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The functional techniques of field theory are adapted to the problem of evaluating sums of combinatoric
and group-theoretic weights of Feynman diagrams in P", quantum electrodynamics and non-Abelian theories.

Considered are various classes of diagrams such as connected, one-particle-irreducible, and skeleton

diagrams. For finite orders exact sums are given by compact recursion formulas. For higher orders estimates

are obtained from the exact results or by steepest-descent methods.

I. INTRODUCTION

In trying to understand th'e behavior of field theo-
ry at large orders in pertuxbation theory, one
finds that the number of diagrams contributing is
an important effect. It is the cause of the combin-
atorial growth of amplitudes for superrenormaliz-
able theories. ' However, fox renormalizable theo-
ries there are single diagrams which can cause
c.ombinatorial growth" and for gauge theories
there could exist strong cancellations between dia-
grams. ' In this paper we determine the number of
diagrams contributing to various amplitudes. We
find that it is both computationally efficient and
instructive to treat the whole problem as a zero-
dimensional field theoty. This approach enables
us not only to count diagrams, but also to treat
a more general class of problems where the zero-
dimensional fields transform under some local
symmetry group.

In a perturbative expansion in any field theory
the kth-order term in some amplitude has the
form

the weighted sum of diagrams. %'e loosely refer
to this as the "number of diagrams" or to evalu-
ating this sum as "diagram counting. " In the in-
teresting cases for QED all of the C's are 1 so
this is just the number of diagrams. If there is
a symmetry group we obtain the sum of symmetry
factors times group-theoretic weights.

In Sec. II we introduce the notation that we will
use in the rest of the paper and state the standard
definitions and identities of the genexating func-
tions for various classes of Green's functions.
In Sec. III we apply this to p" and QED to obtain
recursive formulas for the number of diagrams.
In Sec. I7 these results are generalized to theo-
ries with global symmetries. In Sec. V we deter-
mine the asymptotic behavior of the number of
diagrams in large orders.

II. NOTATION AND DEFINITIONS

A field theory is defined by the vacuum genera-
ting function

)dy] e',

where the sum extends over all topologically dis-
tinct kth-order Feynman diagrams. C~ is the
symmetry factor of the diagxam, W~ is a symme-
try group weight associated with the diagram, and
I'~ is the integral over loop momenta in the dia-
gram. For a zero-dimensional field theory F~ =1,
and if there is no symmetry group, W~ =1 as well,
so we have

S =Sr+SO,

So = —~4'. &.f4f+~-0-

which generates full Green's functions

'The vacuum bubbles are given by

(2.1)

(2.2)

(2 2)



CVITANOVIC, I AUTRUP, AND PEARSON

The expectation value of a product of m fields is ~««« (~ )««a (2.15)

) (gm) /g (2.4)

(2.5)

The logarithm of the vacuum generating function

%'e often single out the expectation value of a single
field mhich is called a tadpole

The integral in (2.1) gives formally

I« = const ««exp(S, }exp(-,'J, t««~ J~), (2.16)

(2.17}

where nom in SI the fields Q& stand for the deriva-
tives 8/BJ«. Differentiating this equation with re-
spect to J, leads to the Dyson-Schminger equation

pan =lnb (2.6)

is the generator of connected Green's functions
While differentiating it with respect to the coupling
constant g gives the simple identity

Q tft~

sJsJi j
(2.7) (2.18)

In pax'ticular the connected vacuum bubbles are
given by

while the exact propagator is given as

which mill allom the Dyson-Schminger equations to
be converted into recursion relations for the num-
ber of diagrams. The form of the Dyson-Schmin-
ger equation for W and I' depends on the model,
but mill have a form similar to those for $3 which
are

D;«=(W );~. (2.9)
p'«««« =J+ —Q2'u"+ —(Qu~)

2 2
(2.19)

The I egendre transform of the generator of con-
nected Green's functions

(2.10)

and, with J= —9/8$

(2.20)

One further identity which mill be useful later is

is the generator of one particle irr-ed««cible -(1PI)
Gr een 's functions

8~' 8I'
(2.21)

pm'

ay ey ~ . (2.11)

(2.12)

We distinguish the tadpole of (2.5), which has J= 0,
from the variable «I« in (2.9) which is related to I'
through

(& —1)!!,k even
dJ ~0 0, &odd ~

(2.22)

The expansion of the exponential in powers of g
in (2.16) gives the usual perturbation series. ln
our applications the expansion can be carried out
explicitly for & by means of the combinatorial
identities

Particular 1PI or proper Green's functions are the
proper tadpole (2.23)

the proper self-energy

'«« = (1'}««+5««

(2.13)

(2.14)

d d &gy «/2 (n+ 2k 2)! I

~

I

dJ', dJ',
~ ~, (n —2)!!

i, l=1, 2, . . . , n, (2.24)

and the proper vertex (for theories with a trilinear
coupbng)

where «n I!= n«(n« —2)(n« —4) ~, and repeated in-
dices are summed.
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Even in zero dimensions we may consider renor-
malization effects. Here they take on a graph theo-
retic significance. If we renormalize the fields
so that the exact propagators are normalized to 1,
then the above formalism generates Green's func-
tions without self-energy insertions. If we also
renormalize the coupling constant so that the prop-
er vertex I =g, then we count diagrams without
vertex corrections as well. In other words we
are counting skeleton Green's functions which are
related to ordinary Green's functions through

In practice this would be a very painful process.
The application of the Dyson-Schwinger equation
leads to considerable simplification. (2.17) and
(2.18) may be combined to give

1+JP+Ng—2 d
dg

(3.4)

Zm= m —1+Ng —Z
d
dg

(3.5)

(N.B., 2!2= 9/SJ here) or in terms of m-point func-
tions

g Wg'=e "gag'
1=0

where

(2.25)

(2.26)

Repeated application gives every Green's function
in terms of either Z or Z'. If N is even, all odd
Z vanish. If N is odd, direct application of (2.17)
gives

for the case of Q' as an example. In (2.25) a su-
perscript refers to the number of external legs
and a subscript to the order in perturbation theo-
ry.

III. EXACT COUNTING

In this section we apply the formalism of the
previous section to count the number of diagrams
in theories with no internal symmetries. To ill-
ustrate we will consider the simplest possible case
of a pure scalar interaction, and then consider the
more interesting case of QED.

Z] g Zg~]
(N I)!- (3.6)

dZ 1 d d
— — = —N-1+Ng —' ' ' 1+Ng —Z,

dg N l dg dg
(3.7)

while if N is odd

(22 —2 ~ Ng )(2 ~ Ng —)—

which with (3.5) eventually gives all Green's func-
tions in terms of Z —= Zo. Now using (2.18) we ob-
tain a differential equation which is satisfied by Z.
If N is even we have

A. P theories

Consider the action

~[4]= -k4'+~, 2!2"+~4 (3.1)

By (2.2) and (2.16), the sum of the combinatoric
weights of diagrams contributing to a full m-par-
ticle Green's function is

d dxg N —2+Ng —''' 1+Ng —Z. (3.8)
dg dg

If we substitute Z = e it is clear that we obtain a
nonlinear differential equation for W' of degree

[,'(N+ 1)]. F—rom here on the details depend on N

so we will study Q' for the rest of this section for
clarity. In this case the differential equation which
results is

Zm ~m (g/Nl )e ~& /2)
J'=0 ~

which by (2.22) gives in kth order

(3.2)
gW'= g[ ~+ ~gW' +—g'(W" + W")] (3.9)

(Nk+ m —1)r!
if Nk+ m is even,

Zm

0 if Nk+m is odd.

(3.3)

Qqv= —+J+ —JP+ 3g—d
2 2 dg

(3.10)

To obtain the connected Green's functions we must
relate them to W= W . Making the substitution
p = e~" in (2.17) and (2.18) gives the linear partial
dif ferential equation

Constants have been adjusted so that Z0'= 1 and

W,
"= 1. In principle everything is now known or

can be computed from the defintions of Sec. II.
which gives the analog of (3.5) for connected
Green's functions
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'=—50 +5, +—m+ 3g —W (3.11) z = —= —~+—'5
24 8 12

In particular for tadpoles and the exact propagator

g»dW+2g
2 dg

D= 1+—1+ 3g 4.g d
2 dg

(3.12}

which gives for 4 and D the expansions

4 =—+ 5 — + 60 — + 1105—g g
2 2 2 2

g 9
+27120 — + '''

2
(3.14)

This can be compared to Fig. 1 where we show the
low-order diagrams contributing to 4 and D with
their associated symmetry factors. From (3.10)
and (2.10) and (2.21) we obtain the analog of (3.10)
for 1PI Green's functions

Combining this with (2.19) we obtain a differential
equation for 4

2

C =—1+—4+6 —- 4 +4
2 2 2

(3.13)
3k+1 1

(b)

(C) D2 = — +—2 2 2

(di Z, =&= + &~+& +&
5

(.) r, = ~-g
=5 = — +3 +3

~ '$7 2 '2

+6 +3 +3 —gg +3— +3-—
2

+ 3.—
2

+ 3-—
2

+6-—
2

+3—
2

+ 6 + 3o—
2 2

FIG. 1. Combinatoric weights for 4~ diagrams (a)
vacuum bubbles, (b) tadpoles, (c) exact propagator, (d)
full vertex, and (e) proper vertex (the first factor is the
number of diagrams with the same structure).

which may again be compared with Fig. 1. In 1PI
amplitudes the expansion around |It) = 0 eliminates
all tadpole subdiagrams.

To count diagrams with no self-energy insertions
consider

g—JI'=——Q+—QJ+ 3g—
2 2 Bg

(3.15)

rh3

(3.19)

I =-O -e ——k -3g —ry+g g
Oak lib 2 dgp

where the renormalization constant z2 is deter-
mined by the requirement that

(N.B., here J= —S/BP}. Combining this with (2.20)
we obtain the proper tadpoles, self-energies, and
vertices

g g 3 dJ= ——+—1 ——g —J
2 2 2 dg

D=1
The same considerations as before now give

3 dz 2 d
z ——g '

Q &= 1+JP+3g—
2 dg dg

(3.20}

(3.21)

1 1 3 5 5—g g —g ~ ~ ~ (3.16)
~ =1+—r2 (3.22)

1 —3g —J g'} r d-JI'= — 1+—I' ) Q+ —1+ QJ+ 3g—
2 / 2 dg

=2g +g +, g +''',

3 dI' =g+g —1+ —, g —7J
2 dg

(3.17)
dI' '= — 1+—I' 5 + —5 + -m+ 3g —I'

ms' 2 mqo dg
(3.23)

r =@+—1+-g —(r)'g 3 d
4 2 dg

=g+g'+ 5g'+ 35g'+ (3.18) -g+g +~~g +20g +~4g + (3.24)
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which is checked for low orders in Fig. 1(e).
To count skeleton diagrams consider

(3.25)

with series coefficients

(0+ e)!(k+p —1)!!
(3.32)

where the renormalization constants are fixed by
requiring (3.20) and

(3.26}

Here e is the number of "electron" lines travers-
ing the diagram, and P is the number of "photons"
entering the diagram. Repeating the analysis for

we obtain

This leads to

(3.27}

g W'=g '[2+ 4g W'+g'(W" + W")],
(3.33}

and a differential equation. for z,

1-s =g -g 2+——(1-s )
g 4

j. 4 dg = 1+ 2g'+ 10g4+ V4g'+ 706g'+ (3.34)

+ 1+ +g 1+ (1 ~i) 1
gk 2 g~ 2

2 dg S~g

which yields

1-z =g'+-'g'+ 4g'+19g'+ ~ ~

(3.28}

(3.29)

The coefficients in this series count proper ver-
tices with no self-energy or vertex insertions.
This is checked in Fig. 1(e).

In the remainder of this and in the next section
we will give results similar to the above for a
variety of more complex models. Before contin-
uing let us summarize the nature of the results
given in this section. Fox each class of Green's
functions the key formula is a nonlinear differ-
ential equation for some low order Green's func-
tion which gives a recursion relation for its ex-
pansion as a power series. Higher m-point func-
tions are obtained from this one by formulas which
relate (m+1)-point functions to m-point functions
and their derivatives. The efficiency of the for-
mulas for computing the number of diagrams is
such that one may easily compute by hand the first
10 or 20 orders while expanding the logarithms in
the definitions would be prohibitive. In Sec. V we
will see another use for them as they easily give
the asymptotic expansion for large orders.

d„„,=exp q g 1 —g — exp(-, P),
d4

(3.36)

(D,)„=(k —1)!!,k even (3.37)

where D, is the exact "electron" propagator. We
note that for connected diagrams in this theory
C~ = 1 so that we are indeed counting diagrams, as
can be seen from Fig. 2. Many of these diagrams
would vanish in @ED because of Furry's theorem.
To disentangle the "electron" loop structure of
amplitudes we do the integral over the P fields
and write the generating function as

cf d
d4 CJ

(3.35)

which may be recognized as the "electron loop ex-
pansion. " Examples of results which may be ob-
tained for this theory with a fixed number of "el-
ectron" loops are, for no loops

B. Q A f thcQ~

As a crude model of @ED consider a theory of a
complex scalar coupled to an ordinary scalar with
an action'

8= -Q*Q -~A~+gP*AQ+ q*P+ /++ATE. (3.30)

This gives the generating function

(b} Dp = 2. = = +

wA + m ~ ~~ + A
j9, 5

&=exp g ~
——exp q +~J2 (3.31) FIG. 2. Combinatoric weights for 4*&ft!' diagrams; (a)

vacuum bubbles and (b) exact "electron" propagator.
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or for one loop the proper self-energy for the
"photon" dydee dq dg 1 g—'d'/dJ' (3.47}

w~=(k —1)!!,k even. (3.38) These two equations give relations for the full
Green's functions

Furry's theorem states that aB diagrams with
electron loops attached to an odd number of pho-
tons vanish. Recalling (3.35) we may eliminate
such loops by the replacement

1+p+g —Z",
dg

Zwls p 1+ 8+g Z8P+ g g 2kZ8sp+2A+1

dg 0"-0

(3.48)

(3.49)
ln(1 —gA) —2 ln(1 -gA)+ 2 In(1+ gA). (3.39)

Thus the number of @ED diagrams has the gener-
ating function

-Z/2 d1-g —
2 exp 'g 1-g — exp ~J

(3.40)
%'ith the expansion

(1 -g'A') 'i'(1 -gA) = (1+gA)'(1 -g'A') ' 'i'

They also give differential equations for the vac-
uum bubbles

dZ
g —=g 1+g —Z,

dg dg
(3.50)

dW 2 dW, d2W dW 2

g —=g' 1+ 3g +g', + — . (3.51}
dg dg dg dg

The exact electron and photon propagators, whose

numbers turn out to be the same, are related to
S' by

we obtain for fuB Green's functions

(k+p —1)!!e! ~ e e+r --,'
k! e~a~o ~ e -p1

0'+Op 2t+ MA

(3.41)

(3.48}

dWD= 1+g-
dg

and satisfy the differential equation

]+g 3D I +g 2D2

which gives the series

D = 1+g + 4g '+ 25g '+ 208g 8

(3.52)

(3.53)

Again e is the number of electron lines crossing
the diagram, and p the number of photon lines
entering the diagram. In the int:cresting cases
this expression simplifies considerably

+ 2146g ' + 26 368g ' + ' (3.54)

The proper self-energies obey the differential
equation

(3.55}

Z, = (0 —1)!!'/k!!, k even, (3.43)
giving the series

&,'=&~"= (}t+1)!!(k —1)!!/!t!! k even

&~"' = k!!'/(}t —1)!!,0 odd.

(3.44)

(3.45)

r =g '+ 3g '+ 18g '+ 153g '+ 1638g '0+ ' ' ';
(3.58)

the low order terms can be checked with Figs. 2
and 3. The proper vertex is related to the proper
self-energy by the linear equation

1+JA+g—
dg (3.48)

For the insextion of an electron line through the
diagram we have

To study connected diagrams we again turn to
the Dyson-Schwinger equations. From (3.40) by
scaling gA-4 we obtain for the insertion of two
photons

1 ~ 13d11d+=1+g + g ~+ g 'lT
y (3.57)

which gives the series known from the magnetic
moment calculations'

I'=g+g +Vg'+ 72g +891g + 12672g'~+ ~ ~ ~

(3.58)
An equation for the number of skeleton diagrams
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25

.t I l!4
(b) PTER

- )8 — ~~m -+
~~~ + ~4 + ~ers + ~~

nomial in the fields invariant under the action of
the group. The methods already developed apply
and no new difficulties are encountered.

A. (4, $r ) theory

As our first example we consider the aetio~

S= —e(PP, )+( ) (@Pt) +Zg„ t —1, . . . , rt,
(4.1)

which is invariant under the group of orthogonal
transformations O(n). Since the only invariant
tensor is 5,&, Green's functions have the tensor
structure

(C) St'4 =i&= + + + + + +

+ + + + + +

I"IQ. 3. @ED diagrams: (a) connected vacuum bubbles,
Ib) proper self-energy, and (c) vertex skel. etons.

for the vertex may be obtained by rewriting (3.53)
in terms of the renormalized coupling (2.26). This
yields a differential equation for g, analogous to
(3.28) for P' theory:

GTr er =
( 1)!!5tty5 5t t& Q y m even&

(4.2)
(rt —2)!!(m —1)!!

(m+n —2)!!
Here the normalization has been adjusted so that
when m= 1, we recover the @'" theory considered
before. By (2.24) the full Green's functions are

1 1 (2Nk+m+rr —2)!!(m —1)!!
k! (21V)!' (m +rt —2)!!

(4.3)

(1-s,) =g'+g'+ 2g'

+ -3g +g -l+pg—
dg

and obey the recurrence relation

~+2 ~+ &gSl+2 ~ + ~g g wl

+R dg
(4 4)

-g 8+rg — (1-s )
d

dg

+ 1+eg—+(g -g ) 3+~—d
dg dg

+g 12+ 4!g— $ -gi
dg

+ -g' I + ~g —+g' 5+ ~g-

-g'(r+tr — (1-z )'
dg

+ (-r'+r')(r+ lr —(1-» )'
dg

{3.59)

Again for simplicity we will consider a specific
case, 6'=2 or P' theory. In this case the differ-
ential. equation for the connected vacuum bubbles
ls

W' = —t[rt(n+ 2) + 8(n+ 3)gW'+ 16g'(W" + W")).

(4.5)

(4.6)

the exact propagator and proper self-energy are

(4 'f)

which yields the series

1 gt =g +g + 13g +93g + ~ ~ ~ (3.60)

The sixth-order term is illustrated by Fig. 3(c).

1rt+2 2 (rt+2) (n 3)+=1+— g+3 3
—

4-
- g

33 (n+2) (SF+34rt+60)
8 3 99

(4 8)

IV. EXACT COUNTING WITH GLOBAL SYMMETRIES

In this section we generabze the preceding dis-
cussion to the ease of fields which transform under
some symmetry group. Instead of just counting
the number of diagrams we count the number of
diagrams weighted by the associated group-theo-
retic weights. For an action we can take any poly-

in+2 gg+ 2g $ I+ 77

2 3 3 dg

1(n+2) 5 (m+2)(m+4)
2 3 g'l2 3 5 g

5 (I + 2) (rr + 4) (n + 5)+ — g + e e e

(4.9)

(4.10)



n(n+Z)(n+5) ) n(n+ Z) 0 ) n(n+Z)
fZ 3.4 l6 3~ 48

)3 n(n+Z)(5n~+34n+60)
96 3.99

n(n+Z)~ ) n(n+ Z)
35 3Z

n(n+2) ~ ( n(n+2)(n+s)
e ~ ~8 3e

of diagrams as vrelL The results of Sec. GIC are
1ecovered lf we 8et d= 1, Rnd 'll = -1. Fermi vex'-

sus Bose statistics for the electrons amounts to
the choice n ox" -n in the above. For the vacuum
bubbles me have

d
g+ =g d+g —s+g Z )

dg Gg

gW' =g'[-nd+ (d —n+ 1}gW'+g'(W" + W")].
(4.16)

(4.1V}

=8 33 +rZ 52 +8 55

) (n+P) + & (n+2Nn+s)
4 3.9

FIG. 4. Combil1Rtoric Rod group-theoretic freights for
(4'~ 4g) diRgl'Rms: (R) coM1ected vRcUQD1 buses,
exRct propRgRtox's RQ6 (0) proper Self-eIlexgy

(4.18}

'The first few terms are shown graphically in Fig.

B. Tr8ces of QEB p Mstrlces

instead of the gd koe treatment of Sec. III we
may consider the a,ction

D„=1+g'[(d+ n)D„+ga„'+da„'],
(4.2O)v =g'[-n+ (d + n) v+ g v']+ v'

= -n[g'+ (2+ d)g'+ (2+ d)(4+ d —n)g'+ 1

y"'&((y'g'&'= -«W" (4.21)

%here ge, 0 = 1, 2~. . . , g ls Rn antlcommuting tl-di-
mensional spinor, A", p, =1, 2, . . . , d transfoxms
under the vector representation of SQ(d), and

(y ); are Hermitian Dirac matrices which satisfy

Defining (1 =gA" y" we have

ls glveQ by

grl, 1

'ad
(4.22}

Rnd the proper vex'tex is given in terms of the
proper self-enex gies by

n Z-n g+ [d-(d+n)Z+gZ'].
(d+ n)' g d+ n

~'=g A. 1, try=0. (4.12)
(4.23}

These results axe illustxated in Pig. 5 fox' some
love ordex' dlagrRIDS

det(1 —(t) = exp[-,'n in{1-g '2')] (4.13) C. QCD group-theoretic weights

a.nd the generating function is

$= exp ~~ln 1-g A +g»g exp /1-g'A'
(4.14)

This incolpox"ates Furry's thoerem and sums all
the y traces for the momentum-independent paxt

The ease with %'hich @ED p-matrix tx'Rces cRQ

be summed suggests that @CD group-theoretic
weights might be similarly Summable. %e Show
that thl8 ls indeed the cRse by consldex'lng R gen-
el'RllERtlon of the action of the plecedlng section,

(4.24)

Here p, , g=l, 2, ..., g transforms as a complex



7T/( =-n(d(2) =-nd ~ -od ~-n(2-d)~ Z = —(n2-) )2

(A -&)(n-))f2n+3)
~ ~ ~ ~

)-n&
Z

PA
= —-(n~-)) +-

A

= d (-n+2) = d +d(a 4)fA

FIG. 5. Sums of traces of @ED p matrices (times -1
for each electron 1oop): (a) photon self-energy and (b)
electron self-ener gy~

FIG. 6. Combinatoric and group-theoretic weights for
vacuum bubbles in SU(&) theory.

g —&=0 84'8
dg

and the Dyson-Schwinger equations

(4.2s)

n-dimensional repxesentation of some group G, A, ,
i =1,2, .. . , n is a real n-dimensional representa-
tion contained in nSn, (T~)»o are the Clebsch-
Gordan coefficients for the ng-N projection,
and 8 =- gTQ, We have omitted three-gluon coup-
lings because they vanish by the antisymmetry of
C,,~ unless the group has structure 6 = G, && G,.
Any number of such models can be constructed,
but they are not physically interesting unless they
exhibit a local gauge invariance, a problem beyond

Qpe Qf the present paper FQr Qur purpQses
it will be sufficient to show that one can sum the
weights for diagrams without three-gluon coup-
lings. From

(;*((c"~ (((")*(),

n' —1, (n' —1)(n —1)(2n+ 3)
2

'
4n

(4.31)

Other Green's functions can be evaluated as in
the preceding sections.

V. ASYMPTOTIC ESTIMATES

In the previous sections we have discussed the
computation of exact sums for finite orders. In
this section we give the behavior for large orders
as an asymptotic expansion. All of the Green's
functions that we consider can be expressed in the
standard form

p, s = ))t(1+8),a,

(~&+E4' T((j()()
(4.26)

one obtains

g&'=g4'T;(t'&(&
~
z=o=o

= g'((('&(4)(4'T )4)s
~ g-.- o. (4.28)

Tne form of the projection operator (T,);(T,);
depends on the choice of the representations g and

N, and the symmetry group G. In QCD n is typi-
cally a lowest-dimensional representation of some
simple I ie group and N is always its adjoint rep-
resentation. All such projectors (except for E,)
are given in Ref. 8. For example, for SU(n)

(r,);(r,);= ();();——6;();C (2 C (1 C (4.29)

If a restriction to subset of diagrams affects onlyd„d„... , we shall refer to it as insigniPcanf;
otherwise we shall call the change significant,
Paralleling the previous discussions, we vill treat
the specific example of P' in detail.

There are several different ways to extract the
asymptotic behavior. We can begin from the exact
answers for the full Green's functions and compute
from them the estimates for other Green's func-
tions. Alternatively, we may use the steepest
descent method to study the "functional integral. "
The differential equations of Secs. III and IV offer
still another method of arriving at the estimates.
The exact result for Z» (3.3) has the Stirling's
expansion for large k'

and (4.28) becomes

(4.30)
(s.2)

As usual, this gives us an equation for counting
connected vacuum bubbles (see Fig. 6):

SU(n):

The expectation values (2.4) are obtained by divid-
ing out Z. This sort of operation is easily per-
formed for asymptotic series if one remembers
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that only the terms containing the biggest factor-
ials are important. Removal of vacuum bubbles
affects only terms of 1/k or smaller:

for g ))t

(5.11)

29
cf1 36

5
41= ——-) m & 2.

12 9

(5.3}

In the combined variables P and g, S,«has a pair
of critical points at

g, =+2M 3k, Q, =+~3k)
(5.12)

S,= S,«(g„g,) = —,'k+ —,
'
k ln(3k/4) .

The connected Green's functions (2.V) are related
to the expectation values through the eummulant
expansion.

w. = «/& } m—(y)(y '} ~ ~ —~ (5.4)

(which is valid for large enough m}. In the present
ease we obtain for 8'

3~n' —12' —20
Ay ) 8l + s

36
(5.5)

The 1PI Green's functions are obtained by ampu-
tating external legs and subtracting one-particle
reducible graphs. This gives

32 245 89 3m�' —60m —20
61=

9 36 9 36

m =(2, 3, 4, & 5), (5.6)

which is a linear equation for 4~ when C„C„.. . ,
values are substituted. This gives 4~ up to a con-
stant which must be found independently, as above.
Higher m-point functions may then be found from
(3.11). This method is very economical for com-
puting higher terms in the asymptotic expansion.
For example, we have for the tadpoles

y-1/2

x 1—
(

29 BVV

36k 648k' i
(5.8}

An alternative approach which gives some of
these results more simply is to begin with the
recursion relation satisfied by a Green's function.
For example (3.13) can be written for large k as

4„,= 4,+ 4,4,+ C, C, ,+ C,C, ,+ ~(~5~.V)
3k+1

4=0,
D= 1,
I' =g.

To lowest order we have

4 =-,'g-4+ O(g'),

D=~~ '+ag'+O(g')
I' = z~+ g'+ O(g'),

so that

s, = 1 —g'+ O(g'),

z, = 1+—,
' g'+ O(g'),

Z=-,' g+ O(g');

(5.14)

(5.15)

(5.16)

comparing with (5.12) the saddle points a.re now at

The integral is evaluated by choosing a contour
for both the g and Q integrals which passes through
both saddle points and expanding S„,to quadratic
order about S,. Higher orders may be computed
perturbatively. The result, of course, agrees
with (5.2). Since restrictions due to connectivity
and reducibility only effect the O(1/k) terms in
the asymptotic expansion, this method is useful
for giving the leading term. It is also useful in
computing the leading terms of the asymptotic
expansions of renormalized models or skeletons.
Here this is the easiest way to get the constant
C in (5.1). For Q' skeletons we have

1/2
gill — 3

dQ exp 3 + 1 dd [(~~)~
27' 6 ) 3

(5.13)
where we let z„z„andJ be functions of g=g~
and impose the normalization conditions

A completely different starting point for obtain-
ing the above results is the steepest descent
method. The analysis has been given in many
places, 9 'o so we only sketch it here. From

P, = &~3k [1+V/3k+ O(l/k')],

g, = +2v 3k [1+O(1/k') ],
which gives

(5.1V}

1 2 g 3)
Z = dQQ exp +

6 )[
(5 9)

2 3

Z„= dP P exp +, (5.10)
(2 )3/2 c g j

S,= ——,'k+ —,'kin(3k/4) —'-'+ O(1/k} . (5.18)

It is important to note that the effect of the one-
loop counterterms is to change S, by —10/3, to
order k o, and that higher-order corrections
change S, to order 1/k. Thus the ratio of skeletons
to all graphs in leading order is

where C is a closed contour enclosing g=0. Writ-
ing g ~ in the exponent gives an effective action Sm/gm &-lo/3

g~ ae

(5.19)
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TABLE I. This table contains the numbers of several interesting types of QED diagrams.
A comparison of the first two columns illustrates the effect of Furry's theorem.

Order

Exact electron
propagator s

without Furry's
theorem

Exact Proper
propagators self-energies

1 1—I', proper —S, vertex
g

vertices skeletons

2

4
6
8

10
12
14
16
18
20

2

10
74

706
8 162

110410
1 708 394

29 752 066
576 037 442

12 277 827 850

1
4

25
208

2 146
26 368

375 733
6 092 032

110769 550
2 232 792 064

1
3

18
153

1 638
20 898

307 908
5 134 293

95 518 278
1 967 333 838

1
7

72
891

12 672
202 770

3 602 880
70 425 747

1 503484416
34 845 2 94 582

1
1

13
93

1 245
18 093

308 605
5 887 453

124 221 373
2 864 305 277

Asymptotic: =(a&) '. A"& C(1+ d&/p+ d2/Q + ~ ~ ), where

2 2

v2

1.
2

v2

2

v2

2

W2

d(

d2

2

32

2/7t 2/rr
—5/2/&

9-2

Similar analysis yields analogous results for
QED, listed in Table I of the Summary.

VI. SUMMARY

In this paper we have shown how to count the
number of Feynman diagrams or sum group-
theoretic weights by the functional methods. The
results fall into two categories. For finite orders
we are able to give recursion relations which are
very efficient compared to the direct computation
from the definitions. The former typically re-
quires k' or k operations to find all the Green's
functions up to order k while direct computation
requires order e~ operations. For large orders
we give asymptotic expansions in 1/k for the
numbers of diagrams. Unlike finite dimensional
field theories where determining the higher-order
terms can be difficult, here on may easily com-
pute as many terms as needed.

Since they are of some practical interest, we
tabulate the numbers of diagrams for QED Green's
functions. In each case we give the result for
several finite orders and the asymptotic expansion
for large orders. Similar results may easily
be obtained for the other models discussed here.

Note added in Proof C. Itzy.kson and J. B. Zuber
have also applied a zero-dimensional field theory
to QED diagram counting (to be published in their
forthcoming book on field theory). We are grate-
ful to Prof. C. Itzykson for informing us of their
results.
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