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Abstract

Most neuronal ensembles are nonlinear excitable systems. Thus it is becoming common to apply principles derived from nonlinear

dynamics to characterize neuronal systems. One important characterization is whether such systems contain deterministic behavior

or are purely stochastic. Unfortunately, many methods used to make this distinction do not perform well when both determinism

and high-amplitude noise are present which is often the case in physiological systems. Therefore, we propose two novel techniques

for identifying determinism in experimental systems. The first, called short-time expansion analysis, examines the expansion rate of

small groups of points in state space. The second, called state point forcing, derives from the technique of chaos control. The system

state is forced onto a fixed point, and the subsequent behavior is analyzed. This technique can be used to verify the presence of fixed

points (or unstable periodic orbits) and to assess stationarity. If these are present, it implies that the system contains determinism.

We demonstrate the use and possible limitations of these two techniques in two systems: the Hénon map, a classic example of a

chaotic system, and spontaneous epileptiform bursting in the rat hippocampal slice. Identifying the presence of determinism in a

physiological system assists in the understanding of the system’s dynamics and provides a mechanism for manipulating this

behavior. # 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The emerging field of nonlinear dynamics has opened

up new avenues for the analysis of biological systems.

One intriguing question to neuroscientists is whether a

neuronal system’s behavior is guided by some internal

rules (i.e. is deterministic and hence predictable) or is

purely random in nature. Because biological data are

inherently noisy, however, many standard measures of

nonlinear dynamics, e.g. correlation dimension and

Lyapunov exponents, have not proven very reliable in

characterizing biological systems (Theiler et al., 1992;

Theiler, 1995). Other techniques have been used to either

argue for the presence of determinism in experimental

data (Kaplan, 1994; Aitken et al., 1995; Pueyo, 1997;

Grassberger et al., 1991), or against it (Chang et al.,

1994; Schiff et al., 1994a; Petracchi, 1997). However,

most of these methods rely on either very long time

series or low noise.

Lyapunov exponents measure sensitivity to initial

conditions, a necessary condition for chaos, and hence

are frequently used to quantify chaos in a system. Many

methods have been developed to calculate Lyapunov

exponents, including some developed especially for

noisy data (Rosenstein et al., 1993; Kantz, 1994). Kantz’

method in particular looks at the expansion rates of

small neighborhoods of points localized in state space

and averages them out over time. However, in our

previous experiments, this method was not found to

provide meaningful information for short-time series

with a great deal of noise or extremely rapid expansion

(Slutzky et al., 2001). In the case of short data sets

recorded from in vitro bursting experiments in rat

hippocampi, it was necessary to use larger initial

neighborhoods to obtain enough initial points for the

method to work correctly. These larger neighborhoods

then expanded to the size of the entire attractor so
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quickly that it was impossible to calculate an accurate

average expansion rate.

Therefore, we have developed an alternative measure

of expansion rates that approximates a maximal Lya-

punov exponent. This method, which we shall refer to as

short-time expansion (STE), measures the rate of spread

among nearby points in state space after only one time

step. It averages this rate of spread over the entire

‘attractor’ (i.e. all the points in the data set) which

reduces the effects of local noise on the computations.

Thus, it is a global measure of the mean expansion rate

over the entire state space. We then compare this global

expansion rate of the data with that of randomized

surrogates of the data. Since a deterministic system

should expand at a slower rate than a stochastic system

(if the amplitude of the noise is comparable to the size of

the attractor), this comparison enables us to identify the

presence of determinism in the data. This might seem

counterintuitive*/a strong deterministic expansion rate

might be expected to overpower noise*/however, this is

clearly not the case for short lengths of time where

deterministic expansion rate is small but noise would be

of the same amplitude no matter how short the time.

STE allows detection of determinism on a global

scale. Another indicator of determinism, this one on a

local scale, is the presence of unstable periodic orbits

(UPOs) in a system (Auerbach et al., 1987). A periodic

orbit is a set of points in state space to which a system

returns repeatedly. A fixed point is a period-1 orbit (i.e.

the system remains at that point over time). Saddle fixed

points (the type most likely to be found in excitable

systems) have an associated set of stable and unstable

manifolds which can be approximated as straight lines

in state space within a small distance of the fixed point.

Points along the stable manifold are attracted to the

fixed point, while points along the unstable manifold are

repelled by the fixed point. A chaotic trajectory in state

space can be thought of as wandering along a skeleton

of UPOs (Auerbach et al., 1987). A few methods of

detecting UPOs have been developed (Pierson and

Moss, 1995; So et al., 1997), but they are time-intensive

and may not be ideal for real-time applications such as

chaos control. Another previously published method

(Christini and Kaplan, 2000) uses chaos control to

detect fixed points, but requires a great deal of stimula-

tion and system perturbation, which may not be ideal

for neural systems. We have developed a technique,

referred to hereafter as state point forcing (SPF), that

can validate fixed point (i.e. period-1 orbit) detection. It

does this by forcing the system state point onto the fixed

point estimate and then analyzing the system’s behavior.

This technique can help assess the stationarity of the

system over the course of an experiment and indicate

whether chaos control of a system is feasible*/if the

system remains close to the fixed point for a while, then

it should be possible to manipulate the system into

desired regions of behavior.

2. Methods

2.1. Experimental methods

Male Sprague�/Dawley rats, age 20�/25 days, were
anesthetized (Isoflurane) and decapitated. Hippocampi

were dissected out while perfused with chilled artificial

cerebrospinal fluid (ACSF) containing (in mM):

NaH2PO4 1.25, MgSO4 1.3, NaCl 124, NaHCO3 24,

D-Glucose 10, KCl 3.5, CaCl2 2.4. Transverse slices

400 mm thick were cut using a tissue chopper (Stoelting)

and maintained in oxygenated ACSF at room tempera-

ture. Slices were placed in the bottom of a 1 ml
experimental bath under a dissecting microscope and

perfused by oxygenated ACSF. The bath temperature

was kept at 359/1 8C, at a flow rate of 5�/6 ml/min. A

glass micropipette recording electrode (3�/5 MV) was

filled with 2 M NaCl and placed in the pyramidal layer

of the CA3 region (Fig. 1A). Bursting was induced by

bathing the slices in ACSF containing either high

potassium (10.5 mM) or zero magnesium (Fig. 1B).
Signals from the recording electrode were bandpass

filtered on an AC differential amplifier (DAM 80,

World Precision Instruments) with cutoff frequencies

of 0.3 Hz and 3 kHz. For expansion rate analysis, bursts

were recorded in AxoBASIC (Axon Instruments) and

detected offline using a threshold-detection algorithm.

Further details of experimental procedure were de-

scribed in Slutzky et al. (2001).
For SPF experiments, a bipolar tungsten stimulating

electrode was placed in the Schaffer collaterals. Stimuli

consisted of single, 80 ms square-wave current pulses

with amplitudes of 0.1�/0.3 mA. Bursts were detected

using an analog threshold-detection circuit. The thresh-

old was set in the range 60�/400 mV, depending on the

noise amplitude in each experiment, and it was kept

constant throughout each experiment. The interburst
intervals (IBIs) were delay-embedded in two-dimen-

sional (2D) state space (Sauer, 1995); i.e. the current

and previous IBIs were plotted against each other as in a

return map (Fig. 1C).

2.2. Analysis methods

The following sections describe our methods to

extract information about underlying deterministic dy-

namics in situations where the noise is comparable in

magnitude to the suspected deterministic dynamics. Our
mathematical investigations stop whenever the quality

of the data warrants no further refinement of the

method; consequently questions about relations of these
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methods to others which work well primarily for noise-

less systems are not pursued here in depth.

2.2.1. Short-time expansion rate analysis

As described earlier, STE endeavors to surmount the

obstacle of extremely rapid expansion (Fig. 2) by

examining the ratio of distances between nearby points

after only one time step. A given number of nearest

neighbors was found for every point in the data set. The
resulting cloud of points was then fit to an ellipse using

principal components analysis (PCA). The largest prin-

cipal component measures the variance along the major

axis of the best-fit ellipse, and we used the square root of

this component (i.e., the standard deviation) as a

measure of the initial spread between the points. The

points in the neighborhood were then evolved one

iterate into the future. These points were again fit to
an ellipse using PCA, and the variance along the major

axis was obtained. The square root of the ratio of the

two largest principal components then provided a

measure of the one-step expansion rate. The local

Lyapunov exponent could be estimated by the natural

logarithm of this rate. The global expansion rate (Lave)

was then obtained by averaging the local estimates. That

is,

Lave�
XN

i�1

li

N
; li � ln

� ffiffiffiffiffi
p1

p0

s �
; (1)

where p0 and p1 are the largest principle components of

the initial and iterated clouds of points, respectively; N

is the total number of points in the data set; and li is the

local expansion rate. It was expected that after only one
time step small neighborhoods of points would not

spread out as quickly in deterministic systems as they

would in strongly stochastic systems. If the system

Fig. 1. Hippocampal slice burst activity. (A) Recording electrodes

were placed in the CA3 stratum pyramidale (P) and stimulating

electrode in the Schaffer collaterals. (B) An example of a spontaneous

burst induced using high-[K�]o solution. (C) A return map of 1000

IBIs from a spontaneous bursting experiment.

Fig. 2. An example of the rapid expansion of local neighborhoods in

return maps of the data. (A) In the Hénon map, the initial points (solid

dots) stay relatively close together after one (triangles) and two iterates

(large circles). Randomized surrogates of Hénon expand very rapidly

(I0/�0/*), as expected. (B) In contrast, in high-[K�]o bursting data

the initial neighborhood (large dots) expands in one step (triangles) to

cover over half of the attractor, and in two steps (large circles) covers

most of the entire attractor (seen as small dots).
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contained a large stochastic component, the points

would likely spread out over most if not all of the

attractor after only one time step. Also, additive

(extrinsic) noise should average out in this calculation
leaving primarily the deterministic component. There-

fore, Lave should be smaller for a deterministic system

than for a stochastic system.

Lave varied with the number of neighbors included in

each local estimate. This relationship was examined by

computing Lave for each data set using numbers of

neighbors (NN) ranging from four to the total number

of points in the data set. For both stochastic and
deterministic systems, Lave should decline logarithmi-

cally to zero as NN rises to the total number of points in

the data set, since the neighborhood will have less and

less room to expand. Also, in experimental systems, at

very small NN noise levels are usually greater than the

neighborhood size, so Lave should decline logarithmi-

cally to zero for small NN as well. However, for a

deterministic system, there should be some intermediate
region where Lave is relatively constant, which would

imply a constant expansion rate is present. This idea

enables us to discriminate determinism from noise by

comparing the Lave vs. NN relationship for a data set

with that of corresponding surrogate data.

The STE rate analysis is not a method for evaluating

Lyapunov exponents. It does that only for 1D maps; the

expansion rate determined by our method is a derivation
of a Lyapunov exponent as defined by the ergodic

hypothesis, which replaces a long-time average with a

one-step expansion rate weighted by natural measure.

However, in higher dimensions the STE rate analysis

does not yield the Lyapunov exponents, as an average of

the magnitude of the leading expanding eigen value of

one one-step stability matrix has no precise relation to

the asymptotic time Lyapunov exponent. All one
assumes is that if the flow is unstable almost everywhere,

the STE rate is also positive, and roughly of the order of

the leading Lyapunov exponent. Even if the true

dynamics is high-dimensional, the Lyapunov exponent

computed from its projection on a small-dimensional

subspace is expected to be the same as the leading

Lyapunov exponent. Representations of the dynamics in

higher-dimensional subspaces would then enable us to
estimate the smaller Lyapunov exponents.

The nature of our neuronal data does not appear to

warrant investigations of embeddings of dynamics in

dimensions higher than two primarily because we are

barely able to extract a leading expansion rate exponent

in the noisy Hénon map, and we see none in the

experimental data. Intuitively, noise is infinite-dimen-

sional, and for a deterministic flow with weak additive
noise, an embedding dimension exceeding some level

yields the situation where only the noise determines the

size of the signal. For levels of noise measured in our

neuronal data, the first time-delay map shows expansion

that is barely consistent with determinism, and there is

little opportunity for extracting any more information

from higher-dimensional embeddings.

2.2.2. The method of surrogate data

The method of surrogate data was first developed

(Theiler et al., 1992) as a way of testing for nonlinearities

in time series. It has since been adapted as a method of

determining the significance of other measures of

nonlinearity calculated from time series, such as Lya-

punov exponents (Theiler, 1995) or nonlinear prediction

(Aitken et al., 1995). We used surrogate data to test for

determinism in the STE rate analysis. Each surrogate
data set was generated from the data by randomly

shuffling the order of the IBIs according to a Gaussian

distribution (Theiler et al., 1992). The surrogate data

represented the null hypothesis that the experimental

data could be explained by a linear stochastic process. If

the Lave vs. NN curve for the original data was

significantly different from the average curve computed

for the surrogates, then the null hypothesis could be
rejected and the likelihood of determinism being present

would be strengthened.

2.2.3. State point forcing

SPF is based on the chaos control paradigm. The goal

of chaos control is to convert the system from a chaotic

behavior to a periodic one by capitalizing on the

presence and properties of UPOs in chaotic systems.
In particular, period-1 orbits, or fixed points, are sought

out using a UPO transform (UPOT) technique (So et al.,

1997). This technique concentrates points tightly around

the UPO so that the UPO shows up as a peak in a

histogram of the transformed data. The statistical

significance of this peak is then computed by comparing

the data histogram with a distribution of histograms of

surrogate data (to which the UPOT has also been
applied). For real-time SPF protocols, only 10 data

surrogates were used to calculate significance as com-

pared to the 50 surrogates used for offline analysis

(Slutzky et al., 2001). In the chaos control algorithm,

when the system state point wanders far enough away

from the fixed point, a stimulus is applied to shift the

state point onto the stable manifold. The state point

then will move in toward the fixed point along the stable
manifold without further stimulation. This property

minimizes the number of stimuli needed to maneuver

the system into a periodic behavior.

In SPF, in contrast to chaos control, stimulation

continued until the state point landed on the fixed point.

Fixed points were first detected using the UPOT

technique. Limitations in stimulus-burst interval preci-

sion occasionally interfered with exact placement of the
state point onto the fixed point, so we required it to be

within a very small distance of the fixed point. Since the

goal of SPF was characterization, and not control, of
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the system, minimizing the number of stimuli was not as

high of a priority as in the chaos control algorithm. If

the fixed point estimate were accurate, then the state

point should remain near the fixed point on the

subsequent iterate. However, if no fixed point existed

or the fixed point estimate was inaccurate, then the

subsequent state point could end up anywhere. We

therefore, hypothesized that if we first forced the state

point onto the fixed point and then forced it onto some

other arbitrary point in the system attractor, the

subsequent state points should in general stay closer to

the fixed point than the arbitrary point. If the two cases

were significantly different, it would imply that there

was indeed a fixed point present near the estimate.

To measure the difference between these two cases,

the system state point was forced onto the fixed (or

arbitrary) point estimate 30�/40 times (or one ‘cycle’).

This created a cluster of ‘forced’ points around the fixed

point. We then computed the 2D mean of the cluster of

points that were within the fixed point radius and the 2D

mean of the subsequent iterates of these points. The

difference of these two means was the change in the

center of mass (DXcm). If the system state were forced

onto a true fixed point, then DXcm would be small, while

if it were forced onto some other arbitrary point or an

inaccurate fixed point estimate, then DXcm would be

bigger. This idea is illustrated by Fig. 3. The case of

forcing to a fixed point is shown in Fig. 3A, and the

cluster of subsequent state points is shown in Fig. 3B.

Since the subsequent iterates stay relatively close to the

fixed point, DXcm is small. When the system is forced to

an arbitrary point, as in Fig. 3C and D, DXcm is larger.

Statistical comparisons of DXcm were made with the

paired t-test, or the Wilcoxon signed rank test when the

data did not pass a normality test (SigmaStat, Jandel

Scientific).

As stated above, the state point was forced onto the

fixed point for a cycle and then onto an arbitrary point.

The forcing point alternated between the fixed point and

the arbitrary point from two to five cycles, until the

fixed point seemed to be drifting due to nonstationarity.

At this point, SPF was turned off and the fixed point

was relocated using an adaptive tracking (AT) technique

(Slutzky and Mogul, 2000). This technique was based on

an algorithm designed to account for nonstationarity by

readjusting the fixed point after each unstimulated burst

(Christini and Kaplan, 2000). It used singular value

decomposition to fit data to linear approximations of

the dynamics in the neighborhood of the fixed point.

This provided a new estimate of the fixed point and

stable manifold. If a suitable fixed point estimate was

found, then tracking was stopped and SPF resumed.

Both SPF and STE were first tested on the Hénon

map, a classical chaotic system described by the

equation:

xn�1�1�1:4x2
n�0:3xn�1: (2)

Data from the Hénon map were delay-coordinate

embedded in 2D in the same way as the IBI data.

3. Results

3.1. Short-time expansion analysis

STE was first tested on 1000 iterates of the Hénon

map with and without added Gaussian noise and on 5

surrogates of each set of data. The values of Lave for the

surrogates were averaged. As shown in Fig. 4A, Lave for

the curve of the surrogate average decreased logarith-
mically to zero, while the curve of the noiseless Hénon

system was nearly horizontal. The curve for the Hénon

map with low noise (s�/0.02) contained a large plateau

in the range NN�/3�/10% (of the points in the

attractor), and the curve for larger noise (s�/0.2, 7%

of the attractor size) had a smaller plateau at NN�/10�/

20%. Lave was slightly larger (0.50) than the accepted

value of the Lyapunov exponent for the Hénon map
(0.41, dashed line), but was reasonably close. As the

noise amplitude increased, the curve started to resemble

the curve of the surrogates.

STE analysis was then applied to 12 sets of IBI data

recorded during spontaneous bursting experiments

using high-[K�]o or zero-[Mg2�]o and to 5 surrogates

of each data set. Plateau regions were not found in any

of the bursting data sets tested. Curves of the data were
very similar to those of the corresponding surrogate

average. Even in the experiment with the largest

difference between data and surrogates, the data curve

was almost parallel to the surrogate mean curve (Fig.

4B). However, the curve was displaced from the

surrogates, which suggests that the data were less

disordered than the surrogates.

3.2. State point forcing

The SPF protocol was first tested on the Hénon map

to make sure it could distinguish valid fixed points. As

Fig. 5A and B demonstrate, the subsequent state points
clearly stayed closer to the forcing point when the

system was forced to a fixed point than when it was

forced to an arbitrary point, even with added noise

(which inhibited fixed point detection accuracy). This

difference (DXcm) increased with the distance between

the arbitrary and fixed points. SPF was then applied to a

total of 102 fixed points in 22 bursting experiments (on

16 hippocampal slices). Once a fixed point was found,
the state point was alternately forced onto either the

fixed or arbitrary point for 30�/40 IBIs each until the

fixed point appeared to be drifting (Fig. 5C). Then SPF
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was turned off and the AT technique was used to

readjust the fixed point estimate (Section 2).

The value of DXcm was computed for each fixed point

and its corresponding arbitrary forcing point. There

were 51 fixed point trials each of those detected with the

UPOT and those found with the AT algorithm. The

data were first compared for both UPO types combined,

and DXcm was significantly smaller when forcing to the

fixed points than to the arbitrary points (median values

0.258 vs. 0.404 s, P B/0.004, signed rank test). When

compared separately, the UPOT fixed points did not

show a significant difference in DXcm (P�/0.07), but the

AT fixed points did have significantly smaller DXcm

when forcing to the fixed vs. arbitrary points (median

values 0.22 vs. 0.38 s, respectively; P B/0.015).

The data were divided in several ways for further

analysis. The arbitrary forcing point was set both higher

than (positive) and lower than (negative) the fixed point

in several trials. When it was set higher than the fixed

point, the natural IBIs were sometimes shorter than the

forcing point, so not enough data points could be

obtained for the analysis. The arbitrary point was 0.1�/

0.4 s away (both positive and negative) from the fixed

point, proportional to the size of the system attractor.

The shift was typically 5�/15% of the attractor width.

The differences in DXcm were significant when shifting

negatively (0.18 vs. 0.41 s, fixed vs. arbitrary, respec-

tively; P B/0.0001), but not when shifting positively

(P�/0.8). The AT and UPOT fixed point data were then

analyzed in the positive and negative shift categories.

Fig. 3. A schematic of STE and SPF. (A) The system is forced to the fixed point z*, producing a tight cluster of points around it (all within the fixed

point radius). Thus, the center of mass Xcm equals the fixed point z*. (B) The subsequent iterates of these points stay relatively close to the fixed

point, and the new center of mass Xcm? stays relatively close to Xcm, so DXcm is small. (C) When the system is forced to an arbitrary point far away

from the fixed point, the cluster of points expands and moves (D), producing a large change in the center of mass DXcm. In expansion rate analysis,

the clusters of nearest neighbors around the fiducial point would be fit to ellipses using PCA (best-fit ellipse). The length of the major axis of this

ellipse (p1 in B) would then be compared to the major axis of the cluster of points (p0 in A) to calculate the expansion rate. SM and UM are the stable

and unstable manifolds, respectively.
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Again, negative shifts were significantly different for

both AT (P B/0.0001) and UPOT (P B/0.04), while

positive shifts were not significantly different for either.

The data were broken down further by grouping
according to the size of shift (from fixed to arbitrary

point); the shift sizes ranged from �/0.4 to �/0.4.

However, the number of trials in each group were

almost all too small to produce enough power to detect

Fig. 4. Results of STE analysis in Hénon and bursting data from a

high-[K�]o experiment. (A) Curves of Lave for the 2000-point Hénon

map (m), the Hénon map with added Gaussian noise (j, s�/0.02; ',

s�/0.2), and Gaussian-shuffled (SS) surrogates for noiseless (k) and

noisy (^, s�/0.2) Hénon map. Lave for the surrogates decreases

logarithmically with NN, but the noiseless and low-noise Hénon data

curves are almost flat, and are close to the Lyapunov exponent for the

Hénon map (0.415, dotted line). This shows an invariant expansion

rate. With larger amounts of noise (s�/0.2), the curve resembles the

surrogates at small and large NN, but has a plateau in the NN�/5�/

20% range. (B) Curves of Lave for one set of high-[K�]o experimental

data and corresponding SS surrogates. Curves for both data (m) and

surrogates (k) decline logarithmically to zero with increasing NN. No

plateaus are evident which indicates that the data are stochastic, with

no evidence for determinism.

Fig. 5. Results from SPF analysis on Hénon and bursting data. When

the system state wandered outside of the control region around the

fixed point (dashed lines), the next burst would be triggered by an

electrical stimulus. (A) In the noiseless Hénon system, the fixed point

was found at 0.63. The system state was forced to it until n�/1000;

then the system state was forced to a point 0.2 away from the fixed

point. As expected, when the system was forced to the fixed point

estimate by stimulating (m), the subsequent (unstimulated, k) iterates

stayed very close to the fixed point. But when the system state was

forced to an arbitrary point (at 0.43), the subsequent iterates were up

near 0.9. This same result was seen when increasing amounts of noise

were added, even up to s�/0.1 (B). (C) In this bursting experiment,

forcing alternated between the fixed (thick lines) and arbitrary (thin

lines) points 4 times. Then tracking was turned on (dotted line, starting

at n :/700) until a new fixed point was found at n�/820. Tracking was

then stopped and forcing resumed. The subsequent state points stayed

closer to fixed points than to arbitrary points.
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a significant difference. The exception to this was for

shifts of �/0.2, for which there were 24 trials. In this

case, DXcm was significantly smaller for the fixed than

for the arbitrary point (P B/0.002).

4. Discussion

Two novel techniques for detecting determinism in

noisy experimental systems have been introduced here.

STE calculates average expansion rates over short

periods of time and serves as a global measure of

determinism. SPF uses a variant of chaos control to
validate fixed point estimates obtained from other

detection algorithms. These methods were used to

analyze the mathematical Hénon map and the experi-

mental bursting models of epilepsy. STE analysis

identified deterministic behavior in the Hénon system

with added noise but not in the bursting system which

contained a great deal of noise. SPF analysis identified

fixed points and hence determinism in both Hénon and
bursting models.

Most of the existing methods for detecting determi-

nistic behavior are not reliable for situations in which

the system is very noisy and the amount of data is small.

STE and SPF both were able to distinguish determinism

present in the Hénon system under these restrictions.

The choice of surrogate in this manuscript biased STE

toward ruling out linear stochastic processes. No
surrogate can completely model all types of stochastic

noise. We were able to reject the null hypothesis for the

Hénon system, however, a different type of stochastic

process may still have been present.

The fact that STE did not detect determinism in

bursting is probably due to the very high amount of

noise present in addition to determinism. Because STE is

a global measure, it may miss some local deterministic
behavior if noise levels are very large (Slutzky et al.,

2001). However, in a rapidly expanding system like

hippocampal bursting, it is one of the few tools available

to globally characterize the system. It appears that

hippocampal bursting may either be too noisy or expand

too rapidly for even STE to distinguish determinism.

The results of SPF support prior analyses based on UPO

detection (So et al., 1998; Slutzky et al., 2001) that
suggested that there is indeed some determinism present

in bursting at least on a local scale.

Fixed points are difficult to detect in noisy and short

data sets, and the possibility of false-positive fixed point

detections has been raised (T. Schreiber, personal

communication). SPF provides an additional way to

build confidence in fixed point estimates. The accuracy

of these estimates is critical for the successful imple-
mentation of chaos control, since the premise of control

is to keep the system close to a fixed point. For

biological systems, this is particularly important, since

they exhibit a high degree of nonstationarity, which

causes fixed points to drift or disappear very rapidly.

Other algorithms, e.g. the So UPOT, are time-intensive

and require compromises to be made in accuracy in

order to optimize speed for real-time applications. SPF

allows estimates to be made relatively quickly in real-

time. For those interested in controlling chaotic systems,

SPF may provide a benchmark of whether this control is

possible by revealing whether the fixed point estimates

are sufficiently accurate and whether the system will stay

close to the fixed point long enough to attain control.

The question of whether a neural system contains

determinism or is completely random has important

implications. Some evidence against determinism has

been found in spinal cord reflex circuits (Chang et al.,

1994) and hippocampal circuits (Schiff et al., 1994a).

Other studies have been published that suggest that

neuronal activity (Braun et al., 1999), specifically

hippocampal bursting (So et al., 1998; Slutzky et al.,

2001), does contain determinism. If the system contains

determinism, that implies that it behaves according to

certain rules and is theoretically predictable for a short-

time, even if it is chaotic. This property could be very

useful; for example, it could allow the ability to predict

or even prevent an epileptic seizure (Schiff et al., 1994b;

Aitken et al., 1995; Lehnertz and Elger, 1998; Slutzky et

al., in press). The two new tools described here should

provide additional flexibility to experimental researchers

seeking to answer this question about their system.
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