squares. For n-fold ‘stretch & fold’ flows the
labeling would be nary. The intersection M0 for the
orientation preserving Smale horseshoe, Fig. ??a, is
oriented the same way as M, while M1 is oriented
opposite to M. Brief contemplation of Fig. 11.4 in-
dicates that the forward iteration strips are ordered
relative to each other as the branches of the alternat-
ing binary tree in Fig. 10.7.
Check the labeling for all four cases.

(11.5) Orientation reversing once-folding map. By
adding a reflection around the vertical axis to the
horseshoe map g we get the orientation reversing
map g̃ shown in Fig. ??. Q̃0 and Q̃1 are oriented as
Q0 and Q1, so the definition of the future topolog-
ical coordinate γ is identical to the γ for the orien-
tation preserving horseshoe. The inverse intersec-
tions Q̃−1

0 and Q̃−1
1 are oriented so that Q̃−1

0 is op-
posite to Q, while Q̃−1

1 has the same orientation as
Q. Check that the past topological coordinate δ is
given by

wn−1 =

{
1 − wn if sn = 0
wn if sn = 1

, w0 = s0

δ(x) = 0.w0w−1w−2 . . . =

∞∑
n=1

w1−n/2
n .(11.14)

(11.6) Infinite symbolic dynamics. Let σ be a func-
tion that returns zero or one for every infinite binary
string: σ : {0, 1}N → {0, 1}. Its value is represented
by σ(ε1, ε2, . . .) where the εi are either 0 or 1. We
will now define an operator T that acts on observ-
ables on the space of binary strings. A function a is
an observable if it has bounded variation, that is, if

‖a‖ = sup
{εi}

|a(ε1, ε2, . . .)| <∞ .

For these functions

T a(ε1, ε2, . . .) = a(0, ε1, ε2, . . .)σ(0, ε1, ε2, . . .)

+a(1, ε1, ε2, . . .)σ(1, ε1, ε2, . . .) .

(a) (easy) Consider a finite version Tn of the oper-
ator T :

Tna(ε1, ε2, . . . , ε1,n) =

a(0, ε1, ε2, . . . , εn−1)σ(0, ε1, ε2, . . . , εn−1) +

a(1, ε1, ε2, . . . , εn−1)σ(1, ε1, ε2, . . . , εn−1) .

Show that Tn is a 2n × 2n matrix. Show that
its trace is bounded by a number independent
of n.

(b) (medium) With the operator norm induced by
the function norm, show that T is a bounded
operator.

(c) (hard) Show that T is not trace class. (Hint:
check if T is compact “trace class” is defined
in Appendix ??.)

(11.7) Time reversability.∗∗ Hamiltonian flows are
time reversible. Does that mean that their Markov
graphs are symmetric in all node → node links,
their transition matrices are adjacency matrices,
symmetric and diagonalizable, and that they have
only real eigenvalues?

(11.8) 3-disk pruning (Not easy) Show that for 3-
disk game of pinball the pruning of orbits starts
at R : a = 2.04821419 . . ..

(Kai T. Hansen)

(11.9) Alphabet {0,1}, prune 1000 , 00100 , 01100 .
This example is motivated by the pruning front de-
scription of the symbolic dynamics for the Hénon-
type maps.
step 1. 1000 prunes all cycles with a 000 sub-
sequence with the exception of the fixed point 0;
hence we factor out (1 − t0) explicitly, and prune
000 from the rest. This means that x0 is an isolated

fixed point - no cycle stays in its vicinity for more
than 2 iterations. In the notation of Section 11.5.1,
the alphabet is {1, 2, 3; 0}, and the remaining prun-
ing rules have to be rewritten in terms of symbols
2=10, 3=100:
step 2. alphabet {1, 2, 3; 0}, prune 33 , 213 , 313 .
This means that the 3-cycle 3 = 100 is pruned and
no long cycles stay close enough to it for a single
100 repeat. As in example 1?!, prohibition of 33

is implemented by dropping the symbol “3” and ex-
tending the alphabet by the allowed blocks 13, 23:
step 3. alphabet {1, 2, 13, 23; 0}, prune 213 ,
23 13 , 13 13 , where 13 = 13, 23 = 23 are now
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used as single letters. Pruning of the repetitions
13 13 (the 4-cycle 13 = 1100 is pruned) yields the

result: alphabet {1, 2, 23, 113; 0}, unrestricted 4-

ary dynamics. The other remaining possible blocks
213 , 2313 are forbidden by the rules of step 3.

(continued as Exercise 13.21)
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[45] P. Cvitanović and K.T. Hansen, “Bifurcation structures in maps of
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