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Trace formulas relate short time dynamics (unstable periodic orbits) to long time invariant state
space densities (natural measure). Higher dimensional dynamics requires inclusion of higher-
dimensional compact invariant sets, such as partially hyperbolic invariant tori, into trace formulas.
A trace formula for a partially hyperbolic (N + 1)-dimensional compact manifold invariant under a
global continuous symmetry is derived here. In this extension of “periodic orbit” theory there are
no or very few periodic orbits - the relative periodic orbits that the trace formula has support on
are almost never eventually periodic.

PACS numbers: 05.45.Mt, 46.40.Cd, 46.40.Ff, 62.30.+d

The classical trace formula for smooth continuous time
flows [1, 3] relates the spectrum of the evolution operator

Lt(x′, x) = δ
(

x′ − f t(x)
)

eβ·At(x) (1)

to the unstable periodic orbits p of the flow f t(x),
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This formula (and the associated spectral determinants
and cycle expansions [4]) is valid for fully hyperbolic
flows.

Here we derive the corresponding formula for
dynamics invariant under a compact group of symmetry
transformations, a close relative of the semiclassical
Gutzwiller type trace formula derived by Creagh [5] in
1993. Recent progress by Viswanath [7] in computing
exact relative periodic solutions of the full Navier-Stokes
plane Couette flow necessitates revisiting this problem in
the context of deterministic chaotic flows.

The new trace formula follows from the full
reducibility [8] of representations of a compact group
G acting linearly on a vector space V , with irreducible
representations labeled by sets of integers m =
(m1, · · · , mN ), and the vector space V decomposed into
invariant subspaces Vm. For a N -dimensional compact
Lie group G the fundamental result is the Weyl full
reducibility theorem, with projection operator onto the
Vm irreducible subspace given by

Pm = dm

∫

G

dg χm(g)Dm(g−1) . (2)

The group elements g = g(θ1, . . . , θN ) = eiθ·T are
parametrized by N real numbers {θ1, . . . , θN} of finite
range, hence designation “compact.”

The character χ is the trace χm(g) = trDm(g) =
∑dm

i=1 Dm(g)ii , where Dm(g) is a [dm × dm]-dimensional
matrix representation of action of the group element g
on the irreducible subspace Vm. The group integral is

weighted by the normalized Haar measure,
∫

G
dg = 1,

and dm is the multiplicity of degenerate eigenvalues in
representation m.

If action of every element g of a compact group G
commutes with the flow ẋ = v(x),

D(g)v(x) = v(D(g)x) , D(g)f t(x) = f t(D(g)x) ,

G is a global symmetry of the dynamics. The finite time
evolution operator (1) can be written [13] as Lt = etA

in terms of the time evolution generator

Aρ(x) = lim
δτ→0+

1

δτ

(

Lδτ − I
)

ρ(x) = −∂i(vi(x)ρ(x)) .

(3)
The operator etA commutes with all symmetry
transformations eiθ·T . For a given state space point x
together they sweep out a (N+1)-dimensional manifold
of equivalent orbits.

In other words, the time evolution itself is a
(noncompact) 1-parameter Lie group. Thus all
continuous symmetries can be considered as being on on
the same footing.

A symmetry group element acts on L(x, y), the kernel
of Lt in the state space representation (1), as

g−1L(y, x) = L(D(g−1)y, x) = L(y, D(g)x) . (4)

The irreducible eigenspaces of G are also eigenspaces
of the dynamical evolution operator Lt, with the
decomposition of the evolution operator to irreducible
subspaces, L =

∑

m Lm , following immediately by
application of the projection operator (2):

Lt
m(y, x) = dm

∫

G

dg χm(g)Lt(Dm(g−1)y, x) . (5)

To evaluate the contribution of a prime cycle p of
period Tp, restrict the integration to an infinitesimally
thin manifold Mp enveloping the cycle and all of its
rotations by G, pick a point on the cycle, and choose
a local coordinate system with a longitudinal coordinate
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dx‖ along the direction of the flow, N coordinates dxG

along the invariant manifold swept by p under the action
of the symmetry group G, and (d−N − 1) transverse
coordinates x⊥. The trace tr pL

t
m is given by

dm

∫

G

dg χm(g)

∫

Mp

dx⊥dx‖dxG δ
(

x − Dm(g)f t(x)
)

.

(6)
The integral along the longitudinal coordinate was
computed in refs. [1, 3]: Eliminating the time dependence
by Laplace transform one obtains
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The m subspace group integral is simple:
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G

dg χm(g)

∫

Mp

dxG δ
(

xG − Dm(g)f rTp(xG)
)

= χm(gr
p).

(8)
For the remaining transverse coordinates the Jacobian
matrix is defined in a (N + 1)-dimensional surface of
section P of constant (x‖, xG). Linearization of the
periodic flow transverse to the orbit yields
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(9)
where J̃m,p = Dm(gp)Jp is the p-cycle [(d− 1−N)×(d−
1 − N)] symmetry reduced Jacobian matrix, computed
on the reduced surface of section and rotated by gp. We
assume hyperbolicity, that is, that the magnitudes of all
transverse eigenvalues are bounded away from unity.

The classical symmetry reduced trace formula for flows

follows by substituting (7) - (9) into (6):
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(10)
The sum is over all prime relative periodic orbits p and
their repeats, orbits in state space which satisfy

x(t) = D(gp)x(t + Tp) (11)

for a fixed relative period Tp and a fixed shift gp.
For example, for the full Navier-Stokes plane Couette

flow defined in a box periodic in stream-wise and span-
wise directions, a relative periodic solution is a solution
that recurs at time Tp with exactly the same disposition
of velocity fields over the entire box, but shifted by a
2-dimensional translation gp.

The m = (0, 0, · · · , 0) subspace is the one of
most relevance to chaotic dynamics, as its leading
eigenfunction, with least nodes and the slowest decay
rates, corresponds to the natural measure observed in
the long time dynamics.

Discussion. One of the goals of nonlinear
dynamics is to describe the long time evolution of
ensembles of trajectories, when individual trajectories
are exponentially unstable. The main tool in this
effort have been trace formulas because they make
explicit the duality between individual short time
trajectories, and long time invariant densities (natural
measures, eigenfunctions of evolution operators). So
far, the main successes have been in applications to
low dimensional flows and iterated mappings, where
the compact invariant sets of short-time dynamics are
equilibria, periodic points and periodic orbits. Dynamics
in higher dimensions requires extension of trace formulas
to higher-dimensional compact invariant sets, such as
partially hyperbolic invariant tori.

Here we have used a particularly simple direct product
structure of a global symmetry that commutes with the
flow to reduce the dynamics to a symmetry reduced (d−
N−1)-dimensional state space M/G.

Amusingly, in this extension of “periodic orbit” theory
from unstable 1-dimensional closed orbits to unstable
(N + 1)-dimensional compact manifolds invariant under
continuous symmetries, there are no or very few periodic
orbits. Relative periodic orbits are almost never
eventually periodic, that is, they almost never lie on
periodic trajectories in the full state space [6], unless
forced to do so by a discrete symmetry, so looking for
periodic orbits in systems with continuous symmetries is
a fool’s errand.

Restriction to compact Lie groups in derivation of
the trace formula (10) was a matter of convenience,
as the general case is more transparent than particular
implementations (such as SO(2) and SO(3) rotations,
with their explicit Haar measures and characters). This
can be relaxed as the need arises - much powerful
group theory developed since Cartan-Weyl era is at our
disposal. For example, the time evolution is in general
non-compact (a generic trajectory is an orbit of infinite
length). Nevertheless, the trace formulas have support on
compact invariant sets in M, such as periodic orbits and
(N +1)-dimensional manifolds generated from them by
action of the global symmetry groups. Just as existence
of a periodic orbit is a consequence of given dynamics, not
any global symmetry, higher-dimensional flows beckon us
on with nontrivial higher-dimensional compact invariant
sets (for example, partially hyperbolic invariant tori) for
whom the trace formulas are still to be written.
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