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Perturbative QeD may be subdivided into separately gauge-invariant sectors according to the
projection of non-abelian color weights onto linearly independent basis elements. We exploit the
general Lie group structure of the theory to give an algorithm for finding these gauge-invariant sets
and present several examples of its use. The planar sector and the systematks of the non-planar
corrections are defined for any gauge theory. Our gauge set classification has implications for QCD
bound states, finite order perturbative QeD calculations, the study of QCD infrared singularities
and for the question of convergence of the perturbation series.

1. Introduction

For lhe purposes of this paper we shall consider QCD as a non-abelian gauge
theory of quarks and gluons defined by the perturbation expansion. The physics of
the theory so defined may involve sums of infinite numbers of Feynman diagrams,
but is perturbative in the sense that all contributions follow from the basic vertices of
the theory, and not from non-perturbative phenomena such as instantons. At presenl
we are unable to carry out the momentum integrations for arbitrarily complicated
diagrams. On the other hand, one should investigate whether it is possible to
organize this infinity of QCD diagrams before we tackle the problem of actually
evaluating and summing them.

At first glance it would seem that there is not much that one can do. Each diagram
is gauge dependent and physically meaningless by itself; the textbook proofs of gauge
invariance of physical quantities assume the inclusion of all Feynman diagrams
contributing in a given order. However, for quantum electrodynamics this is not the
whole story; in actual perturbative calculations one soon discovers that the full set of
diagrams may be subdivided into "gauge sets"; subsets which are individually gauge
invariant [1-3]. This decomposition can be very useful in practice, as it is often
convenient to perform different parts of the calculation in different gauges [3]. It is
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Fig. 1. (a)-(d) order e4 contributions to electron-muon scattering. (e)-(g) additional non-abelian
diagrams for quark-quark scattedng.

also important in the stndy of infrared (IR) singularities; IR singularities exponen­
tiate grouped into sets of diagrams distinguished by the charged legs to which the
photons are attached. After renormalization these sets are also separately gauge­
invariant contributions to the S-matrix element [4-7].

This separation of QED diagrams into gauge-invariant subsets has a simple
explanation; the Ward identities work separately for each charged line [8]. Consider
for example the one-loop corrections to electron-muon scattering, fig. 1. Sets (a) and
(b) are separately gauge invariant by the usual Ward-Takahashi identity which
relates self-energy and vertex diagrams, and set (c) is gauge invariant as the photons
are inserted in all symmetric ways.

The situation in non-abelian theories is less transparent: differing group-theoretic
factors spoil the gauge invariance of sets (a), (b) and (c), and the new non-abelian 'f
diagrams (e), (f) and (g) now appear. The QCD Ward identities [9-11] do not work
separately for each fermion line, and the QED concept of gauge-invariant subsets
seems to be lost. Nevertheless, as we show in this paper, QCD gauge sets lpay be
systematically identified. The key lies in exploiting the structure of the -group
theoretic color factors. The idea is somewhat analogous to the decomposition of
scattering amplitudes for particles with spin into amplitudes of definite helicity; color
is a kind of internal spin, and we can split up QCD amplitudes into different
irreducible representations of the color "spin" ..Posed this way, the program would
seem to require a formidable group-theoretic arsenal. Luckily, it turns out that the
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less one assumes, the more powerful the results one obtains. We shall assume only
that the quark-gluon couplings (T;)~ close a Lie algebra. That is the definition of a
non-abelian gauge theory, and that is all we shall need to obtain the resolution of any
gauge theory into a maximal number of gauge-invariant sectors. No particular gauge
group or group representation is assumed.

The classification that emerges may be more than a convenient calculational aid.
We show that every gauge theory has a gauge-invariant planar sector which coincides
with 't Hoof!'s N ... oo limit of the U(N) gauge theory [12-15].

The non-leading terms in the 1/N expansion, on the other hand, are decomposed
into many gauge sets by the methods of this paper. We argue later that QED and
QCD2 provide examples of a dynamical ordering of gauge-invariant sectors in terms
of the degree of infrared singularity. It remains to find an appropriate color basis for
QCD in which the gauge sets are similarly ordered.

In sect. 2 we introduce a diagrammatic notation for group-theoretic color factors
of QCD, and define the concept of color basis. In sect. 3 we associate a gauge set with
each element of a color basis. Color bases for tree diagrams are constructed in sect. 4,
and in sect. 5 we describe a systematic way of constructing color bases for diagrams
with loops. In sect. 6 the relevance of gauge sets to the physics of QCD bound states is
discussed. In sect. 7 we briefly examine the gauge sets for quark-quark scattering;
this is of interest for the study of non-leading IR singularities in QCD. In sect. 7 we
shall also give the gauge sets for the example just discussed, the diagrams of fig. 1.
QED gauge sets are given in sect. 8. We summarize ourresults in sect. 9. Appendices
A and B contain some additional group-theoretic results.

2. Color bases

In a non-abelian gauge theory the contribution of a Feynman diagram G to an
amplitude is a product of three factors

(2.1)

FG is the momentum space factor, CG is the combinatoric factor and W G contains all
the gauge group structure and will be referred to as the color weight of the diagram.
Consider as an example diagram a of fig. 2. Its contribution to the QCD Compton
scattering Green function is WaCaFa, where

W. = 8;k8j/8~ (Tkl~8~(1/);8~ ,

C.~ I,

-ig lLP _ig",a i .
F'=-k2 -k2 --(-11'~)

1 2 fh-m

i ( . ) iX -['YO" ---.
(p2+k2-P,-k, )-m p,-m

(2.2)

(2.3)

(2.4)
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Fig. 2. Born term for Compton scattering in QeD.

We have chosen to write Wa as above, rather than as a product of group generators
(T,)~(Tj)~, to emphasize that the color weight itself can be thought of as a Feynman
diagram.

In order to make the handling of color weights of more complicated diagrams
easier and more transparent, we shall represent them diagrammatically [16]. The
"propagators" and "vertices" for these color weight diagrams are defined in fig. 3a.
Directed lines represent quarks in an N-dimensional representation of the gauge
group of order dA • Gluons are represented by thin undirected lines. Note that the
four-gluon color vertex C'ikClmk is a product of three-gluon vertices. The three-gluon
color vertex is an oriented vertex. OUf convention for transcribing such a vertex as

a_b = b: a,b::: 1.2,····,N

;---j = b'j i.j ::: 1, 2, "'/dA

a-Lb = IT,I~

jAk

= -i Cijk

(al

ll-X=X
Ibl

Icl

Fig. 3. (a) Definitions of the propagators and vertices for color weight diagrams. (b) Lie algebra relation.
(c) Invariance relation.
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-iC'ik is that the indices should be read counterclockwise. The Lie algebra relation
[T" 7j] = iC'ikTk is represented graphically by fig. 3b. We shall use this relation to
replace all structnre constant factors C'ik by products of T, matrices. For color
weights without C'ik factors the Lie algebra amounts to the relation fig. 3c. This is a
simple example of the invariance relations, described in appendix A, which we find
very useful in the analysis of color weights.

The diagrammatic Lie algebra relation fig. 3b looks like a relation between
Compton scattering diagrams, and indeed it is; it tells us that the color weights of the
three Compton scattering diagrams (fig. 2) are not independent. For any non-abelian
group only two of these three color weights are independent. For example, we can
take W., Wb as independent weights, and eliminate Wo by the Lie algebra relation
Wa-Wb = We'

This choice of independent color weights is the simplest example of a color basis. A
color basis is a maximal set of color weights (in a given order of perturbation theory)
which cannot be related by the Lie algebra relations. For a given color basis T(l),

T(2), ... , T(fl), a color weight can be expressed as

f1 (r)
WG= I wG,T

r=1
(2.5)

where the coefficients WG, depend on the choice of the basis, but do not depend on
the choice of the color group, Le. they would be the same if the color group were E,
instead of SU(3). In the Compton scattering example we \ook T(l' = W.. T(2) ~ Wb ,

in which ,;ase the Lie algebra relation expresses W, in this color basis as

(2.6)

A color basis is not unique; any set of independent linear combinations of elements
of a basis can equally well be used as a basis. On the other hand, the number of
elements of the basis is fixed.

In this paper we give an algorithm for constructing color bases. In this algorithm
one starts by writing down the color weights of all diagrams contributing in a given
order in the perturbation expansion. Next one unravels a1l3-gluon color vertices by
means of the Lie algebra relation, fig. 3b. The remaining color weight diagrams look
like QED Feynman diagrams. Finally one eliminates dependent color weights by a
systematic application of the invariance relation fig. 3c. The color weights which can
remain after all such relations have been exhausted form a color basis. We assert that
the color basis obtained in this way is a maximal color basis. The reason is simple; for
an arbitrary color group, the only tool we have available to relate color weights are
the Lie algebra relations, and we have exhausted all of those.

3. Gauge sets

While the Green functions are gauge dependent, physical quantities like the
S -matrix, the Wilson loop or the bound-state poles are gauge independent. In
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(3.1)

perturbation theory the gauge invariance is implemented by Ward-Takahashi
identities [9-11]. They guarantee that if A = LG A G is the sum of all diagrams
contributing to a given Green function in a given order in perturbation theory, then
A gives a gauge-invariant contribution to the S -matrix. But if the gauge variation of
A gives a vanishing contribution, and if A can be written as a sum of contributions to
linearly independent color basis elements

~

A = L A,TV ) ,
r=l

then each coefficient A, separately gives a gauge-invariant contribution to the
physical quantity in question. Such a sum of momentum integrals weighted by the
color basis coefficients [defined by (2.5)J

(3.2)

will be referred to as a gauge set. There are two important observations to be made
about gauge sets. First, a gauge set is a gauge set for any gauge theory because (as
shown in sect. 2) the coefficients WG, do not depend upon the choice of the group. For
a particular gauge group, such as SU(3) or G 2 , the color basis elements T(,) are not
necessarily independent, but the gauge sets still give separately gauge-invariant
contributions. The second observation is that a gauge set has no direct physical
meaning, as the choice of the color basis is a priori arbitrary. However, a particular
color basis choice might be dictated by a physical criterion, such as the leading log
dominance of a certain class of diagrams.

We do not include any explicit checks of gauge invariance in this paper, as Ward ;
identities are standard textbook material [10]. The reader is urged to check the gauge­
invariance of a few simple gauge sets; for QED this amounts to the repeated
applications of a single trivial identity [8].

1 X_1_=_1__ 1
p+X-m p-m p-m p+X-m

(3.3)

For QeD one also needs the corresponding identities for the gluon and ghost vertices
[17-19].

4. Tree diagrams

In this section we construct a color basis for the tree diagrams consisting of one
quark line and m external gluons. For m = 3 all such diagrams are drawn in fig. 4.
Following our general procedure, we start by eliminating the color weights of the
diagrams with 3-gluon vertices, figs. 4 g-p, by means of the Lie algebra relation fig.
3b. An example is given in fig. 5. As noted in sect. 2, the color weight of the
four-gluon vertex diagram fig. 4p is a linear combination of the weights figs. 4m,n,o.
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Fig. 4. Tree diagrams with three gluons, ~ = 3.

Six color weights remain, figs. 4a-f. They cannot be related by the Lie algebra
relations and are therefore elements of the color basis. They are simply the 3! ways of
multiplying the group generator matrices Ti, Ti and Tk • By the same reasoning, there
are m! gauge sets for trees with m external gluons.

The color basis we have just described corresponds to the m ! permutations of the
external gluons. As no permutation is preferred, the corresponding gauge sets are
democratic, in the sense that each of them receives contributions from the same
number of diagrams. It is possible, however, to choose a different color basis which is
of greater physical interest. Consider again the Compton scattering, fig. 2. If we
choose the color basis Tll)=!(Wa + Wb), T I2)=!(Wa - W b), the gauge sets are
A , = Fa+Fb , A 2 =Fa-Fb +2Fc. The symmetric set A , is the QED Compton scat­
tering, while A, is the purely non-abelian contribution to Compton scattering.

In general one can construct a color basis for m gluons using the irreducible
representations of Sm, the symmetric group of degree m. We work out the m= 3

Fig. 5. Example of the elimination of a 3~gluon vertex in a color weight diagram.
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Fig. 6. Two examples of one-loop diagrams (m = 3).

example in appendix B. There is always one fully symmetric basis element which
singles out the QED gauge set, while the remaining basis elements are non-abelian.

5. Adding loops

Let us now add one internal gluon to the tree diagrams just considered. By our first
rule, we know that all 3-gluon color vertices can be immediately eliminated, so we
only have to consider QED-like color weight diagrams, as in fig. 6. Next we use the
invariance relation fig. 3c to move the left vertex of the internal gluon to the leftmost
end of the quark line. An example of this procedure is given in fig. 7. Once this is
done, all the invariance relations have been exhausted. Hence for m external gluons
and 1=1 gluon loops there are (m + I)! independent color basis elements. An
example is the color basis for I-loop corrections to Compton scattering, fig. 8.

For the diagrams with m external gluons and I = 2 gluon loops we proceed as in the
1=1 case and reduce the color weights to (m +2)! weights with the two internal
gluons originating from the left end of the quark line. This exhausts all invariance
relations involving external gluons. However, this is not the end of the story; now we
also have to take into account relations between internal gluons. A relation exists
every time internal gluons are adjacent to each other, e.g. fig. 9a. We use it to remove
m(m!) "crossed rainbows" spanning external gluons. Further color weights are
eliminated by relation fig. 9b. For example, the 2-gluon loop corrections to the quark
form factor, m = I, split up into 4 gauge sets corresponding to the color basis fig. 10.

Fig. 7. Example of how the left end of an internal gluon is moved step by step to the left end of the fermion
line.
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x
Fig. 8. Color basis for the I-loop corrections to QeD Compton scattering.

(a)

(bl

Fig.9. (a) Unwinding of a "crossed rainbow". (b) A furt;her relation.

One can proceed in this fashion for I = 3,4, ... loops, but we hope that our point
has been made; it is always possible systematically to exhaust the Lie algebra
relations to construct a color basis. We now leave the qq-> gluons processes in order
to turn to the physically more interesting color singlet interactions.

For reasons of simplicity we omit three classes of QeD diagrams in this paper,
which could easily be included. The first group are those diagrams with additional
quark loops e.g. fig. Id. As in QED, they form separate gauge sets because different
quarks may have different masses. The second group are the color weights for pure
gluon diagrams. They can be related directly to the single quark diagrams by

Fig. 10. Color basis for the 2-gluon-loop corrections to the quark form factor:
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Fig. 11. Normalization of a fermion-loop insertion.

replacing one of the gluon propagators l5'i in the pure gluon color weight diagram by
(1/a) Tr (T,T,) (here a is a normalization factor). Diagrammatically this is represen­
ted by fig. 11. Finally, as we assume no particular gauge group, invariant color tensors
such as 8 ab< in the case of 8U(3) are not included in our analysis. In other words, we
do not consider baryons; when included, they will yield gauge sets over and beyond
those obtained here.

6. Vacuum bubbles

If QeD is the correct theory of strong interactions, it is a theory of bound color
singlet states. Bound-state kernels, meson decays and meson scatterings will involve
diagrams like those in fig. 12a. At this time we still have no clue as to how such
diagrams are to be evaluated and summed. The color weights for these diagrams, on
the other hand, are easy to study. DiagramJ;l1atically these color weights have no
external legs, as hadrons are color singlets; they are color vacuum bubbles. For
example, the color weight for the meson-meson scattering diagram fig. 12a is given
by fig. 12b. We shall now show how to use the color weights to split up contributions
to such processes into gange-invariant sectors.

We have already begun the construction of the color bases for vacuum bubbles in
the previous section; we have only to take the trace of the color basis elements for the

(a)

(bl
Fig. 12. (a) A typical meson-meson scattering diagram in QeD. (b) Color weight diagram for (a).



P. Cvitanovic et al. I Gauge invariance structure of QCD 175
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planar { 0

Fig. 13. Color basis for vacuum bubbles with one quark loop.

quark self-energy diagrams, i.e. the diagrams of the previous section without
external gluons (m = 0). The color bases for the vacuum bubbles and the quark
self-energy diagrams are equivalent (for a proof, see appendix A). To illustrate the
classification that emerges, we have constructed the color bases up to order g12. The
results lire tabulated in fig. 13 in a way which should be suggestive of the structure of
the color bases to any order.

In order to illustrate the significance of these color bases, it is useful to make the
comparison with the U(N), N ... 00 analysis [12-15]. The top row of fig. 13 consists of
color weights of the form NC2 (R)', where I is the number of gluon lines and C2(R) is
the quadratic Casimir operator for the quark representation. The color weights of the

TABLE 1

Comparison of the number of the quark self-energy gauge sets and the number of QED-like
quark self-energy diagrams (without fermion loop insertions)

Order 2 4 6 8 10 12 2/

Gauge sets 1 2 3 6 10 20
C2)

Feynman graphs 3 15 105 945 10395 (2/-1)!!

The corresponding color bases are given in fig. 13. The general form (1:2) is conjectured.
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top row get contributions from all the planar QCD diagrams and only from these
planar diagrams. This is also the set of diagrams selected by the N ... 00 limit.
Actually the planar gauge set is the U{oo) theory, up to a rescaling of the coupling
constant by C2(R) factors. The difference between the two approaches is that the
planar color weight defines the planar sector for any gauge theory.

Fig. 13 contains more information than can be obtained from the N ... 00 limit. The
first non-planar gauge set consists of diagrams with two neighboring gluon lines
crossed. For a simple color group, these have color weights of the form
NCv (R)C2(R)I-1 where Cv(R) is the vertex Casimir operator: T,TjTi = Cv(R)1j.
Cv(R) is linearly independent of C2 (R); in SU(N) for example, Cv(R) = '--1/N, while
C2(R) = (N 2 -1)/N.

The U(N) topological counting rule, in contrast, combines these diagrams with
those in which one gluon crosses more than just one neighboring gluon into a single
next-to-Ieading non-planar correction. In general we find that each non-leading
U(N) correction is resolved into several gauge sets.

The usual interpretation of the U(N) analysis is that it is a formal expansion in the
"small parameter" 1/N. Now the question arises how we should order our gauge
sets. Group-theoretical considerations alone give no obvious small parameter like
1/N. In fig. 13 we have ordered them by powers of various Casimir operators. We
shall appeal to experience with QED bound states to argue that the dynamics of
QCD may provide a natural ordering of gauge sets. In QED a lowest order
approximation to the bound-state spectrum is obtained by summing the infrared
logarithms of a gauge invariant subset of diagrams - the set of all cross-ladder
exchanges [20]. It is possible that a lowest order approximation to the QCD bound
state can be similarly obtained by isolating and summing the leading infrared
divergences. According to the infrared power-counting theorems [21,22], the
leading infrared divergences may occur in both the planar and non-planar gauge
sets in the basis of fig. 13. A more detailed analysis of the infrared structure of
perturbative QCD is required to determine a color basis in which the gauge sets are
ordered according to how strongly they contribute to the binding.

A realisation of the above ideas is two-dimensional QCD in axial gauge. In this
model, the leading infrared singularities are contained in the planar gauge set, with
the non-planar sectors suppressed'by powers of the infrared cutoff [22].

Gauge sets could also play an important role in controlling the convergence of
QCD. Because of the slow growth [23-25] of the number of diagrams with the order
k, the planar perturbation series will converge for a sufficiently small coupling if the
numerical value of the individual diagrams is bounded [24]. In a gauge theory the
value of an individual Feynman graph is gauge dependent; only the value of a
gauge-invariant set of such diagrams is meaningful. As gauge sets are oft.en charac­
terized by large cancellations between contributing diagrams [2], it is possible that
the contribution of a gauge set may grow much more slowly than the total number of
diagrams [26]. In that case it is interesting to observe that the. number of gauge sets
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Fig. 14. Examples of color weight diagrams for quark-quark scattering.
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increases slowly with order. The number of gauge sets in fig. 13 is, by extrapolation,
('/2) in 21th order, and thus grows as the lth power of a constant. One can then hope
that the non-planar gauge sets do not spoil the conjectured convergence of the planar
perturbation expansion.

7. Quark-quark scattering

As our last example we discuss gauge sets for quark-quark scattering. These are
physically interesting as they can be used as kernels for the meson bound-state
equations. They are also used in the study of QeD infrared divergences. We limit
ourselves to connected quark-quark scattering graphs without internal quark loops.

The procedure is simple and consists of three steps. The first one is the elimination
of a1l3-gluon vertices by the Lie algebra relation fig. 3b. The remaining color weights
are represented by QED-like diagrams; a typical one is drawn in fig. 14a. Now one
moves those gluons, both ends of which are attached to the right fermion line, to the
rightmost end of that line by repeated application of the Lie algebra relation, fig. 3c.
The resulting diagrams then have the following stmcture: a number of self-energy
insertions on the right fermion, a number of (possibly crossed) gluons connecting the
fermions, and all possible self-energy insertions on the left fermion. A typical
example is fig. 14b. Now, the crossed rainbows can be unwound and insertions on the
left fermion line ordered as in sect. 5 by means of the Lie algebra relation fig. 3c. The
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Fig. 15. Color basis for quark-quark scattering in sixth order.

diagrams obtained in this way are of the type of fig. 14c. The conclusion is that the
quark-quark scattering color basis follows trivially from the color basis constructed
in sect. 5. As an example we show in fig. 15 the color basis for quark-quark scattering
in sixth order. There are 13 gauge sets in this case. An interesting observation about
this choice of color basis is that some of the gauge sets receive contributions from
very few Feynman diagrams. For example, the gauge set corresponding to the color
weight fig. 15m gets contributions only from the six 3-gluon exchange diagrams; in
other words, this set isolates the QED crossed ladders gauge set. If one wished to
focus upon the non-abelian features of the theory, a convenient small gauge set
would be fig. lSI, which only gets contributions from the 14 diagrams drawn in fig. 16.

An example of the utility of the color bases is provided by the calculation of QeD
non-leading IR divergences of ref. [27,28]. Consider for example quark-quark
scattering in order g4

, fig. 1. The corresponding color basis obtained by our algorithm
is given by fig. 17a. Instead of the basis element (iii), we can use the quadratic Casimir
operator for the adjoint representation, related to (iii) by fig. 17b. For a simple Lie
group this basis element can be written as C2(G)(T,)' (TY'. The corresponding
non-abelian gauge set (C2 (G) ~ 0 for an abelian theory) is given in fig. 17c. The IR
divergences occurring in the analogous non-abelian gauge sets for the process
q +q ... q +q + y* + 2 soft gluons were investigated by the authors of [27].

"i
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Fig. 16. Feynman diagrams contributing to the gauge set corresponding to color weight (1) in fig. 15.

8. QED gauge sets

In the introduction we gave an example of a gauge set in QED and went on to
consider the problem of how to find gauge sets in arbitrary non-abelian gauge
theories. Our solution relies on the Lie algebra structure of the color weights, and
one may ask what relation the QeD gauge sets have to the more familiar QED gauge
sets.

~~
~~

(Iii) tivJ
(a)

~-t~
(b)

+X

(c)

Fig. 17. (a) Color basis for quark-quark scattering in order g4. (b) The relation of color basis element (iii)
to the quadratic Casimir basis element. (c) Gauge set corresponding to the color basis element
C2 (G)(Tj )i:(Tj ):l. Color basis coefficients' wo, from (3.2) are given explicitly; diagrams stand for the

remaining factors CoFo. Ghost and seagull gluon self-energy dfagrams are not drawn.
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Fig. 18. An alternative choice of color basis for quark-quark scattering in sixth order. Gauge sets
corresponding to (a)-(f) consist of QED-like Feynman diagrams only.

In our construc1ion of color bases a considerable simplification was achieved by the
elimination of all color weights with 3-gluon color vertices. If one wishes to display
the QED gauge sets explicitly, it is more convenient to choose a color basis in which a
maximum number of basis elements have explicit 3-gluon color vertices. Such basis
elements vanish for an abelian group, and the remaining basis elements correspond
to the usual QED gauge sets.

For example, the color basis for quark-<juark scattering in order g6, fig. 15, can be
replaced by the color basis of fig. 18. Diagrams (a) to (f) correspond to the six QED
gauge sets of electron-muon scattering in order e6 (diagrams with fermion loops
contribute to further gauge sets).

9. Conclusions

In this paper we have shown how the color structure of an arbitrary non-abelian
gauge theory .can be used to decompose the perturbation expansion into gauge­
invariant sectors. The resulting classification applies to any gauge theory. We believe
it to be the maximal resolution into gauge-invariant sectors, in the sense that there
should be no gauge set that cannot be written as a linear superposition of our gauge
sets.

We have argued that the gauge sets should be useful in organising QeD bound­
state calculations. If a particular gauge set can be established as a zeroth-order
approximation to the bound-state wave function, the remaining gauge set decom­
position will give the systematics of the non-leading corrections.

Gauge sets also have immediate practical applications. They provide independent
checks on higher order perturbative calculations by defining various gauge-invariant
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combinations of contributions. This also makes it possible to compare intermediate
results calculated in different gauges.

Gange sets provide a gauge-invariant way of isolating the purely non-abelian
effects in gauge theories, such as the non-cancellation of the non-leading IR
divergences [27].

We would like to thank J. Ambjllrn, H.G. Bohr, P. Hoyer and J.L. Petersen for
useful discussions. The work of one of us (P.G.L.) was supported in part by the Jose
M. Alberty Memorial Trust.

Appendix A

RELATIONS BETWEEN COLOR WEIGHTS

The color weight diagrams are in mathematical language invariant tensors of the
gauge group. This means that if we perform a gauge group transformation of the
color coordinate system, the expression for these tensors in the new coordinate
system is identical to the expression in the old system. Perhaps the simplest example
is the three-ginon vertex -iCiik. After an infinitesimal gauge transformation, we have

C!ik = Ciik + e,{CurCi'ik +C/jj"Cij"k +C,kk·C,jk"} +0(e2) . (A. I)

The term in brackets vanishes by the Jacobi relation. Using the notation of fig. 3, the
Jacobi relation is given in fig. 19a. Hence the structure constants are invariant
tensors. Similarly, after an infinitesimal gauge group transformation, the quark­
antiquark-gluon vertex is given by

Again the term in the brackets vanishes by the Lie algebra

[Ti, 1iJ = iCIii'~"

(A.2)

(A.3)

and the generators (7;): are invariant tensors. Furthermore, any combination of
invariant tensors, with or without contracted indices, is itself an invariant tensor. In
particular, all color weights of gauge theory Feynman diagrams are invariant tensors.

As a consequence of the Lie algebra every color weight satisfies an invariance
relation analogous to the basic relations fig. 3b and fig. 19a. As an example, consider
a color weight W~;i for a diagram with two external quarks, two external antiquarks
and one external gluon. The reader can check by repeated use of Lie algebra on any
color weight diagram of this type that

W~~~(Tk):'+W~~;(Tk)t,-W~~dj(Tk)~'- W~~'i(Tk)~'+ W~~j' (-i)Cki'i = O.
(AA)

Diagrammatically the above relation is given by fig. 19b.
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Fig. 19. (a) Jacobi identity. (b) Example of an invariance relation. (c) Invariance relation for quark
form-factor. (d) Equality of self·energy color weights.
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Fig. 20. Quark self-energy color weights (a), (b) obtained by cutting the vacuum bubble (c) in two ways.
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The diagrammatic representation of invariance relations is useful in relating
whole classes of color weights. A simple example is the invariance relation for color
weight diagrams contributing to the quark form factor, fig. 19c. Contracting the two
gluon colorindicesand using the antisymmetry of e'i' we obtain the relation fig. 19d.
In the beginning of sect. 6 we asserted that the color bases for quark self-energies and
vacuum bubbles are equivalent. This is perhaps most easily. seen by taking a vacuum
color bubble diagram and cutting the quark line in all possible ways. Cutting to the
left and to the right of a given gluon vertex, one obtains two different self-energy
color weights, as in fig. 20. However, by the relation fig. 19d, these color weights are
equal. Further such relations are an important tool in constructing higher order color
bases, such as in fig. 13.

:D==~d +x+X+><+x+~}
(a)

t==~d -X-X+><-:X+~}
( b)

DxDxD = ~ + =
(c)

+ EP + EP

(d)

+~(~~)+Hi~)
(e)

Fig. 21. (a) Symmetrization operation for three lines. For m lines it is the sum of all m! permutations. (b)
The antisymmetrization operation is the alternating sum of m! permutations. (c) Decomposition of the
identity permutation into a fully antisymmetric. a fully symmetric and two mixed symmetry represen­
tations. Corresponding Young tableaux are given. (d) Decomposition of a permutation in terms of an

orthonormal basis. (e) Permutation (23) expanded in this basis.
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AppendixB

SYMMETRIC GROUP AND COLOR BASES

In secl. 4 we have noled that in the case of Compton scattering, the choice of a
symmetrized color basis separates the QED-like sector from the purely non-abelian
sector. In this appendix we shall show how the symmetric group can be applied to the
construction of a qq-+ (m gluons) color basis. As there already exists an extensive
literature on the symmetric group [29], we shall restrict ourselves to establishing
contact with the literature by discussing the first non-trivial example, the three gluon
c'ase, m = 3.

According to sect. 4, there are 3! elements in the color basis for the diagrams of fig.
4, which we wish to rewrite in terms of symmetric and antisymmetric combinations.
In order to do this, we introduce a symmetrization operator, fig. 21a, denoted by a
white bar, and an antisymmetrization operator, fig. 21b, denoted by a black bar. We
decompose the identity into four orthonormal projection operators, as in fig. 21c.
The choice of the last two projectors is arbitrary; the reader can check the identity by
expanding all symmetrizations and antisymmetrizations. In this way we obtain 4
symmetric color basis elements; the remaining 2 are obtained by sandwiching
permutations (other than the identity) between the mixed symmetry projection
operators. An arbitrary permutation WG = (T can now be expanded as a linear
combination of the elements of this basis:

w: = w: T(A) + w: T(S) + w: T(ll) + w: T(12) + w: T(2l) + w: T(22) •
G G,A a,S G,l1 0,12 G.21 0,22

(B.1)

Fig. 21d is the diagrammatical representation of this expansion and in fig. 21e We give
as an example the expansion for a specific permutation (23). The factors for the

llL-XL-.lX..<L+1C-L
+z.ll. -z.l:t. +z.L+zJL-z]L+zL

(a)

+Hr.. +l1I:: +l:t;: +tt: +(~~~J
(bl

Fig. 22. (a) The fully antisymmetric gauge set, with the coefficients U'A from fig. 20d explicitly displayed.
(b) The gauge set corresponding to the au color basis element in fig. 20d.
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off-diagonal basis elements are adjusted so that this is precisely the orthonormal
basis

(B.2)

of table 7-3 of ref. [29]. The interested reader can also consult [30] for an explicit
m = 4 symmetric group basis.

The m = 3 non-abelian tree diagrams may now be assembled into six gauge sets
corresponding to the six projectors T(p) with weights given by the coefficients W.
The four-gluon vertex color weight can be expressed as a sum of three-gluon vertex
color weights and every three-gluon vertex color weight can be rewritten in terms of
QED-like diagrams wliich are permutations of the identity.

Unlike the color basis of sect. 4, symmetric group color bases extract gauge sets
with different numbers of diagrams. The gauge set corresponding to the fully
symmetric Young tableau is always the QED gauge set: the sum of m! QED-like
diagrams, figs. 4a-f. The gauge set corresponding to the fully antisymmetric Young
tableau is given in fig. 22a. Diagrams 4m-p do not contribute because of the Jacobi
identity. A typical mixed symmetry gauge set, corresponding to the 0"11 coefficients in
fig. 21d, is given in fig. 22b. (We have not displayed the contributions from the
four-gluon vertex diagram in order to avoid introducing more diagrammatic notation
[19], but such extension is straightforward.)
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