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Spatially extended systems, such as Navier-Stokes equations, are often equivariant under contin-
uous symmetry transformations, with each state of the flow having an infinite number of equivalent
solutions obtained from it by a symmetry action, such as a translation or a rotation. ‘Symmetry
reduction’ is a coordinate transformation which separates the state space into a lower-dimensional,
symmetry-reduced state space, where every set of symmetry-equivalent states is represented by a
single state, and ‘phase’ coordinates which enable one to reconstruct the original, full state space
dynamics. In the method of slices this reduction is achieved locally by cutting all group orbits
by a ‘slice’. Here we describe the ‘first Fourier mode slice’, a simple application of the method
to reduction of SO(2) symmetry, in which singularities in phase velocity close to the slice border
are regularized by a time-scaling transformation. We show that global structures, such as chaotic
attractors and unstable manifolds of traveling waves, are uncovered in the symmetry-reduced state
space. We illustrate the method by applying it to a two-Fourier modes normal-form model and to
the Kuramoto-Sivashinsky system.

PACS numbers: 02.20.-a, 05.45.-a, 05.45.Jn, 47.27.ed

A solution to a problem in classical or quantum me-
chanics starts with the classification of problem’s sym-
metries, followed by a choice of a basis invariant un-
der these symmetries. For example, one formulates the
two-body problem in three Cartesian coordinates, but
when it comes to solving it, polar coordinates, with the
phase along the symmetry direction as an explicit co-
ordinate, are preferable. While a classification of prob-
lem’s symmetries might be relatively straightforward, for
high-dimensional nonlinear systems a good choice of a
symmetry-invariant frame is not as easy as transforming
to polar coordinates. The applications we have in mind
are to solutions of spatially extended systems such as
Navier-Stokes equations on a spatially periodic domain,
where one starts the symmetry analysis by rewriting the
equations in a Fourier basis,

u(x, τ) =

+∞∑
k=−∞

ũk(τ) eiqkx , ũk = xk + i yk , (1)

where qk = 2πk/L and L is the domain size. Thus a non-
linear PDE is converted to an infinite tower of ODEs. In
computations this state space is truncated to d = 2m
real dimensions, a = (x1, y1, x2, y2, . . . , xm, ym)T. (In ex-
amples considered here, Galilean invariance implies that
0-th Fourier mode can be set equal to zero.)

If the system has a translational symmetry, in choosing
a Fourier basis we pick one particular reference basis from
the continuous family of equivalent basis sets related by
SO(2) rotations. In such a basis there is a redundant
degree of freedom, namely the direction along which the
problem is symmetric. Keeping such redundant degrees

of freedom not only makes a problem harder to solve, but,
as we shall illustrate with our examples, also obscures its
dynamics.

Symmetry reduction offers a systematic method of
finding the coherent structures believed [1] to play an im-
portant role in shaping the state space of turbulent flows
and illuminating their relations. Here we describe the
‘first Fourier mode slice’, a straightforward implementa-
tion of the method of slices [2–7] that can be used to re-
duce the SO(2)-symmetry in spatially extended systems.
Consider a first-order dynamical system ȧ = v(a) defined
on state space a ∈ M, v(a) = (ẋ1, ẏ1, ẋ2, ẏ2 . . . , ẋm, ẏm).
We assume that the equations of motion and the bound-
ary conditions are invariant under an SO(2) group of
transformations, i.e., that the dynamics satisfies the
equivariance condition

v(a) = g−1v(ga) , (2)

where

g(θ) = diag [R(θ), R(2θ), . . . , R(mθ) ] , (3)

is a block-diagonal representation of the SO(2) action
and R(kθ) is the [2×2] rotation matrix acting on the
k-th Fourier mode. Lie algebra element T that gener-
ates (3) is also block-diagonal with [2×2] generators of
infinitesimal rotations Tk along its diagonal. R(kθ) and
Tk are explicitly written as follows:

R(kθ) =

(
cos kθ − sin kθ
sin kθ cos kθ

)
, Tk =

(
0 −k
k 0

)
. (4)

Properties of Fourier modes can be stated compactly in
the complex, U(1) formulation, but for visualization pur-
poses we find it more convenient to work in the real SO(2)
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representation. The group orbit Ma of a state space
point a is the set of all points reachable from a by sym-
metry transformations, Ma = {g(θ) a | θ ∈ [0, 2π)} . In
the method of slices, one constructs a ‘slice’, a subman-
ifold M̂ ⊂ M that cuts each group orbit in an open
neighborhood once and only once. The dynamics is then
separated into the ‘shape-changing’ dynamics â(τ) ∈ M̂
within this submanifold, and a transverse symmetry co-
ordinate parameterized by the group parameter θ(τ) that
reconstructs the original dynamics a(τ) ∈ M by the
group action a(τ) = g(θ(τ)) â(τ). For the SO(2) case
at hand, a one-parameter set of transformations, M̂ has
one dimension less than M.

There is a great deal of freedom in how one constructs
a slice; in general one can pick any ‘moving frame’ [8–10].
Computationally easiest way to construct a local slice is
by considering a hyperplane of points â that satisfies

0 = 〈â|t′〉 , where 〈b|c〉 =

m∑
k=1

bkck . (5)

Here, t′ is the group tangent evaluated at a reference
state space point â′ (or the ‘template’ [2]), t′ = T â′. The
template is assumed not to lie in an invariant subspace,
i.e., gâ′ 6= â′ for all g 6= 1. The dynamics within this
slice hyperplane and the reconstruction equation for the
phase parameter are given by

v̂(â) = v(â)− θ̇(â) t(â) , (6)

θ̇(â) = 〈v(â)|t′〉/〈t(â)|t′〉 , (7)

with t(â) = T â the group tangent evaluated at the
symmetry-reduced state space point â. Eq. (6) says that
the full state space velocity v(â) is the sum of the in-slice
velocity v̂(â) and the transverse velocity θ̇(â) t(â) along
the group tangent, and (7) is the reconstruction equation
whose integral tracks the trajectory in the full state space
(for a derivation see, for example, ref. [11]).

The phase velocity (7) becomes singular for â∗ such
that t(â∗) lies in the slice,

〈t(â∗)|t′〉 = 0 , (8)

or for â∗ in an invariant subspace, where t(â∗) = 0. The
(d − 2)-dimensional hyperplane of such points â∗ forms
the ‘slice border’, beyond which the slice does not apply.
Both the slice hyperplane and its border depend on the
choice of template â′, with the resulting ‘chart’ in general
valid only in some neighborhood of â′. For a turbulent
flow, symmetry reduction might require construction of
a set of such local overlapping charts [6, 7]. However, as
we now show for SO(2), a simple choice of template may
suffice to avoid all slice border singularities in regions of
dynamical interest.

We define our ‘first Fourier mode slice’ by choosing a
template that fixes the phase of the first Fourier mode,

â′ = (1, 0, 0, 0, ...) , t′ = (0, 1, 0, 0, ...) . (9)

The slice determined by this template is the (d − 1)-
dimensional half-hyperplane

x̂1 ≥ 0 , ŷ1 = 0 ,

x̂k, ŷk ∈ R , for all k > 1 . (10)

The condition ŷ1 = 0 follows from the slice condition (5),
whereas x̂1 ≥ 0 ensures a single intersection for every
group orbit. The denominator of (7) approaches zero as
the trajectory approaches the slice border, x̂1(τ) → 0.
This singularity can be regularized by defining the in-
slice time as dτ̂ = dτ/x̂1, and rewriting (6) and (7) as

dâ/dτ̂ = x̂1v(â)− ẏ1(â) t(â) , (11)

dθ(â)/dτ̂ = ẏ1(â) . (12)

The phase velocity (12) is now the non-singular, full state
space velocity component ẏ1 orthogonal to the slice, and
the full state space time is the integral

τ(τ̂) =

∫ τ̂

0

dτ̂ ′ x̂1(τ̂ ′) . (13)

For example, the full state space period τp = τp(τ̂p) of a
relative periodic orbit a(τp) = gp a(0) is the integral (13)
over one period τ̂p in the slice.

We illustrate this symmetry reduction scheme by two
examples. For clarity, we first apply the method to a
model with only two coupled Fourier modes, and then
apply it to the Kuramoto-Sivashinsky equation on a one-
dimensional periodic domain.
‘Two-mode system’ is a two-Fourier modes system

studied in ref. [12–15] as normal form close to bifurca-
tions off an SO(2) invariant equilibrium. Our two-mode
ODEs are [16]:

ẋ1 = (µ1 − r2)x1 + c1 (x1x2 + y1y2) , r2 = x21 + y21

ẏ1 = (µ1 − r2) y1 + c1 (x1y2 − x2y1)

ẋ2 = x2 + y2 + x21 − y21 + a2x2r
2

ẏ2 = −x2 + y2 + 2x1y1 + a2y2r
2 , (14)

with parameter values µ1 = −2.8, a2 = −2.66, c1 =
−7.75 empirically chosen so the system exhibits chaos.
The flow satisfies the SO(2) equivariance condition (2) by
construction, with the Lie group element (3) truncated at
the second mode. Furthermore, r = 0 is a flow-invariant
subspace. That guarantees that in-slice trajectories can
only approach the slice border x̂1 = 0, but never cross it;
hence the symmetry-reduced dynamics is confined to the
slice half-hyperplane for all times.

Fig. 1 (a) shows the only relative equilibrium of the
two-mode system, a typical chaotic orbit, and its short-
est relative periodic orbit projected down to 3 dimen-
sions from the 4D state space. In the full state space the
group orbit of a relative periodic orbit is a torus, traced
out ergodically by repeats of the relative periodic orbit.
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FIG. 1: (Color online) The two-mode system: A typical
chaotic trajectory (blue), a trajectory spiraling out from the
relative equilibrium (green), 10 repeats of the shortest τp =
3.6415120 relative periodic orbit (red) plotted in (a) a 3D
projection of its four-dimensional state space; (b) the three-
dimensional slice hyperplane.

Fig. 1 (b) illustrates why symmetry-reduction is absolute
prerequisite to any analysis of the topology of a strange
attractor. Here, the same flow is shown in the three-
dimensional symmetry-reduced slice hyperplane. The full
state space relative equilibrium is reduced to an equilib-
rium and the relative periodic orbit to a periodic orbit.
Once the drifts along the symmetry direction have been
quotiented out, a chaotic attractor, shaped by the rela-
tive equilibrium and the equilibrium at the origin, is re-
vealed [16].

Kuramoto-Sivashinsky system

ut = − 1
2 (u2)x − uxx − uxxxx

in a periodic domain has been extensively studied as a
model PDE exhibiting spatiotemporal chaos. The relati-
ve equilibrium and relative periodic orbit solutions that
we use in this example are described in ref. [17], where
the domain size has been set to L = 22, large enough
to exhibit complex spatiotemporal dynamics. In terms
of complex Fourier modes (1) the Kuramoto-Sivashinsky
equation is:

˙̃uk = (q2k − q4k) ũk − i
qk
2

+∞∑
m=−∞

ũmũk−m , (15)

where qk = 2πk/L. Expressed in the real SO(2) represen-
tation ũk = xk + i yk, Kuramoto-Sivashinsky equation is
equivariant under SO(2) rotations (3). We have adapted
the ETDRK4 method [18, 19] for numerical integration
of the symmetry reduced equations (11), where we set
ũ0 = 0 and truncate the expansion (15) to m = 15
Fourier modes, so the state space is 30-dimensional,
a = (x1, y1, x2, y2, ..., x15, y15)T.

As an illustration of symmetry reduction, we trace out
a segment of the unstable manifold of the relative equi-
librium (travelling wave) TW−1 by integrating k trajec-
tories with initial conditions â1, · · · , âk,

â` = âTW−1
+ ε e`δ ê1 , where δ = 2πµ(1)/k ω(1) . (16)

Here âTW−1
is the point of intersection of the TW−1

orbit with the slice hyperplane, ε is a small parameter
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FIG. 2: (Color online) Kuramoto-Sivashinsky system: (a)
Unstable manifold of the relative equilibrium TW−1 (blue)
computed by integrating 20 nearby points given by (16) for
τ = 120; 2 repeats of the τp = 33.5010 relative periodic or-
bit (red), with instants τ = 0, τp, 2τp marked by black dots;
group orbits (which are also the time orbits) of the TW−1

(magenta) and TW−2 (green) in the full state space. The co-
ordinate axes are projections (v1, v2, v3) onto three orthonor-

mal vectors (ê1, ê2, ê3), respectively, constructed from Re V̂1,

Im V̂1 and Re V̂2 via Gram-Schmidt orthogonalization. V̂1

and V̂2 are the first and second most expanding complex sta-
bility eigenvectors of TW−1. (b) The same solutions in the
slice hyperplane. TW−1 and TW−2 solutions have now col-
lapsed into single points, the unstable manifold is a smooth
2D surface, and the relative periodic orbit closes after a single
period.

that we set to 10−6 and ê1 = Re V̂1/|Re V̂1|. The un-
stable manifold of TW−1 is four-dimensional: here we
present the two-dimensional submanifold associated with
the most expanding complex linear stability eigenvector
V̂1 of TW−1, with the eigenvalue λ(1) = µ(1) + i ω(1).
Fig. 2 shows the state space projections of unstable man-
ifold of TW−1 along with the τp = 33.5010 relative peri-
odic orbit and the relative equilibrium TW−2. It is clear
from fig. 2 (a) that without the symmetry reduction, the
TW−1 unstable manifold is dominated by the drifts along
its group orbit. In the symmetry reduced state space M̂,
shown in fig. 2 (b), the dynamically important, group-
action transverse part of the unstable manifold of TW−1
is revealed. While the drifts along the symmetry direc-
tion complicate the relative periodic orbit in fig. 2 (a),
the same orbit closes onto itself after one repeat within
the slice hyperplane, fig. 2 (b). Likewise, TW−2, which
is topologically a circle but appears convoluted in the
projection of fig. 2(a), is reduced to a single equilibrium
point. The stage is now set for a construction of symbolic
dynamics for the flow by means of Poincaré sections and
Poincaré return maps [20].

The solutions of Kuramoto-Sivashinsky system are
conventionally visualized in the configuration space, as
time evolution of color-coded value of the function u(x, t),
see fig. 3. Fig. 3 (b) and (e) illustrate that a relative
equilibrium and a relative periodic orbit become an equi-
librium and a periodic orbit after symmetry reduction.
Fig. 3 (b) shows that even after the numerical trajectory
diverges from the unstable relative equilibrium and falls
onto the strange attractor, our symmetry reduced repre-
sentation stays valid. The sharp shifts (along x direction)
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FIG. 3: (Color online) Traveling wave TW−1 with phase
velocity c = 0.737 in configuration space: (a) the full state
space solution, (b) symmetry-reduced solution with respect
to the lab time, and (c) symmetry-reduced solution with re-
spect to the in-slice time. Relative periodic orbit τp = 33.50
in configuration space: (d) the full state space solution, (e)
symmetry-reduced solution with respect to the lab time, and
(f) symmetry-reduced solution with respect to the in-slice
time.

in fig. 3 (e) correspond to the time intervals where trajec-
tory has a nearly vanishing first Fourier mode. Plotted
as the function of the in-slice time τ̂ in fig. 3 (f), these
rapid episodes are well resolved.

Unlike the two-mode example, the slice border for
Kuramoto-Sivashinsky is not a flow-invariant subspace
and is not protected from a trajectory visit. However,
our numerical simulations of long-time ergodic trajecto-
ries have not actually encountered this passage (the case
of solutions in invariant subspaces requires some care and
will be treated elsewhere [20]). Thus, for the Kuramoto-
Sivashinsky (and Navier-Stokes [21]) cases our argument
is probabilistic: the likelihood that a generic turbulent
state has exactly (to the machine precision, for com-
puter simulations) vanishing first Fourier mode, ũ1 = 0,
is small. Note that x1 = y1 = 0 is a stagnation sub-
space of the rescaled time evolution (11). It would take
a trajectory an infinitely long time (in the in-slice time
τ̂ units) to reach this subspace, which is why integrating
(11) resolves close passages to the border very well.

In summary, we recommend that the ‘first Fourier
mode slice’ (9), a simple SO(2) symmetry reduction pre-
scription, be used to reduce the SO(2) symmetry of spa-
tially extended systems. This slice is valid as long as the
amplitude of the first Fourier mode is non-zero. Small pe-
riodic cell Kuramoto-Sivashinsky and Navier-Stokes sim-
ulations indicate that the first mode can approach zero,
but never completely vanishes. Regularizing the sym-

metry reduced velocities (6) and (7) by a time-scaling
transformation resolves the reduced flow well in these in-
stances.

Our examples demonstrate that the symmetry reduced
flows are considerably simpler and provide enhanced un-
derstanding of the global organization of different solu-
tions and their invariant manifolds. A technically more
demanding demonstration of the validity of our method
for a Navier-Stokes flow is described in ref. [21].

We are indebted to Xiong Ding and Francesco Fedele
for stimulating discussions and to Daniel Borrero-
Echeverry for a critical reading of the manuscript. Mat-
plotlib library [22] was used to produce the figures in this
letter.
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[17] P. Cvitanović, R. L. Davidchack, and E. Siminos, SIAM

J. Appl. Dyn. Syst. 9, 1 (2010), arXiv:0709.2944.
[18] S. M. Cox and P. C. Matthews, J. Comput. Phys. 176,

430 (2002).
[19] A.-K. Kassam and L. N. Trefethen, SIAM J. Sci. Comput.

26, 1214 (2005).
[20] E. Siminos, N. B. Budanur, P. Cvitanović, and R. L.
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