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Circle maps of polynomial, exponential, and rational polynomial types are studied numerically in the complex plane. The 
golden mean universality for real circle maps does not extend into the complex plane. 

i_ i_=NI£QDycTiON 

The discovery of the period-doubling univer­
sality in one-dimensional iterations CI], [23 has 
prompted a search for universal scalingβ in 
other low dimensional dynamical systems (the 
theory and the experimental observations of 
period doublings are reviewed in refs. 
[33,(43,(53). One class of such problems in 
which the universality ideas have had some 
success are the transitions to chaos for 
difisomorphisms on the circle (circle maps). 
Haps of this type model a variety of physical 
systems: we refer the reader to refs. [63,C73 
for a discussion of their physical 
applications. 

The first example of a universal scaling 
for the critical circle maps was discovered in a 
study of mappings with the golden mean winding 
numberC83,C93,C103. An elegant formulation of 
such asymptotically universal self-similarities 
is afforded by the unstable manifold 
equationsC113,[123,[133,C143,[33. 

For the circle maps the unstable manifold 
equation is given by (see for example refs. 
[123,[153): 
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However, numerical solutions of this equation 
are made difficult by subtle convergence 
problems. To best of our knowledge, only two 
successful numerical solutions of the unstable 
manifold equations are extantC163. These 
convergence problems, as well as the interest in 
understanding other universalities associated 
with the circle mapsC153, has motivated us to 
investigate the structure of the complexified 
circle maps. Such investigations have 
previously yielded new insights into universal 
scaling lawe[133,[143, C173,Ι1Θ3, as well as much 
beautiful mathematics (see for example refs. 
C193, [203, [213, [223, [233, [243 >. 

The reader is referred to refs. [63, 
[15] and [253 for an introduction to the circle 
maps. In this note we concentrate only on some 
general properties of complexified circle maps. 
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i.i.THE.CUBIC^IRCLE.MAP 

As the first example of a complexified 
circle nap, consider the critical cubic map 

zn+l = Q + » R e< z + 1 / 2 ) mod 1 (2.1) 

(a cubic circle map is critical if it has a 
cubic inflection point z'=z"=0). This map is 
periodic along the real axis, and discontinuous 
at ζ =±1/2 *iy for all y * 0. This is the 
crudest example of the polynomial approximations 
to circle maps of kind used in the numerical 
solutions of the unstable manifold equation 
(1.1). 

The Mandelbrot set (the set of all 
parameter values for which the iterates of the 
critical point tend to infinity) for a 
62ly.&omial cubic map is plotted in fig. 2.1. 

The boundary of the large central component 
(parameter values for which the iterates of the 
critical point converge to a stable fixed point) 
is given by the cardioid of parameter values for 
which the fixed point is marginally stable, 
Idz'/dzl = 1. The ζ map is monotone for ζ real 
and therefore cannot exhibit period doubling 
along the real axis; however, bifurcations to 
period 2 occur on the imaginary axis, generating 
the pair of 2-cycle "hearts". One of these 

FIGURE 2.1 The Mandelbrot set for the 
critical polynomial cubic mapping ζ -» c • 4 z 3. 

FIGURE 2.2 An enlargement of the cycle-2 
"heart" from fig. 2.1. 

hearts is plotted in fig. 2.2. A bifurcation to 
a stable periodic orbit takes place at every 
rational value of dz'/dz phase along the 
cardioid boundary. This gives rise to a set 
composed of self-similar "hearts", analogous to 
the Mandelbrot set for the quadratic map 
ζ c+z2*. Just as in the quadratic case C141, 
each component is centered on a superstable m/n 
cycle, and one expects universal scaling laws 
for the infinite sequences of bifurcations. 
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The shape of the Mandelbrot set for the 
5ΪΣ9=§ »aps will be described in the next 
section. 

The bgsin_of_attrgction (the set of all 
initial values of ζ whose iterates do not escape 
to infinity) of the superstable fixed point for 
the cubic circle map (2.1) is plotted in 
fig. 2.3. 

to the four rays of smaller disks at ±.60°, 
±120°. The higher iterates of (2.1) image 
similarly the other sequences of disks visible 
in fig. 2.3 onto the real axis. (The abrupt 
truncation close to Im ζ = .95 is an artifact of 
the Re ζ modularity condition in (2.1).) 

3_z._THE_STANDARD_CIRCLE_MAP 

As the second example of a complexified 
circle map we take the sine map 

zn+l = Ω + zn ~ 7π s i n( 2^ n) . mod 1 (3.1) 

(k=l for the critical case). The basins of 
attraction have the same basic structure as in 
the previous example; the superstable fixed 
point basin of attraction is given in fig. 3.1, 
and the superstable 3-cycle basin of attraction 
is given in fig. 3.2 as typical examples. 

FIGURE 2.3 The upper right quadrant of 
the basin of attraction of the superstable fixed 
point for the cubic map (2.1) ( Λ « 0 ) . The 
remaining quadrants are obtained by reflection 
about the χ and y axes. 

The general shape of the basins of 
attraction for the complex circle maps is easy 
to understand. The map (2.1) has a boundary of 
marginal stability Idz'/dzI * 1 on the circle of 
radius Izl = 1/2. This defines the central 
disk. The periodicity condition (Re(z*l/2) 
mod 1) generates an infinity of such disks, one 
for every integer value of Re z. The remaining 
self-similar structure arises from this 
periodicity; it is generated by all preimages of 
the Izl - 1/2 disks along the real axis. ζ 
maps initial points with phase βχρ(±2ίπ/3), 
βχρ(±ίπ/3) onto the real axis. This gives rise 

FIGURE 3.1 The basin of attraction for 
the superstable fixed point of the sine map 
(3.1). 

The complexified sine map is an example 
of an exponential map[263: with substitutions 

u = exp(2niz) c = exp(2niQ) 

(3.1) becomes 
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(here k=l). Unlike the polynomial maps of type 
(2.1), or the rational maps which we shall 
discuss in the next section, the exponential 
maps have basins of attraction which extend to 
infinity and are dense everywhere in the complex 
plane. For example, the image of ζ * ±1/4 + iy, 
y large, lies close to the real axis in 
fig. 3.2, and in the same way any ray of disks 
which is a preimage of the real axis extends to 
infinity. 

extends in the complex plane into a "hearts'* set 
of fig. 2.1. By crossing from the central 
component into one of the hearts, one drives the 
mapping through a period n-tupling without 
changing its winding number (for example, the 
1/2 winding number period-doubles to 2/4). Hence 
the Mandelbrot set for a circle map is 
constructed from two basic building blocks: 
first, the map has a cubic inflection, so the 
complex period n-tuplings are characterized by 
the self-similar hearts of fig. 2.1; second, the 
map is periodic, and that gives rise to the 
infinite sequences of copies of the basic hearts 
set along the real axis, and along the rays in 
the complex plane. 

Similarly, the basins of attraction for 
the critical circle maps are constructed from 
the corresponding building blocks: first, a 
basin of attraction for the critical cubic 

FIGURE 3.2 The basin of attraction for 
the superstable 1/3 cycle of the sine mop (3.1). 

For the same reasons the Mandelbrot set 
for the sine map (3.1), plotted in fig. 3.3, is 
dense everywhere over the entire complex plane. 

The general structure of the Mandelbrot 
sets for the critical circle maps is illustrated 
by fig. 3.3 . Along the real axis there is a 
mode-locking interval for every rational number 
(the "devil's staircase"C63). As the map has a 
cubic inflection, each mode-locking interval 

FIGURE 3.3 The Mandelbrot set for the 
* 3 P u < 3i i >e l?wer complex halfplane is 

obtained by the reflection about the real axis. 
The black region corresponds to values of 
parameter for which the critical point does not 
iterate away to infinity. The different shades 
of aray are an indication of the escape 
velocity; the longer the number of iterations 
needed to reach a cutoff, the lighter the 
shadina. The large "hearts" set on the ends of 
the interval corresponds to the fixed point, the 
hearts set in the middle corresponds to the 
orbits with the winding number 1/2, and so on. 
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polynomial map; second, from the infinity of its 
preimages generated by the periodicity 
condition. This is illustrated in fig. 3.4 for 
the euperstable period-doubled cycle with 
winding number 0/1. The triangular arrangement 
of the central 4 disks is typical of the basins 
of attraction for period-2 polynomial cubic 
maps; the remainder of the set is generated by 
the periodicity along the real axis, and its 
preimages in the complex plane. 

series expansion of the exponentials in (3.2). 
It is a critical circle map with a cubic 
inflection point at u*l: 

u ' * c ( l - r 3/ 2 - r 5/ 4 + r 6/ 8 + . . . ) 
(4.2) 

r = 2 n i z 

The Mandelbrot set for this map is given in 
fig. 4.1. 

FIGURE 4.1 The Mandelbrot set for the 
rational map (4.1). The fixed point hearts set 
is centered on c*l, the 1/2 winding on c»-l. 
The remaining infinity of other mode lockings 
lie on the unit circle. 

•κ- FIGURE 3.4 The basin of attraction for 
the euperstable period-doubled cycle of (3.1) 
with winding number 0/1. The central part of the 
~li\*A % £ a£ t r e c* i o n is the same as for the 
period-2 polynomial cubic maps. The remainder 
o f , 5 ? . s #t ? Γ· replicas generated by the 
periodicity along the real axis, and the 
preimages In the complex plane. 

4 . A RATIONAL POLYNOMIAL MAP 

As the third example of a circle map we 
take the rational polynomial map 

u ' = c u ( 3 - k u ) / ( 3 - k / u ) ( 4 el 

(k=l here). The form of this map is motivated 
by the lowest order truncation of the power 

FIGURE 4.2 The basin of attraction of the 
rational polynomial map (4.1) for the parameter 
value corresponding to the golden-mean winding 
number. 
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The rational naps differ fro* the 
exponential maps in one important aspect; their 
Mandelbrot sets and their basins of attraction 
are finite in extent, because for large lul the 
rational maps behave like polynomials. The 
preimages of the real axis of the circle map 
(more precisely, as (4.1) is an exponentiated 
circle map, the preimages of the t u1=1 unit 
circle) are themselves closed loops. This is 
illustrated by the basin of attraction of the 
map (4.1) for the golden-mean winding number, 
fig. 4.2. 

The unstable manifold equation (1.1) 
states that in the neighborhood of the parameter 
value corresponding to the golden-mean winding, 
the Mandelbrot set is self-similar under 
rescaling by the Shenker'e universal scaling 
number δ. We have investigated this numerically 
by blowing up the neighborhood of the parameter 
value corresponding to the golden mean winding, 
and comparing the sizes of the hearts sets 
corresponding to the successive ratios of 
Fibonacci numbers. In this neighborhood the 
Mandelbrot set does indeed scale with the same 
universal factor as in the real case. However, 
the golden mean universality does not generalize 
to the complex plane in several important ways. 

The first non-universality is familiar 
from the theory of polynomial iterat­
ions C27],C24]; the longer the cycle, the 
"hairier" is the exterior of the hearts set. 
This can be seen by comparing fig. 2.1, the 
fixed point hearts set, with fig. 5.1. 

The other non-universal feature of the 
complex circle maps is the fact that the 
exteriors of hearts sets for different maps 
remain unmistakably distinguishable, regardless 
of the degree of magnification of the the golden 

FIGURE 5.1 The Mandelbrot set fig. 3.3 f 
or the sine map (3.1) in the neighborhood of the 
parameter value corresponding to the golden mean 
winding. The largest hearts set corresponds to 
the 55/89 Fibonacci numbers ratio. While the 
successive Fibonacci ratios' hearts sets do 
scale by Shenker'e universal scaling, their 
exteriors contain more and more "hair". 

FIGURE 5.2 The Mandelbrot set fig. 4.1 
for the rational polynomial map (4.1) in the 
neighborhood of the parameter value 
corresponding to the golden mean winding. The 
largest hearts set corresponds to the 21/34 
Fibonacci numbers ratio. While the successive 
Fibonacci ratios' hearts sets do scale by 
Shenker'e universal scaling, their exteriors are 
different from those for the exponential maps, 
such as fig. 5.1. 
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mean winding neighborhood. This can be seen by 
comparing fig. 5.1 with fig. 5.2. While all the 
external raye for the sine sap go to infinity, 
the exteriors of hearts sets for the rational 
polynomial map are decorated by looplike 
preimages of the unit circle. Numerically, 
these loop decorations scale by the same 
universal Shenkerβ number as the interiors of 
the hearts sets, so we can always determine the 
type of the starting approximation to the 
unstable manifold, regardless of the degree of 
magnification. We conclude that the unstable 
manifold equation (1.1) has no unique analytic 
continuation into the complex plane. 
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