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Abstract

We propose a new type of approximation to quantum determinants, “quantum
Fredholm determinant", and conjecture that, compared to the quantum Selberg zeta
functions derived from Gutzwiller semiclassical trace formulas, such determinants
have a larger domain of analyticity for Axiom A hyperbolic systems. The conjecture
is supported by a numerical investigation of the 3-disk repeller.

Dynamical zeta functions [1], Fredholm determinants [2] and quantum Selberg zeta
functions [3, 4] have recently been established as powerful tools for evaluation of classi-
cal and quantum averages in low dimensional chaotic dynamical systems [5] - [8]. The
convergence of cycle expansions [9] of zeta functions and Fredholm determinants de-
pends on their analytic properties; particularly strong results exist for nice (Axiom A)
hyperbolic systems, for which the dynamical zeta functions are holomorphic [10], and
the Fredholm determinants are entire functions [11, 12]. In this note, motivated by the re-
cent results of Eckhardt and Russberg [13], we conjecture that in contrast to the quantum
Selberg zeta function, for nice hyperbolic systems the quantum Fredholm determinant
(introduced below) is entire, i.e free of poles.

For 2-dimensional Hamiltonian systems the dynamical zeta function [1] is given by

1/ζ =
∏
p

(1− tp) , 1/ζk =
∏
p

(1− tp/Λk
p) = exp
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−
∑
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∞∑
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r
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k
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)
,(1)

1Contribution to the proceedings of the International School for Advanced Studies workshop “From
Classical to Quantum Chaos", Trieste, 13 July 1992; Nuovo Cimento, to appear.
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the Fredholm determinant [5, 12, 14] is given by

F =
∏
p

∞∏
k=0

(1− tp/Λk
p)
k+1 =

∞∏
k=0

1/ζk+1
k , (2)

and the quantum Selberg zeta function [4] is given by

Z =
∏
p

∞∏
k=0

(
1− tp/Λk

p

)
=
∞∏
k=0

1/ζk . (3)

In the above, tp is a weight associated with the cycle p, and the subscript p runs
through all distinct prime cycles. A prime cycle is a single traversal of the orbit; its label
is a non-repeating symbol string. The cycle weight tp depends on the average evaluated.
Following refs. [13, 15, 16] we shall perform our numerical tests on the 3-disk repeller.
For such systems, the cycle weight is given by [17]

tp = znpesTp/|Λp| , (4)

in the evaluation of escape rates and correlation spectra, and by

tp = znp
e−iSp/~+νp√
|Λp|

, (5)

in the evaluation of the semiclassical approximation [4, 18] to quantum resonances. Here
Tp is the p-cycle period, Sp is its action, νp the Maslov index and Λp the expanding
eigenvalue. z is a bookkeeping variable that keeps track of the topological cycle length
np, used to expand zeta functions and determinants:

F (z) =
∞∑
k=0

Ckz
k . (6)

In calculations z is set to z = 1.

If the dynamical evolution can be cast in terms of a transfer operator multiplicative
along the flow, if the corresponding mapping (for ex., return map for a Poincaré section
of the flow) is analytic, and if the topology of the repeller is given by a finite Markov
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3-disk R:a = 6.0
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Figure 1: (a) log10 |Cn|, the contribution of cycles of length n to the cycle expansion∑
Cnz

n for A1 symmetric subspace resonance for 3-disk repeller with center spacing
- disk radius ratio R : a = 3 : 1, evaluated at the lowest resonance, wave number
k = 7.8727 − 0.3847 i. Shown are: (◦) 1/ζ0, (∇) the quantum Selberg zeta function,
(�) 1/ζ0ζ

2
1 , and (4) the quantum Fredholm determinant. Exponential falloff implies that

1/ζ0 and the quantum Selberg zeta have the same leading pole, cancelled in the 1/ζ0ζ
2
1

product. For comparison, (♦) the classical Fredholm determinant coefficients are plotted
as well; cycle expansions for both Fredholm determinants appear to follow the asymptotic
estimate Cn ≈ Λ−n

3/2 . (b) Same as (a), but with R : a = 6 : 1. This illustrates possible
pitfalls of numerical tests of asymptotics; the quantum Fredholm determinant appears to
have the same pole as the quantum 1/ζ0ζ

2
1 , but there is we have no estimate on the size of

preasymptotic oscillations in cycle expansions, it is difficult to draw reliable conclusions
from such numerics.

partition, then the Fredholm determinant (2) with classical weight (4) is entire [12]. In
this case the cycle expansion coefficients (6) fall off asymptotically faster than exponen-
tially [12, 14], as Cn ≈ Λ−n

3/2 . This estimate is in agreement with numerical tests of
ref. [12], as well as our and ref. [13] numerical results for the 3-disk repeller, see fig. 1 (a).
However, as it is not known how quickly the asymptotics should set in, such numerical
results can be misleading: for example, for a larger disk-disk spacing, preasymptotic os-
cillations are visible in fig. 1 (b). (Such oscillations can be observed already in simple
1-dimensional repellers).

On the basis of close analogy between the classical and the quantum zeta func-
tions [16], it has been hoped [19] that for nice hyperbolic systems the quantum Selberg
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zeta functions (3) should also be entire. However, it has not been possible to extend the
classical Fredholm determinant proof [12] to the quantum case, essentially because the
composition of the semiclassical propagators [3] is not multiplicative along the classi-
cal trajectory, but requires additional saddlepoint approximations. Indeed, Eckhardt and
Russberg [13] have recently established by numerical studies that the 3-disk quantum
Selberg zeta functions have poles.

In refs. [6, 20] heuristic arguments were developed for 1-dimensional mappings to
explain how the poles of individual 1/ζk cancel against the zeros of 1/ζk+1, and thus
conspire to make the corresponding Fredholm determinant entire. Eckhardt and Russberg
have repeated this analysis for the 1/ζk terms in the quantum Selberg zeta function (3).
They find numerically that 1/ζ0 has a double pole coinciding with the leading zero of
1/ζ1. Consequently 1/ζ0, 1/ζ0ζ1 and Z all have the same leading pole, and coefficients
in their cycle expansions fall off exponentially with the same slope. Our numerical tests
on the 3-disk system, fig. 1 (a), support this conclusion.

Why should 1/ζ0 have a double leading pole? The double pole is not as surprising
as it might seem at the first glance; indeed, the theorem that establishes that the classical
Fredholm determinant (2) is entire implies that the poles in 1/ζk must have right multi-
plicities in order that they be cancelled in the F =

∏
1/ζk+1

k product. More explicitely,
1/ζk can be expressed in terms of weighted Fredholm determinants

Fk = exp

(
−
∑
p

∞∑
r=1

1

r

(tp/Λ
k
p)
r

(1− 1/Λr
p)

2

)
(7)

(F0 = F defined in (2)) by inserting the identity

1 =
1

(1− 1/Λ)2
− 2

Λ

1

(1− 1/Λ)2
+

1

Λ2

1

(1− 1/Λ)2

into the exponential representation (1) of 1/ζk. This yields

1/ζk =
FkFk+2

F 2
k+1

, (8)

and we conclude that for 2-dimensional Hamiltonian flows the dynamical zeta function
1/ζk has a double leading pole coinciding with the leading zero of the Fk+1 Fredholm
determinant. It is easy to check that the infinite product

∏
1/ζk+1

k collapses to F0 = F .
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Fk can be interpreted as the Fredholm determinant det(1− Lk) of the weighted transfer
operator

Ltk(y, x) = Λt(x)−kφt(x)δ(y − f t(x)) , (9)

where Λt(x) is the expanding eigenvalue of the Jacobian transverse to the flow, and φt(x)
is any smooth weight multiplicative along the trajectory.

The numerical results of ref. [13] suggest that the quantum Fredholm determinant, i.e.
the Fredholm determinant (2) with the quantum weights (5) may be entire, and that, in
the spirit of the thermodynamical formalism [1, 21, 22], the quantum evolution operator
should be approximated by a classical transfer operator with a quantum weighting factor:

Lt(y, x) =
√
|Λt(x)|e−iSt(x)/~+νpδ(y − f t(x)) . (10)

The difference between the two infinite products (2) and (3) can be traced to the quan-
tum 1/

√
det(1− Jp) weight that arises in the saddle point expansion derivation of the

Gutzwiller trace formula; the delta-function transfer operator (10) leads to the cycle
weight 1/| det(1 − Jp)| instead. Both the quantum Fredholm determinant and the quan-
tum zeta function yield the same leading zeros, given by 1/ζ0. They presumably differ in
nonleading zeros (with larger imaginary part of the complex energy), but as the quantum
Selberg zeta function (3) is the leading term of a semiclassical approximation, with the
size of corrections unknown, the physical significance of these nonleading zeros remains
unclear.

The transfer operator (10) is problematic as it stands, because it is not multiplicative
along the trajectory. While for the Jacobians Jab = JaJb for two successive segments a
and b along the trajectory, the corresponding expanding eigenvalues are not multiplica-
tive, Λab 6= ΛaΛb, and consequently (10) does not satisfy the assumptions required by the
theorem of ref. [12]. Nevertheless, such transfer operators have been routinely used in,
for ex., evaluation of partial dimensions [23]. Our numerical results support the conjec-
ture that Λk weighted determinant has enlarged domain of convergence.

In conclusion, we have proposed and tested numerically a new approximation to the
quantum determinant, and conjectured that it has better analyticity properties than the
commonly used quantum Selberg zeta function. The quantum Fredholm determinant
suggests a starting approximation to the quantum propagator different from the usual
used Van Vleck semiclassical propagator. The new determinant is expected to be of
practical utility as for nice hyperbolic systems its convergence is superior to that of the
quantum Selberg zeta functions.
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