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Chapter 1

Is QED finite?

For Emily, after she gets bored with “Baby Loves Quarks.”

In 2017 Laporta [116, 117] completed the twenty-year project of computing analyt-
ically the individual contributions of 891 4-loop vertex diagrams contributing to the
electron magnetic moment g. Vertex diagrams separate in 25 gauge-invariant sets (see
figure 1.8). The numerical contribution of each set is listed in table 1.2. Adding only
the quenched set V diagrams (diagrams with no lepton loops, see figure 1.4 and 1.6),
one finds for the 4- and 5-loop contributions to the anomaly a[V ] = 1

2 (g − 2)
∣∣
V

:

a(8)[V ] = −2.176866027739540077443259355895893938670

= −2.17 . . . Aoyama et al. 2012 [7]
≈ 0 Cvitanović 1977 [41]

a(10)[V ] = 7.606(192) . . . Aoyama et al. 2018 [11]
≈ 3/2 Cvitanović 1977 [41] . (1.1)

There is a prediction dating back to 1977 for values of these terms: the predicted
a(8)[V ] ≈ 0 does not pan out, but the difference is small, considering that this is a sum
of 518 vertex diagrams (or 47 self-energy diagrams) [105]. Likewise, the prediction
for a(10)[V ] is not too far off, considering that this is a sum of 6 354 vertex diagrams
of table 1.1 (or 389 self-energy diagrams).

1.1 Electron magnetic moment
This section sets up the notation - the reader can safely skip it and start with sect. 1.2.
For an introduction to the conventional magnetic moment calculation, see for example
the Cvitanović online graduate QFT course, lectures 25 and 26 here.

An electron of mass m has a magnetic moment

µ =
e~

2mc

g

2
(1.2)

3
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1.1 Electron magnetic moment 1.1 Electron magnetic moment

where g is the gyromagnetic ratio. In Dirac theory [54], the electron has g = 2.
Consider the electron-photon vertex Γµ of quantum electrodynamics, with pi =

p − q/2 and po = p + q/2 the momenta of incoming and outgoing electron lines,
evaluated on the electron mass shell p2

i = p2
o = m2. By Gordon decomposition the

vertex can be written in terms of the Dirac and Pauli form factors F1(q2) and F2(q2):

u(po)Γµ(p, q)u(pi) = u(po)

{
F1(q2)γµ −

F2(q2)

2m
σµνq

ν

}
u(pi) , (1.3)

where the spinors u(pi) and u(pi) satisfy the Dirac equation:

u(po) 6po = mu(po) , 6pi u(pi) = mu(pi) .

We follow the notation of Bjorken and Drell [21] and Cvitanović and Kinoshita [50].
Z1, Z2, and Z3, are the respectively the vertex, the electron wave function, and the
photon wave function renormalization constants, and the electron mass will be set to
m = 1 throughout. In what follows it is convenient to define Z1 = 1 + L. For
QED the charge conservation requires that the renormalized charge form factor satisfies
F̃1(0) = 1, which is guaranteed by the Ward identity [180] Z1 = Z2. The vertex
renormalization constant L is given by the on-shell value of the unrenormalized charge
form factor [30]

1 + L = F1(0) =
1

4
tr [(6p+ 1)pνΓν ]q=0 , (1.4)

and a = (g − 2)/2, the anomalous magnetic moment of an electron is given by the
static limit of the magnetic form factor a = F̃2(0) = M/(1 + L), where [30]

M = lim
q→0

1

4q2
tr
{[
γνp2 − (1 + q2/2)pν

]
( 6po + 1)Γν(6pi + 1)

}
. (1.5)

The perturbative expansions for the magnetic moment anomaly is defined as

a =
M(α0)

1 + L(α0)
=

∞∑
n=1

a
(2n)
0

(α0

π

)n
, (1.6)

where 1 + L = F1(0), M = F2(0) are computed from the unrenormalized proper
vertex (1.3), given by the sum of all one-particle irreducible electron-electron-photon
vertex diagrams with internal photons, electron loops and electron mass counterterms.
Expanding M and L we have

a
(2)
0 = M (2)

a
(4)
0 = M (4) − L(2)M (2) (1.7)

a
(6)
0 = M (6) − L(2)M (4) − (L(4) − (L(2))2)M (2)

As shown in ref. [39], for the anomaly (1.6) expressed in terms of the unrenormal-
ized coupling constant α0, all a(n)

0 are IR finite, for both QED and QCD. The UV finite
expression for the anomaly (1.6) is obtained by the charge renormalization

α = Zα0 , Z =
Z2

Z1
Z3 , (1.8)
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CHAPTER 1. IS QED FINITE?

Table 1.1: Comparison of the number of vertex diagrams without fermion loops, gauge
sets, and the gauge-set approximation (1.12) for the magnetic moment in 2nth order.
From ref. [41].

where Z1, Z2, and Z3 are computed as power series in the bare coupling constant α0.
For QED Z1 = Z2 by the Ward identity [180], and for QCD the Zi’s are related by
the Taylor-Slavnov [164, 173] identities (1.8). The simple structure of (1.6) and (1.7)
should simplify the worldline calculations of sect. 1.3.2.

The Dirac equation predicts that the magnetic moment of an electron of charge
e and mass m is µ = e/2m, i.e., in the absence of radiative corrections F̃1(0) =
1 and F̃2(0) = 0. In 1948 Schwinger [156] showed that in the leading, one-loop
order in the fine structure constant α, the radiative corrections lead to the anomalous
magnetic moment of form F̃2(0) = α/2π + a(2) (α/π)

2
+ · · · (the result engraved on

Schwinger’s tombstone). These notes are about what to expect for the (α/π)
n term in

this series.

1.2 Gauge sets
Is there any method of computing the anomalous moment of
the electron which, on first approximation, gives a fair approx-
imation to the α term and a crude one to α2; and when im-
proved, increases the accuracy of the α2 term, yielding a rough
estimate to α3 and beyond?

— Feynman’s challenge, 12th Solvay Conference [70]

In 1972 Toichiro Kinoshita and Predrag Cvitanović had completed computing a large
number of 3-loop anomalous magnetic moment Feynman diagrams and regularization
counterterms [104], figure 1.1. The subsequent 4- and 5-loop numerical and analytic
calculations were nothing short of heroic [9, 105, 116, 118]. The quantum field theory
was used in the standard way [21], by expanding the magnetic moment into combina-
torially many Feynman diagrams (see the numbers of vertex graphs in table 1.1). Each
Feynman diagram corresponds to an integral in many dimensions, with oscillatory in-
tegrand with thousands of terms, each integral separately UV divergent, IR divergent,
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Figure 1.1: The three-loop vertex diagrams contributing to A
(6)
1 mag-

netic moment (from Jegerlehner and Nyffeler [92]). Lautrup et al. [122]
were the first to note that subsets (3, 0, 0) = {23, 24, 25, 26, 27, 28};
(2, 1, 0) = {29, 31, 33, 35, 37, 39, 41, 43, 45, 47} and its time-
reversal (2, 0, 1) = {30, 32, 34, 36, 38, 40, 42, 44, 46, 48}; (1, 2, 0) =
{49, 51, 53, 55, 57, 59, 61, 63, 65, 67} and its time-reversal (1, 0, 2) =
{50, 52, 54, 56, 58, 60, 62, 64, 66, 68}; and (1, 1, 1) = {69, 70, 71, 72} are the
minimal gauge sets, see figure 1.3.
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Figure 1.2: Rows: the fourth-order gauge sets km′m: (1) = (1, 1, 0), (2) = (2, 0, 0)
and (3) = (1, 0, 1). Columns: external field insertions into the two self-energy sets.
For diagrams related by time reversal (here (1) and (3)) the value listed under the first
diagram of the pair is the total contribution of the pair. Contributions seem to be of
order ± 1

3

(
α
π

)2
, and suggest that a set and its time-reversed partner should be counted

separately. From ref. [41].

and unphysical, as its value depends on the definition of counterterms and the choice
of gauge. The numerical values of these integrals typically range from ±10 to ±100.
For example, the largest contributions of the 389 quenched self-energy diagrams listed
in Aoyama et al. 2018 [11] are of order ±20.

Adding up hundreds of such contributions, of wildly fluctuating values, yields (for
the no-fermion loops subset V , in the notation of ref. [9])

A
(6)
1 [V ] = +(0.92± 0.02)

(α
π

)3

.

But why “+” and not “-”? Why so small? Why does a sum of hundreds of diagrams and
counterterms yield a number of order of unity, and not 10 or 100 or any other number?

If gauge invariance of QED guarantees that all UV and on-mass shell IR diver-
gences cancel, could it be that it also enforces cancellations among the finite parts of
contributions of different Feynman graphs?

1.2.1 QED vertex photons come in three “colors”

As first noted by Lautrup, Peterman and de Rafael [122], the renormalized on-mass
shell QED vertex diagrams separate into a sum of minimal gauge-invariant subsets,
each subset separately UV and IR finite. The only published proof of this elementary
fact seems to be ref. [41]. The very reasonably priced ref. [43] might be worth a
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1.2 Gauge sets 1.2 Gauge sets

read, especially if one is interested in the non-abelian theories as well [39, 40, 42], see
sect. 1.9.

A gauge change generates a kµ term in a photon propagator, and that affects a tree
electron vertex in a very simple way, /k = (/p + /k + m) − (/p + m) , or, diagrammati-
cally [21, 43] (graphs drawn by H. Kißler [107]), 1

1

/p+ /k −m
/k

1

/p−m
=

1

/p−m
−

1

/p+ /k −m
,

= − .
(1.9)

To simplify matters, in what follows we shall consider only the no-fermion loop
diagrams, or ‘quenched-’, or ‘q-type’ diagrams (‘quenched’, as this corresponds to the
Nf -independent part of the vertex amplitude in QED with Nf flavors). The minimal
gauge-invariant subsets without electron loops (see figure 1.1 diagrams {23 − 72};
figure 1.2; 1.3; 1.4; and 1.6) will be hereafter be referred to as gauge sets.

A gauge set km′m consists of all 1-particle irreducible vertex diagrams with-
out electron loops, with k photons crossing the external vertex (cross-photons) and
m[m′] photons originating and terminating on the incoming [outgoing] electron leg
(leg-photons), where m ≥ m′. For asymmetric pairs of sets, with m 6= m′, the contri-
bution to the anomaly akmm′ is, in the convention of ref. [41], the sum of the set and
its mirror (time-reversed) image,

a[V ] =
1

2
(g − 2)

∣∣∣∣
V

=

∞∑
k=1

∞∑
m=0

m∑
m′=0

akmm′

(α
π

)k+m+m′

. (1.10)

1.2.2 The unreasonable smallness of gauge sets
When the diagrams computed in ref. [50] are grouped into gauge sets, figure 1.2 to
figure 1.6, a surprising thing happens; while the finite part of each Feynman diagram is
of order of 10 to 100, every gauge set known at the time added up to approximately

±1

2

(α
π

)n
,

with the sign given by a simple empirical rule

akmm′ = (−1)m+m′ 1

2
. (1.11)

The sign rule is further corroborated by sets with photon self-energy insertions (but
with the absolute size scaled down to 3−15% of (1.11)). In figure 1.4 this rule is com-
pared with the actual numbers, and the 1977 four-loop prediction is given [41]. With
that prediction, the “zeroth” order estimate of the electron magnetic moment anomaly
a is given by the “gauge-set approximation,” convergent and summable to all orders

a =
1

2
(g − 2) =

1

2

α

π

1(
1−

(
α
π

)2)2 + “corrections" . (1.12)

1Predrag: 2017-07-14 need to download, put axohelp.exe, the executable version of axohelp for MS-
Windows into the directory where I can run it from, presumably Program Files/MiKTeX 2.9/miktex/bin/x64
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CHAPTER 1. IS QED FINITE?

This is not how one usually thinks of perturbation theory. Most of our colleagues be-
lieve that in 1952 Dyson [61] had shown that the perturbation expansion is an asymp-
totic series (for a discussion, see Dunne and Schubert [60, 89]), in the sense that the
n-th order contribution should be exploding combinatorially

1

2
(g − 2) ≈ · · ·+ nn

(α
π

)n
+ · · · ,

and not growing slowly like my estimate

1

2
(g − 2) ≈ · · ·+ n

2

(α
π

)2n

+ · · · .

For me, the above is the most intriguing hint that something deeper than what we know
today underlies quantum field theory, and the most suggestive lesson of our calculation.

1.2.3 Self-energy sets
There are two ways of grouping vertex diagrams, into gauge sets, and into self-energy
sets (or the “externally gauge-invariant” sets). Every vertex diagram belongs both to a
gauge set and to a self-energy set, as illustrated by figure 1.3. Formulation of the (g −
2) computation directly from self-energy graphs is due to Cvitanović and Kinoshita,
see the “new formula” (6.22) in ref. [50]. Not only does this calculation use fewer
Feynman graphs, but it enables calculation of the 3-loop electron magnetic moment
by two independent methods (and in this way helps track down and eliminate errors
in either calculation). As an important aside, Carroll [31, 32] gives the credit for self-
energy sets only to the mass-operator formalism of Schwinger [157–159, 166], even
though Carroll papers look closer to ref. [50] than to Schwinger and Sommerfield;
ref. [50] is cited, and his derivation is also based on the Ward-Takahashi identity [172,
180]. The self-energy set formulation might be equivalent to Schwinger’s, but it looks
quite different in detail, and the authors were not aware of Schwinger mass-operator
when they derived it.

The gauge sets are minimal, and separately gauge invariant (for a proof, see ref. [41]).
The self-energy sets are not, only their sum is gauge invariant. Unlike gauge sets,
whose number grows polynomially, the number of self-energy sets grows combina-
torially - they save significant amount of computing for few-loops computations, but
cannot be used to argue the finiteness of QED. That is the reason why Aoyama et
al. [7, 9, 11] calculations have nothing to say about the 1977 conjecture [41]: they do
not compute individual vertex diagrams, but only the self-energy sets, and for them
the set of all diagrams without a fermion loop (‘quenched-’ or ‘q-type’ diagrams) is a
single ‘gauge-invariant set’ V . For example, for 5-loops the set V is a sum of 9 vertex
gauge sets (where time-reversed pairs count as one set, see figure 1.5), but Aoyama et
al. [11] only give their sum (1.1).

1.2.4 Where do we go from here?
Gauge invariance is the bane of my life

— Predrag
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Figure 1.4: Comparison of the 1977 gauge-set approximation to the anomaly a and
the actual numerical values of corresponding gauge sets, together with the 1977 eighth-
order prediction of ref. [41]. For the updated listing, see figure 1.5.



2n km′m anomaly

(1,0,0)
2

1/2
1
2

(1,1,0) (2,0,0)4
-1/2 (-.65) 1/2 (.31)

0 (-.33)

(1,2,0) (2,1,0) (3,0,0)
1/2 (.56) -1/2 (-.47) 1/2 (.44)

6
(1,1,1)

1 (.93)

1/2 (.43)

(1,3,0) (2,2,0) (3,1,0) (4,0,0)
-1/2 (-1.97) 1/2 (-.14) -1/2 (-1.04) 1/2 (.51)

8
(1,2,1) (2,1,1)

0 (-2.17)

-1/2 (-.62) 1/2 (1.08)

(1,4,0) (2,3,0) (3,2,0) (4,1,0) (5,0,0)
1/2 (?) -1/2 (?) 1/2 (?) -1/2 (?) 1/2 (?)

10
(1,3,1) (2,2,1) (3,1,1)

3
2 (7.60)

1/2 (?) -1/2 (?) 1/2 (?)

(1,2,2)
1/2 (?)

Figure 1.5: Updated figure 1.4 comparison of the gauge-set approximation (1.12)
and the actual numerical values of corresponding gauge sets, together with the 5-loop
prediction. Starting with 4-loops, the gauge-set approximation fails in detail. Still, the
signs are right, except for the anomalously small set (2, 2, 0), and the remaining sets
are surprisingly close to multiples of 1/2.
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(1) (2) (3) (4) (5) (6)

gauge set km′m value prediction
(1) (1,3,0) - 1.9710 - 1/2
(2) (2,2,0) - 0.1424 1/2 (!)
(3) (1,2,1) - 0.6219 - 1/2
(4) (2,1,1) 1.0867 1/2
(5) (3,1,0) - 1.0405 - 1/2
(6) (4,0,0) 0.5125 1/2

Figure 1.6: (top) Examples of 4-loop vertex diagrams belonging to Laporta [116]
gauge sets (1) to (6). The remaining diagrams in the set can be obtained by permuting
separately the vertices on the left and right side of the electron line, and considering
also the mirror images of the diagrams. For all 25 gauge-invariant sets, see figure 1.8.
The table: Gauge-set contributions a(8)

kmm′ , see (1.10), as reported by Laporta [116]
(for the full 25 gauge-invariant sets, see table 1.2). The last column: 1977 Cvitanović
predictions [41]. Signs are right, except for the set (2) = (2, 2, 0), which is anomalously
small, and the remaining sets are surprisingly close to multiples of 1/2. There might be
factors of 2 having to do with symmetries, missing from the guesses of ref. [41], but I
cannot see how that would work. Only (4) = (2, 1, 1) and (6) = (4, 0, 0) are symmetric,
but (1) = (1, 3, 0), (4) and (5) = (3, 1, 0) seem to have an extra factor of 2 or 4.

Aoyama et al. 5-loop calculations already push the envelope of what is numerically
attainable, they cannot switch from the self-energy diagrams formulation to the vertex
diagrams formulation, it would mean (for the quenched set V ) going from 389 self-
energy graphs to 6354 vertex diagrams. Stefano Laporta deserves a bit of well earned
rest. So what is ahead?

At this time, Sergey A. Volkov appears to be the only person set up do the requisite
5-loop calculations, see sect. 1.4.

Two approaches might be relevant to establishing bounds on, and perhaps even
the direct computation of gauge sets (ignoring the N = 2 and N = 4 supersymmetric
models): (1) worldline formalism pursued by Schubert and collaborators, see sect. 1.3,
and (2) Hopf algebraic approach of Kreimer and collaborators, see sect. 1.5.

Very far out in the left field is the smooth conjugacy method of sect. 1.6 which
would require a bit of real work to apply it to a field theory.

1.3 Worldline formalism
How and why Feynman in 1950 introduced ‘worldline formalism’ (initially for scalar
QED, appendix to ref. [67], then for spinor QED, appendix to ref. [68]) is explained
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in Schubert 2001 report [152] (which also has an extensive bibliography up to 2001).
In 1982 Affleck, Alvarez, and Manton [1] used the Feynman worldline path integral
representation of the quenched effective action for scalar QED in the constant electric
field.

For the remainder of this section we shall consider only the quenched QED, i.e.,
restrict our considerations only to sets of diagrams with no lepton loop insertions.

A formula for the charged scalar propagator to emit and reabsorb N photons as it
propagates from x′ to x can be derived as follows [3]. The free scalar propagator for
the Euclidean Klein-Gordon equation [3, 153] is

D0(x, x′) = 〈x| 1

−� +m2
|x′〉 , (1.13)

where � is the D-dimensional Laplacian. Exponentiate the denominator following
Schwinger,

D0(x, x′) =

∫ ∞
0

dT e−m
2T 〈x|e−T (−�)|x′〉 , (1.14)

Replace the operator in the exponent by a path integral

D0(x, x′) =

∫ ∞
0

dT e−m
2T

∫ x(T )=x

x(0)=x′
Dx(τ) e−

∫ T
0
dτ 1

4 ẋ
2

, (1.15)

where τ is a proper-time parameter (the fifth parameter [71]), and the dot denotes a
derivative with respect to the proper time. This is the worldline path integral represen-
tation of the relativistic propagator of a scalar particle in Euclidean space-time. In the
vacuum (no background field), it is easily evaluated by standard methods and leads to
the usual space and momentum space free propagators, 2∫ x(T )=x

x(0)=x′
Dx(τ) e−

∫ T
0
dτ 1

4 ẋ
2

=
1

(4πT )d/2
. (1.16)

Adding the QED interaction terms leads to the Feynman’s worldline path integral rep-
resentation [67] of the charged scalar propagator of mass m in the presence of a back-
ground field A(x),

D(x, x′) =

∫ ∞
0

dT e−m
2T

∫ x(T )=x

x(0)=x′
Dx(τ) e−S0−Se−Si , (1.17)

where the suffix (0) indicates the free propagation

S0 =

∫ T

0

dτ
1

4
ẋ2 , (1.18)

(e) is the interaction of the charged scalar with the external field

Se = −ie
∫ T

0

dτ ẋµAµ(x(τ)) , (1.19)

2Predrag: 2017-06-17 Here a study of Sect. 6. Worldline formalism of Gelis and N. Tanji [80] might be
helpful - it reexpresses the integral as an average over Wilson loops.
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and (i) are the virtual photons exchanged along the charged particle’s trajectory

Si =
e2

2

∫ T

0

dτ1

∫ T

0

dτ2 ẋ
µ
1 Dµν(x1 − x2) ẋν2 , (1.20)

where Dµν is the x-space photon propagator.
The formula (1.17) involves (i) a path integral over all the worldlines x(τ ′), i.e.,

closed paths in Euclidean space-time parameterized by the proper time τ ′ ∈ [0, τ ], and
(ii) an ordinary integral over the length τ of these paths. The sum over all the worldlines
accounts for the quantum fluctuations in space-time, and the prefactor exp(−m2T )
suppresses the very long worldlines that explore regions of space-time much larger
than the Compton wavelength of the particles. The ultraviolet properties of the theory
are encoded in the short worldlines limit τ → 0. The Euclidean space-time guarantees
that both types of integrals are convergent.

Consider next the charged scalar field in external field, neglecting internal photon
loops. By taking the constant external field A(x) to be a sum of N plane waves, one
obtains the rule for inserting N external photons:

D(N)(x, x
′) = (−λ)N

∫ ∞
0

dT e−m
2T

∫ T

0

dτ1 · · ·
∫ T

0

dτN

×
∫ x(T )=x

x(0)=y

Dx ei
∑N
i=1 ki·x(τi)e−

∫ T
0
dτ 1

4 ẋ
2

. (1.21)

For the spinor case, the magnetic moment will be given by the term linear in a constant
external field A(x), and in order to define gauge sets, one will have to distinguish the
in- and out-electron lines.

The object of great interest to us is the quenched internal virtual photons term
(1.20):∫ x(T )=x

x(0)=x′
Dx(τ) e−Si =

∫ x(T )=x

x(0)=x′
Dx(τ) e−

e2

2

∫ T
0
dτ1

∫ T
0
dτ2 ẋ

µ
1 Dµν(x1−x2) ẋν2 . (1.22)

(Fried and Gabellini [77] refer to this as the “linkage operator”). Expanded perturba-
tively in α/π, this yields the usual Feynman-parametric vertex diagrams. However, it is
Gaussian in ẋµ, and if by integration by parts, ẋµ are eliminated in favor of xµ, internal
photons can be integrated over directly, prior to an expansion in (α/π)n, and one gets
integrals in terms of N -photon propagators, symmetrized sums over N photons, and
not the usual Feynman graphs. Each usual Feynman graph corresponds to one particu-
lar permutation of internal photon insertions, and from that comes the factorial growth
in the number of graphs.

These integrations by parts lead to the first and second proper-time derivatives of
the Green’s function, worked out in the literature (for example, in refs. [153, 169]), the
details would take too much space to recap here. I find Bastianelli, Huet, Schubert,
Thakur and Weber 2014 paper [17] quite inspirational. My notes on these papers are
below, around page 45. Apologies, my notes are just a jumble, jottings taken as I try to
understand this literature. They might be useful anyway, as pointers to the literature.
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FIGURE 2. Diagrams contributing to the three loop QED photon propagator. 

2. There is a simple "cycle replacement rule" which allows one to construct the 
integrand of the spinor loop N photon amplitude from the scalar loop one [18, 
19]. This implies that, in this formalism, the calculations of the same quantity in 
scalar and spinor QED are not independent; any spinor QED calculation yields the 
corresponding scalar QED result as a byproduct. 

3. The integral (10) and its higher N generalizations represent the whole amplitude, 
with no need to sum over permutations. This property is not very relevant at the 
one-loop level, but becomes interesting at higher loop orders. In the QED case, it 
generally allows one to combine into one integral all contributions from Feynman 
diagrams which can be identified by letting photon legs slide along scalar/electron 
loops or lines. As an example, we show in fig. 2 the "quenched" contributions to 
the three-loop photon propagator. 
This property is particularly interesting in view of the fact that it is precisely this 
type of sums of diagrams which in QED generally leads to extensive cancellations 
between diagrams, and to final results which are substantially simpler than inter-
mediate ones (see [29] and refs. therein). And for the two-loop QED /3 function 
indeed a way was found for calculating the corresponding integral in a way which 
avoided splitting up the multiple parameter integral into sectors with a fixed order-
ing of the photon legs, and which led to dramatic simplifications [10]. However, 
so far no generalization of the method used there to higher loop orders has been 
found. 

4. The string-inspired method provides a particularly convenient way of implement-
ing constant external fields in QED calculations. Photon amplitudes or effective 
lagrangians in a constant field are obtained from the corresponding vacuum quanti-
ties simply by substituting the vacuum Green functions GB,F ( ̂ I , T2) by appropriate 
field-dependent Green functions ^B,F(^I , t2',F), and by a change of the free world-
line path integral determinants [23, 24] (see also [30]). In particular, the "cycle 
replacement rule" carries over to the constant field case. 

The efficiency of the technique for QED in a constant field has, at the one-loop level, 
been demonstrated by recalculations of the photon splitting amplitude in a magnetic 
field [31], and of the one-loop vacuum polarization in a general constant field [32]. At 
the two-loop level it has been extensively applied to the QED effective Lagrangian in a 
constant field. This includes recalculations of the standard two-loop Euler-Heisenberg 
Lagrangians [24, 33, 34], closed-form expressions for the weak field expansion coef-
ficients of the magnetic two-loop Euler-Heisenberg Lagrangian [35], and a generaliza-
tion of these Lagrangians to the case of a self-dual Euclidean field [36]. I will show 
here only the last result, which is particularly nice: a Euclidean self-dual field fulfills 
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Figure 1.7: Quenched diagrams contributing to the three loop QED photon propagator.
From ref. [17].

Thus, for the quenched scalar QED, the worldline integrals are expressed in terms
of N -photon propagators, the central ingredient that defines the quenched gauge sets
(1.10). Unlike the Feynman parameter integrals for individual vertex graphs, they are
independent of the ordering of the momenta k1, . . . , kN ; the formula (1.22) contains
all ≈ N ! ways of attaching the N photons to the charged particle propagator. The
formulation combines combinatorially many Feynman diagrams into a single integral.
An example are the quenched contributions to the three-loop photon propagator shown
in figure 1.7.

In QED the N -photon propagator formulation combines into one integral all Feyn-
man graphs related by permutations of photon legs along fermion lines, that is, it should
yield one integral for a gauge set km′m defined in (1.10).

1.3.1 High-orders QED in worldline formalism

A non-perturbative formula for QED in a constant field, given for scalar QED in 1982
by Affleck, Alvarez, and Manton [1] is an example how the worldline formalism can
yield high-order information on QED amplitudes. Huet, McKeon, and Schubert [88]
continue this in their 2010 study of the l-electron loop, N -photon amplitudes in the
limit of large photon numbers and low photon energies, this time for 1+1 dimensional
scalar QED, in order to illustrate the large cancellations inside gauge invariant classes
of graphs.

Affleck et al. [1] use the Feynman [67] ‘worldline path integral’ representation of
the quenched effective action for scalar QED in the constant electric field, and calculate
the amplitude in a stationary path approximation. The stationary trajectory so obtained
is a circle with a field dependent radius, called “instanton” in this context. The world-
line action on this trajectory yields the correct exponent, and the second variation deter-
minant yields the correct prefactor. Using Borel analysis, they obtain non-perturbative
information on the on-shell renormalized N -photon amplitudes at large N and low
energies.

Parenthetically, independently and not by worldline formalism, but by dint of dif-
ficult calculations and much deep physics intuition, Lebedev and Ritus [123] have ar-
rived at a nonperturbative mass shift interpretation for the spinor QED pair creation in
constant electric field in 1984.

For the quenched spinor QED (fermion lines decorated by photon exchanges) closed-
form expressions for general N require the worldline super- formalism [152], at the
cost of introducing Fradkin 1966 [72] Grassmann path integral, or, alternatively, the
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second order formalism of Strassler [169].
G. Torgrimsson, Schneider, Oertel and Schützhold [175] 2017, arXiv:1703.09203,

sect. 3: use the N -photon formalism to determine a saddle and the asymptotic form of
two types of dynamically assisted Sauter-Schwinger effect.

The 2006 Dunne and Schubert [60] study of scalar and spinor QED N -photon am-
plitudes, in the quenched approximation (i.e., taking only the diagrams with one elec-
tron loop) led to “the following generalization of Cvitanović’s conjecture: the pertur-
bation series converges for all on-shell renormalized QED amplitudes at leading order
in Nf . It must be emphasized that the on-shell renormalization is essential in all of the
above.” Unlike Cvitanović [41] purely numerical conjecture, theirs is a sophisticated
argument, buttressed by Borel dispersion relations.

1.3.2 Electron magnetic moment in worldline formalism
Here we specialize the electron magnetic moment discussion of sect. 1.1 to the quenched
subsector. Z1, Z2, and Z3, are the respectively the vertex, the electron wave function,
and the photon wave function renormalization constants. For quenched QED there are
no fermion loops, there are no vacuum polarization contribution to the charge renor-
malization (1.8), Z = Z3 = 1, so the bare coupling equals the physical coupling,
α0 = α. Furthermore, Z1 = Z2 by the Ward identity [180].

The anomalous magnetic moment of an electron a = (g − 2)/2 is given by the
static limit of the magnetic form factor a = F̃2(0) = M/(1 + L) from (1.5), with
perturbative expansion

a =
M(α)

1 + L(α)
=

∞∑
n=1

a(2n)
(α
π

)n
, (1.23)

where Z1 = 1 + L = F1(0), M = F2(0) are computed from the unrenormalized on-
shell values of proper vertex (1.3), given by the sum of all one-particle irreducible (1pI)
electron-electron-photon vertex diagrams with internal photon corrections (no electron
loops). Expanding M and L we have

a
(2)
0 = M (2)

a
(4)
0 = M (4) − L(2)M (2) (1.24)

a
(6)
0 = M (6) − L(2)M (4) − (L(4) − (L(2))2)M (2)

Each order in (1.23) is IR and UV finite, with the UV subdivergences are cancelled by
L(2m) counterterms in (1.24).

A gauge set km′m in expansion (1.10) consists of all 1-particle irreducible vertex
diagrams without electron loops, with k photons crossing the external vertex (cross-
photons) and m[m′] photons originating and terminating on the incoming [outgoing]
electron leg (leg-photons). One can assume three different coupling, setting them all
equal to α at the end of the calculation,

a =

∞∑
m′=0

(
α′

π

)m′ ∞∑
k=1

(αv
π

)k ∞∑
m=0

(α
π

)m
akm′m . (1.25)
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The gauge set contributions are then

a(2) = a100

a(4) = a200 + a110 + a101 (1.26)
a(6) = a300 + a210 + a201 + a120 + a102 + a111

a(8) = a400 + a310 + a301 + a220 + a202 + a211 + a130 + a103 + a121 + a112

a(10) = a500 + a410 + a401 + a320 + a302 + a311 + a230 + a203 + a221 + a212

+a140 + a104 + a131 + a113 + a122

Both L(2m) and M (2m) can be evaluated in terms of N -photon propagators.

1. To proceed, one needs something like a Bern-Kosower [19] type master formula
for the electron line dressed with any number of photons, with a single constant
external (arbitrarily weak) magnetic field insertion. For the magnetic moment
calculation, the external vertex is distinguished by its σµν = 1

2 [γµ, γν ] form
(1.3), while all internal, virtual photon vertices are of the usual γµ form.

2. Please write down the worldline formula for the anomalous magnetic moment of
the electron a = F̃2(0), corresponding to Dirac trace expression (1.5) for M .

3. As the external vertex transfers a (vanishing) momentum, the incoming and out-
going electron on-mass shell legs are distinct, and thus there are three kinds of
N -photon propagators; k photons crossing the external vertex (cross-photons)
andm[m′] photons originating and terminating on the incoming [outgoing] elec-
tron leg (leg-photons). One needs to prove in the worldline formalism that
each km′m integral (corresponding to a set of quenched set of 1-particle ir-
reducible Feynman vertex diagrams without electron loops) is separately (i) a
gauge-invariant set, and (ii) the minimal gauge invariant set.

4. Hopefully the distinction motivates the gauge set sign rule (1.11). Keep in mind,
however, that this empirical rule is already violated by the gauge set (2, 2, 0).

5. Please write down the worldline integral for one-loop anomaly a(2)
0 in (1.7). The

first thing to verify is that the worldline (1, 0, 0) integral reproduces Schwinger’s
1
2

(
α
π

)
result [156], exactly. That is an exercise in converting the integral into

Feynman-parametric form, already done several times for other amplitudes.

6. Please write down the worldline integral for 2-loop anomaly a(4)
0 = M (4) −

L(2)M (2) in (1.7). Can L(2)M (2) be absorbed into the integrand? If cancelations
can be made pointwise, that would obviate a need for constructing UV (and IR?)
counterterms.

7. For 2-loop anomaly there are only 2 quenched gauge sets km′m: (2, 0, 0) and
(1, 1, 0), which equals (1, 0, 1) by time reversal, see figure 1.2 and figure 1.5.
So, reformulate the 2-loop calculation as two worldline integrals, one for each
gauge set. Most likely, want to do the gauge set (2, 0, 0) first, as it seems to have
simpler subdiagram structure (though not sure about that). Do not attempt (for
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now) to evaluate these analytically (though Broadhurst, Laporta, Kreimer, etc.,
would be interested to see whether some simplification occurs), main thing is to
understand that the UV renormalization works, and that there are no intermediate
IR divergences in this reformulation.

1.4 Volkov method
In ref. [178] Volkov explains that A(2n)

1 is free from infrared divergences since they
are removed by the on-shell renormalization. However, Volkov also states that there
is no universal method in QED for canceling IR divergences in the Feynman graphs
analogous to the R operation, and that the standard subtractive on-shell renormalization
cannot remove IR divergences point-by-point in Feynman-parametric space, as it does
for UV divergences. Moreover, it can generate additional IR-divergences.

That QED on-mass shell amplitudes are IR-free must be an old result; even I have
several papers generalizing that to QCD [39, 40, 42, 51]. Tom Kinoshita and I solved
the problem of point-by-point removal of IR divergences in Feynman-parametric space
in my thesis [49], with a super-elegant formula (who needs forests?) for the UV and
IR finite part of amplitude MG,

∆MG =
∏
ij

(1− IG/Si)(1−KG/Sj )MG , (1.27)

where the products are over all self-energy and vertex subdiagrams Si and Sj . I have a
bright memory of figuring out how to do it one quiet evening in Ithaca, babysitting for
a friend’s toddler. But, as Volkov [178] and Aoyama et al. [10] explain, our approach
was apparently not general enough to deal with the 4- and 5-loop contributions.

Volkov’s algorithm is developed in New method of computing the contributions of
graphs without lepton loops to the electron anomalous magnetic moment in QED [179].
It is based on the ideas used for proving UV-finiteness of renormalized Feynman am-
plitudes [5, 168]. He focuses on n-loop graphs with no lepton loops, or, in the notation
of these notes, a(2n)[V ]. Volkov calculation groups Feynman graphs by self-energy
graphs families because they have similar integrand structure. In contrast to refs. [9,
31, 32, 50] he does not evaluate these self-energy graphs directly; all his calculations
are performed with vertex graphs, i.e., precisely what is needed to evaluate gauge sets
of sect. 1.2. However, as illustrated in figure 1.4, each gauge-set vertex diagram be-
longs to a different self-energy diagram, so Volkov calculation will require a major
reorganization of how integrands are generated, requiring months of recoding.

So far Volkov has evaluated the ladder graph and the fully crossed graph up to 5
loops. The cross graphs are of interest because they do not contain divergent subgraphs,
so their contributions only depend on the gauge, but not on the choice of subtraction
procedure.

While the contributions of individual vertex graphs (and self-energy sets [9]) are all
over the place, all gauge-invariant sets are insanely small up to order 8, and it would be
very sweet to see that this continues through order 10 (at least for the 5-loop graphs with
no electron loops). My hunch is that starting with the gauge set (5, 0, 0) of figure 1.5 (5!
vertex graphs, some of them symmetric pairs) would be the most rewarding. Stefano
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Laporta thinks it too hard, and suggests starting with the 5-loop relative (1, 3, 1) (or
(1, 2, 2)) of the 4-loop set (1, 2, 1), which would entail less than 5! vertex graphs (I
have not counted how many). As no high accuracy is needed, a numerical check of
the QED finiteness conjecture would good enough if the gauge sets evaluated to two
significant digits or so, but even that will need a lot of computer time.

1.5 Hopf algebraic approach
Hopf algebraic approach of Kreimer and collaborators [29, 107, 114, 115] is very ap-
pealing - it is just that I personally have no clue how to turn it into a direct (g − 2)
gauge set calculation. In the 2008 paper [115] Dirk Kreimer and Karen Yeats write:

“One case where there is a natural interpretation is QED with a linear
number of generators, namely

X1 = 1 +
∑
k≥1

p(k)xk
X2k+1

1

(1−X2)2k(1−X3)2k
, (1.28)

with X2 and X3 as before and with p(k) linear, which corresponds to
counting with Cvitanović’s gauge invariant sectors [41].”

Even in this simple case I do not see how this counts the gauge sets. My generating
function for G2n, the number of gauge sets (eq. (7) in ref. [41]) is

∞∑
n=1

G2n =
X

(1 +X)(1−X)3
. (1.29)

Broadhurst, Delbourgo and Kreimer [29] 1996 Unknotting the polarized vacuum
of quenched QED unearthes much knot-theory magic, leading to cancelations of “tran-
scedentals.” While their particular conjecture did not work out in higher orders, the
conceptual scheme might be another route to proving the QED is finite - if there is
some finite knot-theory basis for expressing the value of every gauge set, and the gauge
invariance induced cancelations are so strong to lead to the large cancelations of tran-
scendentals (hyperlogarithms), then perhaps that gives bounds on the size of each gauge
set which are slower than combinatorial. The number of different kinds of knots with
n crossings is known to grow only exponentially, not faster.

Henry Kißler (on page 52) has a fresh idea for how to approach the finiteness con-
jecture, using the Hepp bound, see Panzer 2018-06-07 below.

Note that the Kißler and Kreimer [107] definition of a “gauge set” differs from
(1.10) used here. They organize a gauge-dependent calculation into “gauge sets” of
different parameter dependence.

My notes on these papers are below, starting on page 49.

1.6 Method of smooth conjugacies
If Feynman knew Poincaré: How to replace many diagrams by one
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In quantum field theory the standard Feynman diagram methods become
quickly unwieldy at higher orders. However, it is frequently observed that
the sums of Feynman diagrams, each individually complicated, simplify
miraculously to rather compact expressions.

Here comes a possible reason why that can be traced back to Poincaré,
and is perhaps not something that a field theorist would instinctively hark
to as a method of computing perturbative corrections: make the dynamics
linear (“free”) by flattening out the vicinity of a path integral extremum by
a smooth nonlinear coordinate transformation. The resulting perturbative
expansion is more compact than the standard Feynman diagram perturba-
tion theory.

The smooth conjugacy method sketched here would require some serious work to make
it a workable quantum field theory scheme. The reader might prefer to skip straight to
the worldline formalism sect. 1.3.

The periodic orbit theory is a classical, deterministic theory [45] that describes non-
linear systems in “chaotic” (for low-dimensional systems) or “turbulent” (for PDEs)
regimes. The theory allows us to calculate long time averages in a chaotic system as
expansions in terms of the periodic orbits (cycles) of the system. The simplest exam-
ple (the deterministic analogue of the quantum evolution operator) is provided by the
Perron-Frobenius operator

Lρ(x′) =

∫
dx δ(f(x)− x′)ρ(x) (1.30)

for a deterministic map f(x) which maps a density distribution ρ(x) forward one inte-
ger step in time. The periodic orbit theory relates the spectrum of this operator and its
weighted evolution operator generalizations to the periodic orbits via trace formulas,
dynamical zeta functions and spectral determinants [45, 79].

For quantum mechanics the periodic orbit theory is exact on the semiclassical
level [85], whereas the quintessentially quantum effects such as creeping, tunneling
and diffraction have to be included as corrections. In particular, the higher order ~
corrections can be computed perturbatively by means of Feynman diagrammatic ex-
pansions [79]. We illustrate how this works by the parallel, but simpler example of
stochastic dynamics. Cvitanović [44] Chaotic Field Theory: A sketch is a program-
matic statement how this theory might connect to quantum field theory, and, by a way
of motivation, an easy introduction into different approaches to incorporating stochas-
tic corrections into classical dynamics.

What motivated the work [46, 47, 52] summarized in ref. [44] is the fact that
the form of perturbative corrections for the stochastic problem is the same as for the
quantum problem, and still the actual calculations are sufficiently simple that one can
explore more orders in perturbation theory than would be possible for a full-fledged
quantum theory. For the simple system studied, the result is a stochastic analog of the
Gutzwiller trace formula with the “~ corrections” computed to five orders beyond what
has been attainable in the quantum-mechanical applications. Already a discrete time,
1-dimensional discrete Langevin equation [98, 119],

xn+1 = f(xn) + σξn , (1.31)
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with ξn independent normalized random variables, suffices to reveal the structure of
perturbative corrections. We treat a chaotic system with weak external noise by replac-
ing the deterministic evolution δ-function kernel of Perron-Frobenius operator (1.30)
by LFP , the Fokker-Planck kernel corresponding to (1.31), a peaked noise distribution
function

LFP (x′, x) = δσ(f(x)− x′) . (1.32)

In the weak noise limit the kernel is sharply peaked, so it makes sense to expand it in
terms of the Dirac delta function and its derivatives:

δσ(y) =

∞∑
m=0

amσ
m

m!
δ(m)(y) = δ(y) + a2

σ2

2
δ(2)(y) + a3

σ3

6
δ(3)(y) + . . . . (1.33)

where

δ(k)(y) =
∂k

∂yk
δ(y) ,

and the coefficients am depend on the choice of the kernel. We have omitted the δ(1)(y)
term in the above because in our applications we shall impose the saddle-point condi-
tion, that is, we shift x by a constant to ensure that the noise peak corresponds to y = 0,
so δ

′

σ(0) = 0. For example, if δσ(y) is a Gaussian kernel, it can be expanded as

δσ(y) =
1√

2πσ2
e−y

2/2σ2

=

∞∑
n=0

σ2n

n!2n
δ(2n)(y)

= δ(y) +
σ2

2
δ(2)(y) +

σ4

8
δ(4)(y) + · · · . (1.34)

Analogies between noise and quantum mechanics can be explored by casting stochas-
tic dynamics into path integral form (a stochastic Wiener integral). The periodic orbit
theory is a nonperturbative, “WKB” method for approximating such integrals, which
can then be improved by systematic perturbative corrections. In the weak noise case
the standard perturbation theory is an expansion in terms of Feynman diagrams. For
semiclassical quantum mechanics of a classically chaotic system such calculation was
first carried out by Gaspard [79]. The stochastic version, implemented by Dettmann et
al. [46], reveals features not so readily apparent in the quantum calculation. Perhaps
some of these could be of interest to Kreimer and collaborators, sect. 1.5.

The Feynman diagram method becomes quickly unwieldy at higher orders.3 How-
ever, in the Feynman diagram approach pursued in ref. [46], the authors observe that
the sums of Feynman diagrams simplify miraculously to rather compact expressions.

Now the surprise; one can compute the same corrections faster and to a higher or-
der in perturbation theory by integrating over the neighborhood of a given saddlepoint
exactly by means of a nonlinear change of field variables. This elegant idea of flatten-
ing the neighborhood of a saddlepoint, introduced by Mainieri et al. [47], and referred
to here as the smooth conjugation method, is perhaps an altogether new idea in field

3 The matrix method, introduced by Vattay et al. [52], based on Rugh’s [144] explicit matrix representa-
tion of the evolution operator will not be discussed here. If one is interested in evaluating numerically many
orders of perturbation theory and many eigenvalues, this method is unsurpassed.
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theory. The idea, that can be traced back to Poincaré [134], injects into field theory
a method standard in the construction of normal forms for bifurcations [99]: perform
a smooth nonlinear coordinate transformation x = h(y), f(x) = h(g(h−1(x))) that
flattens out the vicinity of a fixed point and makes the map linear in an open neighbor-
hood, f(x)→ g(y) = J · y.

an arbitrary coordinatization
=⇒

intrinsic, flat coordinates

The resulting perturbative expansion turns out to be more compact than the standard
Feynman diagram perturbation theory; whether it is better than the traditional loop
expansions for computing field-theoretic saddlepoint correction remains to be seen.

What is new is that the problem is being solved locally, periodic orbit by periodic
orbit, by translation to coordinates intrinsic to the periodic orbit.

This local rectification of a map can be implemented only for isolated non-degenerate
fixed points (otherwise higher terms are required by the normal form expansion around
the point), and only in finite neighborhoods, as the conjugating functions in general
have finite radia of convergence.

In this approach the neighborhood of each saddlepoint is rectified by an appropriate
nonlinear field transformation, with the focus shifted from the dynamics in the original
field variables to the properties of the conjugacy transformation. The expressions thus
obtained correspond to sums of Feynman diagrams, but are more compact.

We will try to explain this simplification in geometric terms that might be applicable
to more general field theoretic problems. The idea is this: as the dynamics is nonlinear,
why not search for a nonlinear field transformation φ = h(φ̃) (a smooth conjugacy) that
makes the intrinsic coordinates as simple as possible? Schematically –wrong in detail,
but right in spirit– find a smooth conjugacy such that the action S[φ] = S0[φ] + SI [φ]
in the partition function path integral becomes the free, quadratic action,

Z = eW =

∫
[dφ]eS[φ] =

∫
[dφ̃]

1

|det ∂h(φ̃)| 12
e

1
2 φ̃

> 1
∆ φ̃ , (1.35)

at the price of having the determinant of the conjugacy Jacobian show up as a weight.

Ref. [46] treats the problem of computing the spectrum of this operator by stan-
dard field-theoretic Feynman diagram expansions. Here we formulate the perturbative
expansion in terms of smooth conjugacies and recursively evaluated derivatives. The
procedure, which is relatively easy to automatize, enables us to go one order further in
the perturbation theory, with much less computational effort than Feynman diagram-
matic expansions would require.

[TO BE CONTINUED]
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1.7 Summary
Everyone makes mistakes—including Feynman

— Toichiro Kinoshita [102]

Currently Sergey A. Volkov is in the best position to check the QED finiteness conjec-
ture numerically, by computing the 5-loops gauge sets.

Worldline formalism could be useful on a qualitative level, as a way of proving the
finiteness of QED conjecture,

1. Develop a saddle point expansion for the N -photon propagator integrals, such
that the leading term explains the apparent ≈ ±1/2 (or a multiple thereof) size
of each quenched gauge set. Affleck et al. [1] and G. Torgrimsson et al. [175]
show the way.

2. Use that to establish bounds on gauge sets for large orders, prove finiteness of
quenched QED. If that works, I trust electron loop insertions will be next, and
thereafter renormalons [121], etc., will go gently into that good night.

and in a precise way, as a new computational tool:

1. Develop a worldline formulation of spinor QED in which each gauge set is given
by a computable integral, in a way to be fleshed out in sect. 1.3.2.

2. Parenthetically, a reformulation of the self-energy diagrams magnetic moment
calculation, sect. 1.2.3, would be an even greater computational time saver - all
quenched diagrams contributions calculated at one go.

3. In either case, a worldline formulation might make it possible to evaluate orders
beyond 5-loops, as the number of gauge sets grows only polynomially. A win-
win.

4. A gauge set is by definition UV and IR finite. The worldline formalism quenched
QED needs wave function counterterms, as in (1.6).

5. Things get interesting with reformulating the quenched 3-loop calculation as four
worldline integrals / gauge sets, see figure 1.4 and figure 1.5. In particular, the
fermion line attachments of different kinds of N -photon propagators now get
intertwined.

6. One electron-loop insertion into (1, 0, 0) might be the easiest worldline integral
to evaluate, but I find the quenched sets a higher priority.

7. One photon-photon scattering electron-loop insertion into (2, 0, 0) might be the
most tempting to evaluate, but I find the quenched sets a higher priority.

My main problem at the moment (well, there are many:) is that nobody seems to have
written an explicit formula for the spinor QED anomalous magnetic moment in the
worldline formalism.
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1.8 Is QED finite? Correspondence
I am not sure I’ll will tell you anything useful any time soon,
as I’m a lapsed field theorist, but here is for your amusement
my recent rant. To cite my wife: “You may well be right".

— Keep the Aspidistra Flying!

2007-03-18 Dirk Kreimer I was pretty much looking forward to grab you for a chat
on Dyson Schwinger etc whilst in Bonn this starting week. Now I fail to be there
myself due to a stupid mechanical problem with a vertebrae. Pondering about
other options, let me just point out that the IHES (www.ihes.fr) has an excellent
visitor program. If you foresee some time you fancy to pay us a visit, please go
ahead.

I am running a little seminar at Boston whilst being there, so besides what works
out with IHES, whenever you are available in the above period, you are herewith
invited for a talk at BU. Would you be able to come for a seminar to Boston,
Thu, Nov 29 this year?

2011-08-23 Predrag to Dirk:

I feel like some stuck-up god knows who for not having answered sooner - but
it is not that. I have been focusing on turbulence (with the goal of using what
I learn on Yang-Mills, eventually - if it works, Feynman diagrammar will be of
secondary importance, the first step is fully and totally non-perturbative) so I feel
like fraud talking about QFT when I am suspended between the perturbative past
and the elusive non-perturbative future.

If someone wants to hear about turbulence as in ChaosBook.org/tutorials, I can
do that honestly - otherwise we wait until I actually do any QFT worth hearing
about...

I got birdtracks.eu published, finally - you get 100 birdtracks per 1$, a real deal
if you are into that kind of thing.

Guilty as Charged - Predrag

2011-08-26 Dirk June 01-05 2009 I am organizing a workshop at IHES. It has a non-
perturbative component via Dyson–Schwinger eqs. Would you be interested to
participate and come?

2017-06-16 Dirk I will show your notes to Henry Kißler [106] <kissler@physik.hu-
berlin.de> and Michael Borinsky [25, 26] <borinsky@physik.hu-berlin.de> .

There should be a few people at Les Houches June 2018 who have something to
say about asymptotics of solutions of Dyson-Schwinger equation for example.

2013-10-23 Warren D. Smith warren.wds@gmail.com
(Predrag: I do not know Dr. Smith, but for his life until 2009, see his resume
here.)
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I found out interesting info which the textbooks do not know!

Cvitanović 1977 conjectured that gauge-invariant quenched diagram sets always
have small sum of diagram values, indeed small enough that he thought quenched
QED series would always converge [41] 4. He apparently originally thought
this even for unquenched but Lautrup [121] disproved it and Dyson had long
had a highly convincing argument [61] (Reprinted p.255-6 in Selected papers
of Freeman Dyson with commentary, AMS 1996) – and I now have even more
convincing arguments – that generic QED series diverge for any nonzero α.) This
was due to Cvitanović’s empirical observation of amazingly huge cancellations
within gauge-invariant diagram sets, especially in quenched QED.

However, what Cvitanović did not know, was that Bogomolny and Kubyshin
1981-1982 found estimates of the growth rate of generic QED series, and also for
the quenched QED subseries, and indeed for QED for diagrams with k electron
loops only (k fixed) [22]. I only found this out the other day, but I had long known
about estimates due to Dyson and others predicting divergence for QED series.
It is just that this B+K work by permitting arbitrary fixed k, directly addresses
Cvitanović’s quenched-convergence conjecture and massively conflicts with it –
for quenched QED the prediction is that at Nth order we get a quenched diagram
sum growing factorially with N:

Evgeny B Bogomolny and Yu A Kubyshin:
1. The choice of the form of the steepest-descent solutions [22]. Asymptotic
estimates for diagrams with a fixed number of fermion loops in quantum electro-
dynamics.
2. The extremal configurations with the symmetry group O(2)×O(3), Soviet J.
Nuclear Phys. 35 ,1 (1982) 114-119. 5

I believe in the sort of arguments Bo+Ku are making, albeit the details are ques-
tionable. (E.g. saddlepoint asymptotic estimates are not rigorous unless you
prove stuff about the saddlepoints and about tail estimates, which they never
proved, and probably nobody can prove.)

Note that this believed N! growth for fixed-k (including quenched) QED dia-
grams (Lautrup’s diagrams also feature N! growth) is far faster than the believed
growth – more like (N/2)! – for the full QED series!! This fact that subseries
diverge far more rapidly than full series can only be explained by presuming that
the values at different k cancel each other amazingly well when we sum over
all k. This indicates Cvitanović was extremely wrong asymptotically, and that
cancellations quite different than his observations ultimately occur which seem
even more dramatic.

However, Cvitanović was correct that amazingly large cancellations (also) occur,
empirically, within the quenched diagrams alone, at least for the small N that
have been reached by computer. And I presume that Kreiman’s knot ideas [114]
and my “fractal distribution” empirical observations are a partial explanation of
why.

4Predrag: ‘quenched’ = no internal electron loops, i.e., me → ∞ approximation
5Predrag: there is a hard copy at GT library, 4th Floor East Call Number: QC173.I252X (or microfilm?)
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So a consistent picture is now developing about how QED perturbative series
(and various interesting sub-series, such as quenched) allegedly behave asymp-
totically (Although I never saw anything saying all that I just said in one place...)

2013-10-23 Warren to Predrag do you have a graph-theoretic characterization of ‘gauge
invariant diagram set’ or know how many such (minimal) sets there are at order
N? E.g. does their count grow exponentially, super-exponentially, polynomially
or what? You gave a formula for the count of quenched gauge sets which grows
only polynomially but I suspect exponential or faster growth for unquenched
QED. Even an incomplete graph-theory understanding might be adequate to get
good growth bounds.

2013-10-23 Warren Although I do not understand “gauge invariant sets of Feynman
diagrams” I have figured out enough now to prove that their count grows ulti-
mately superexponentially in unquenched QED. Specifically I now claim to have
a proof that the number of gauge invariant sets of Feynman diagrams in QED at
αn order is

≈ 0.01 (96)−n/4
n!

(n/2)!(n/4)!

for any integers n > 0. And this clearly grows superexponentially. (My bound
is very unlikely to be optimal.)

2013-10-23 Predrag to Warren : I’m interested in this discussion, but can you do me
a favor and actually read my paper, and edit your initial email accordingly, before
we wrangle with further details?

Many of your statements are addressed in my paper, and I can answer them more
efficiently if you go through them first. I love Dyson dearly, but his statement
is an elementary statement about asymptotic series for factorials. Mine is about
mass-shell gauge invariant quantities (perhaps planar?), a topic that is gaining
some traction now, unfortunately not applicable to QED.

If you can get gauge sets added up, that would be useful, but Aoyama et al. [7,
9, 11] do not have them: they use the second method of computing magnetic
moment, eq (6.22) (see sect. 1.2.3 above). That mixes up the gauge sets.

2013-11-23 Warren Smith draft of my notes .

2013-10-24 Warren Predrag: Bogomolny and Kubyshin [22] should find
combinatorial growth in all sectors - a perturbation expansion around
a saddle point is always asymptotic. For example, a path integral over
a non-linear oscillator with quartic potential can be well defined as
integral, but saddle point expansion is asymptotic - a simple exam-
ple is worked out in Sect 3.3 Saddle-point expansions are asymptotic
(click here).
I agree with Dyson (and Bogomolny & Y. Kubyshin, which is more
modern version of the argument).

Essentially, what they did is this. “Instanton" solutions of quantum field theory
stationarize the action and hence are “saddlepoints." The full path integral over
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all quantum field histories, is hopefully dominated by this saddlepoint and nearby
configurations. It seems there are more than one kind of instanton, and you need
to know which one is the “dominant" saddlepoint, and they may have the wrong
one, but if so it hopefully does not matter much (changes some constants, but
not the qualitative behavior, of their results, one hopes). So anyhow, under this
assumption they actually are able to work out the asymptotics of the Nth term
in QFT perturbative series, in the limit where N is large. They find N !P style
growth for positive powers P. Furthermore, for the “quenched" QED sub-series,
one might naively think that approach would say nothing about it, but they have
further generating functionology tricks which enables them to get conjectured
asymptotics for that, and lots of other sub-series, too.

The result isN !P style growth in all cases. Indicating divergency and with radius
of convergence zero.

Suslov [170] and other Russians claim the original idea for this was due to Lev
Lipatov, but it has been explored by a fairly large number of papers & authors
now, I think mostly French & Russian. My tome has 2 chapters 5 & 6 on Dyso-
nian & other divergence arguments which give pointers into the literature. The
Suslov paper you cite also has many such pointers.

Predrag: What I claim/hope is that gauge invariance + mass-shell
condition (neither accounted for in the above asymptotic estimates)
induce cancellations that make the theory convergent.

–I think this literature already had invented some way of handling gauge invari-
ance within their saddle pointage. They had thought of it and figured out a way
to deal with it. (Mind you, all of this stuff is horribly nonrigorous.) And if by
“mass shell" you mean what I am calling “quenched QED" (kind of a battle over
which name is worse...) then as I said, Bogol already had a trick for obtaining
that from the unquenched analysis.

Predrag: Mass shell means that all external legs of Feynman diagrams
are the physical, asymptotic states satisfying E = mc2. Intermediate
virtual states do not do that. Gauge invariance cancellations kick in
for the mass shell states, not for the off-mass shell amplitudes. Saddle
point estimates do not use mass-shell conditions, to the best of my
knowledge.
Suslov [170] High orders of perturbation theory. Are renormalons
significant?, arXiv:hep-ph/0002051, seems to be about an unphysi-
cal but comparatively well behaved φ4 quantum field theory. It seems
to argue that renormalons of t’Hooft and Lautrup do not matter. I
have not studied Suslov’s papers (or the ones that cite them inspire-
hep.net/record/510344/citations).

The Lautrup renormalon does not contradict the instanton-based results. And
renormalons also lead to yet more kinds of series divergency. By the way my
tome also discusses Lautrup renormalon. Suslov in his footnote 4 and nearby
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points out that the whole saddlepoint approach of Lipatov is nonrigorous (like I
didn’t know) and in fact may be bogus. Physicists often use saddlepoint analysis
but rarely do what it takes to do it rigorously, for example they rarely prove
“tail estimates." (And of course when everything is in an infinite dimensional
space like it is here, that adds a whole new level of difficulty in trying to get any
rigor.) They generally instead just hope for the best. Suslov suggests that the
renormalon may be a clue that in this case, the tail may be big enough that the
whole Lipatov technique is wrong.

I also think everything Suslov does re Borel transforms, is wrong for QED since
QED is not going to be Borel summable. However for φ4 theory Borel might be
OK... yes, it is, see table 11 in my tome.

Predrag: You have to learn all this stuff (including planar field theory)
to get people to read you.

I don’t know whether anybody will read me, and I’ve had plenty of trouble learn-
ing what i did learn, and I’m not willing to do too much work to overcome that. I
am certainly quite ignorant in many respects. I draw some comfort from the fact
that many leaders in this area, including many Nobel prize winners, have made
plenty of errors, some of which I detected for the first time, and some of which
were real howlers. The moral of that for me is, nobody really knows what they
are doing about this stuff. You’ve got to know the right stuff, not all stuff. I hope
if my ideas are valid they will eventually gain some attention. If they are wrong
I hope this will become clear as soon as possible...

2017-04-30 Predrag to Stefano Laporta <stefano.laporta@bo.infn.it>:

Thanks for the listings of gauge sets, and of course, for your whole amazing
project. While in detail my 1977 guesses are wrong, the overall finiteness con-
jecture still looks good - it’s crazy how small all these individual contributions
are.

The reason I got into a collaboration with Kinoshita (nominally, Tung-Mow Yan
was my adviser) is that he gave me the 3-loop ladder diagram (at 4-loops, it
would belong to your gauge set (6) = (4, 0, 0)) to evaluate, and I derived a com-
pact formula for the parametric integrand of n-loops ladder diagram. So maybe
gauge sets of type (6) = (4, 0, 0) are the easiest to evaluate?

Is evaluating gauge set (5, 0, 0) with 5 loops feasible? If that turns out to be +1/2,
that would be sweet.

2017-05-05 Laporta to Predrag

To my knowledge, there are no ideas how to bound the sizes of the gauge sets.

In the set (6) = (4, 0, 0) the ladder is easy to evaluate, but the others are not. The
evaluation of the set (5, 0, 0) with five loops would be a real challenge.

Among the sets (1)-(6), the easiest to evaluate is the set (3) = (1, 2, 1).
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

(16) (17) (18) (19) (20)

(21) (22) (23) (24) (25)

Figure 1.8: Examples of the A(8)
1 4-loop vertex diagrams belonging to the 25 gauge-

invariant sets. The number indicates the gauge-invariant set to which the diagram be-
longs. Gauge sets (1) = (1, 3, 0), (2) = (2, 2, 0), (3) = (1, 2, 1), (4) = (2, 1, 1), (5) =
(3, 1, 0), (6) = (4, 0, 0), In the case of the sets 1-16, 24 and 25, remaining diagrams in
the set can be obtained by permuting separately the vertices on the left and right side of
the main electron line, and considering also the mirror images of the diagrams. From
Laporta [116].
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1 (1,3,0) - 1.971075616835818943645699655337264406980 - 1/2
2 (2,2,0) - 0.142487379799872157235945291684857370994 1/2 (!)
3 (1,2,1) - 0.621921063535072522104091223479317643540 - 1/2
4 (2,1,1) 1.086698394475818687601961404690600972373 1/2
5 (3,1,0) - 1.040542410012582012539438620994249955094 - 1/2
6 (4,0,0) 0.512462047967986870479954030909194465565 1/2
7 0.690448347591261501528101600354802517732
8 - 0.056336090170533315910959439910250595939
9 0.409217028479188586590553833614638435425

10 0.374357934811899949081953855414943578759
11 - 0.091305840068696773426479566945788826481
12 0.017853686549808578110691748056565649168
13 - 0.034179376078562729210191880996726218580
14 0.006504148381814640990365761897425802288
15 - 0.572471862194781916152750849945181037311
16 0.151989599685819639625280516106513042070
17 0.000876865858889990697913748939713726165
18 0.015325282902013380844497471345160318673
19 0.011130913987517388830956500920570148123
20 0.049513202559526235110472234651204851710
21 - 1.138822876459974505563154431181111707424
22 0.598842072031421820464649513201747727836
23 0.822284485811034346719894048799598422606
24 - 0.872657392077131517978401982381415610384
25 - 0.117949868787420797062780493486346339829

Table 1.2: Contribution to A(8)
1 of the 25 gauge-invariant sets of figure 1.8, as reported

by Laporta [116].

2017-06-17 Laporta on transcedentals: There are no cancellations of transcendentals
at 2 loops.

At 3 loops there is only one:
ζ(2) log(2) cancels in the sum of the gauge sets (1,2,0)+(2,1,0)+(1,1,1)

At 4 loop there are several:
ζ(2)2 log(2) cancels in the sum of the gauge sets 8,9,10 (using my numbering of
gauge sets)
ζ(2)2 cancels in the sum of the gauge sets 5,6,20 (or 10,13,19)
a weight-7 elliptic constant cancels in the sum of the gauge sets 2,3,4; (I have
not checked all possible combinations of gauge sets)

2017-06-16 Predrag to Stefano thanks for the info! Apparently there are not so many
transcedentals cancellations when one is adding gauge sets...

I was actually thinking of cancellations within an individual gauge set. For ex-
ample, in Laporta and Remiddi [118] The analytical value of the electron (g-2)
at order in QED you list analytical values for each diagram separately + lnλ
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terms. They have ζ(2) log(2)’s and ζ(2) log(2)2 and zillion other transcedentals
- do many of them cancel within a gauge set (for example, lnλ’s certainly do)?

Just trying to figure out if we can use Kreimer kind of ideas to get any bounds.

2017-05-25 Predrag to Stefano:

In the literature there seem to be 2 approaches that might be relevant to establish-
ing bounds on, and perhaps even to actual computation of gauge-invariant sets
(ignoring various N = 2 and N = 4 supersymmetric models), the worldline for-
malism pursued by Schubert and collaborators, see sect. 1.3, and Hopf algebraic
approach of Kreimer and collaborators, see sect. 1.5. The worldline formalism
operates with N -photon propagators, the ingredient that defines the quenched
gauge-invariant sets for (g − 2). The summary of this literature is in sect. 1.2.4.

2017-05-21 Predrag to Sergey A. Volkov <volkoff_sergey@mail.ru>

I have read your New method of computing the contributions of graphs without
lepton loops to the electron anomalous magnetic moment in QED [179] (and the
earlier ref. [178]) with great interest, and I can see that you are set to compute
the 5-loop correction to the electron (g− 2). This is a very hard calculation, and
approaching it strategically is a necessity.

May I suggests that you order your calculation by gauge sets of figure 1.5, as
illustrated (for the 4-loop case) in Stefano Laporta’s figure 1.6? My hunch is that
the gauge set (6) = (4, 0, 0) would be the most interesting, though Stefano thinks
it too hard, and suggests starting with a 5-loop relative (1, 3, 1) (or (1, 2, 2)?)
of the set (3) = (1, 2, 1) instead. While the contributions of individual vertex
graphs (and self-energy sets [9]) are all over the place, all gauge-invariant sets are
insanely small up to order 8, and it would be very sweet to see that this continues
through order 10 (at least for the 5-loop graphs with no electron loops).

By the way, to check my conjecture one needs the gauge sets only to two signif-
icant digits or so, no high accuracy is needed.

2017-06-18 Sergey About gauge sets: It is possible to calculate the contributions of
km′m by my method. It will require more computer resources than the calcula-
tion of the total contribution without splitting into sets, because the sets km′m
cut the families that I use for calculation into many pieces. I will try to calculate
5-loop contributions of km′m after some refinement of my code (this requires
some months). Even a not precise calculation needs a lot of computer time.

2017-06-18 Sergey About “That QED on-mass shell amplitudes are IR-free must
be an old result...": Is there a rigorous mathematical proof that they are IR-
free? I didn’t find such a proof. I saw only some approximate considerations
about this. The proof of the Bogoliubov-Parasiuk theorem is quite large and
complicated. I think that the total proof of IR and UV cancellation should be
larger. However, all considerations that I saw are much simpler. I think that an
existence of such a proof should affect computational methods. However, at the
present moment, the best calculation of the QED contributions to g-2 (Aoyama,
Kinoshita et al.) uses the subtraction procedure that needs a handwork at 5-loop
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level (see the 2008 Aoyama et al. article [10], and the link to it in the end of their
2012 article [8]). On the other hand, all mathematical proofs of IR cancellations
that I saw are connected with IR divergences of other nature (not on-shell). Is
there a mathematical proof that the QED contributions to g − 2 are finite at any
order of the perturbation series (only for each term, not for the sum)?

2017-06-18 Predrag to Sergey I thought that my thesis argument on IR divergences
subtraction in the Feynman-parametric space in [49] establishes IR finitness for
(g-2). We show that the UV and IR finite part of amplitude MG is given by

∆MG =
∏
ij

(1− IG/Si)(1−KG/Sj )MG (1.36)

where the products are over all self-energy and vertex subdiagrams Si and Sj .
We then use Ward identities [180] to show that UV and IR divergent parts of
counterterms IG/SiMG, KG/SjMG, etc. cancel on mass shell (and the finite
parts contribute to the anomaly). In the paper I check various cases, and I seem
to have missed some that do not arise in the 3-loop order. But how could anything
be simpler than (1.36)? And how could such elegant formula be wrong?

I think the UV/IR finitness is very clean and clear to see in the dimensional regu-
larization. I have now reread my 1976 Yang-Mills theory of the mass-shell [40],
and it is a rather amusing, but probably not a persuasive answer to your query.
The paper is good and original, so it is never cited. At least it got published. The
original draft was to be exactly one page of Physical Review Letters, had one ref-
erence, a homage to Schwinger [156]. Those were happier times - I wrote it in a
couple of days while visiting Helsinki Research Institute for Theoretical Physics,
mailed it, impressing my hosts infinitely - they have never seen a PR Lett written
at that speed, and bicycled off into Lapland. But referees made me quadruple
the length of the Letter, making it as boring as any other PR Lett. For the proof
of absence of on-mass shell (g−2) IR divergences I cite no less than three of my
own unpublished papers (!!!), and nobody else. What happened? I had under-
stood that (the finiteness of QED conjecture had much to do with it) that doing
more Feynman graphs would be stupid (expanding around the wrong vacuum),
and thus started my nonlinear detour. I started thinking about functional equa-
tions on May 1, 1976, and wrote down the period doubling fixed point function
equation on May 3, 1976. In my office I do have a very thick folder marked UN-
PUBLISHED, and it must contain the drafts of these IR papers. But how would
I know that anyone would care 40 years later?

The one that has IAS number was actually published [39], see here, and it says:

“The anomaly, expressed in terms of the unrenornormalized coupling
constant, is free of infrared divergences for QED (i.e., all a(2n) are IR
finite). This is particularly easy to demonstrate using the method for
separation of IR divergences given in ref. [49]. The analysis is rather
technical, but the result is very intuitive: a Feynman integral MG

contributing to the magnetic moment is IR divergent whenever the
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corresponding diagram G can be split into a vertex subdtagram S and
a cloud of soft gluons attached to the external quark lines (diagram
G/S). In general some gluons in G/S can be hard, provided they are
within UV divergent subdiagrams, In all cases, the IR divergent part
of MG factors into MS times the IR divergent part of LG/S , where
LG/S is the charge form factor computed from the diagram G/S.”

and so on - the paper is focused on QCD, but I believe it establishes IR finiteness
of QED on-mass shell amplitudes, though it most likely not as rigorously as you
would like it.

Yennie and S. C. Frautschi and H. Suura [182] The infrared divergence phenom-
ena and high-energy processes (cited over 800 times!) and Kinoshita [101] Mass
singularities of Feynman amplitudes say nothing about cancellation of IR diver-
gences by renormalization. Herzog and Ruijl [87] The R*-operation for Feynman
graphs with generic numerators and Chetyrkin, Tkachov and Smirnov [34, 35,
165] are not of interest, as R*-operation is not about on-shell IR-divergences.
(Herzog and Ruijl [87] cite Chetyrkin, Tkachov and Smirnov [34, 35, 165] but
no Volkov [178, 179] or Cvitanvić [39, 40, 42, 49, 51] papers.)

In ref. [49] we also cited Johnson and Zumino [96] Gauge dependence of the
wave-function renormalization constant in Quantum Electrodynamics.

An unrelated IR problem: Kinoshita [100] Note on the infrared catastrophe,
about which he writes [103]: “ I developed a method to handle the infrared prob-
lem within the perturbative framework of Feynman–Dyson theory [100]. My
insight was not deep enough, however, and I overlooked a subtlety in the in-
frared problem. This became the source of an error in the calculation of radiative
correction to the µ− e decay. ”

2017-06-11 Predrag to
Christian Schubert <schubert@ifm.umich.mx>

Stefano Laporta has recently published analytic values of all 4-loop electron
magnetic moment gauge sets, and they look very intriguing. Sergey A. Volkov
has started evaluating individual 5-loop vertex diagrams and is in position to es-
timate numerically the size of 5-loop gauge sets. So it might be a good time to
make a new attempt to prove/disprove the QED finiteness conjecture. This set of
notes is my current best attempt to motivate this effort.

I do not take my 1977 “gauge-set approximation” very literally - its content is
only that if individual gauge sets can be bounded to anything growing slower
than combinatorially, quenched QED (and hopefully full QED) is a finite theory,
not an asymptotic series. But the form of vertex gauge sets is very suggestive;
it is defined in terms of N -photon exchanges. So to me the wordline formalism
seem the most promising way forward.

While the quenched QED magnetic moment of electron is the cleanest possible
physical calculation one can do, for sociological reasons most effort on high
order estimates has gone in other directions. Do you have a formula for spinor
QED magnetic moment that one could attempt to analyze more closely?
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2017-06-12 Christian I have been fascinated by the finiteness conjecture ever after
Gerald Dunne and I were led there, too, from Euler-Heisenberg, Borel analysis,
Ritus mass shift and worldline instantons fifteen years ago. The things have
picked up a lot just during the last year or so, namely:

1. Idrish Huet, Michel Rausch and I are working on the Affleck, Alvarez and
Manton (AAM) exponentiation conjecture [1] in 1+1 QED. We had a nice
parameter integral representation for the three-loop Euler-Heisenberg for
quite a while, but could not get a sufficient number of weak-field expansion
coeffs out of it (so far what we got points to AAM not holding at three loops
- rather the coeffs go asymptotically BELOW the AAM prediction - but this
is very preliminary). Michel was just visiting, and we now got a really nice
algorithm (based on the polynomial invariants of the dihedral group) for
the analytical calculation of the coeffs from the more difficult (nonplanar)
3-loop EH diagram.

2. If AAM really fails, then presumably the AAM worldline instanton needs
refinement at higher loops. My former student Naser Ahmadiniaz (now
postdoc in Korea) has made some progress with this.

3. For many years I am planning to apply the worldline formalism to (g-2), in
particular to the important graphs with the light-by-light subdiagram. For
this subdiagram I have, since a long time, an off-shell representation that is
permutation symmetric, manifestly gauge invariant, without spurious UV
poles, and moreover allows one to trivially integrate out the one low-energy
photon leg. What held me back was that the various worldline representa-
tions that existed hitherto for the electron line were all somewhat cumber-
some, and seemed not suitable for high-order calculations. Precisely this
problem we have been working on here for the last half year, and things
have fallen into place really nicely, we have a Bern-Kosower type mas-
ter formula for the electron line dressed with any number of photons, in
vacuum and in the presence of a constant field, and one of our students is
already programming it. I am now definitely trying to assemble a collabo-
ration to attack the QED (g-2), and I anticipate that your notes will be quite
useful for motivating my collaborators.

Gies et al. [84] have some intriguing numerical results from worldline Monte
Carlo (in section 5). Another thing I find quite interesting are Ritus [23] most
recent papers [138–140] on the value of the bare fine structure constant - he
confirmed to me in an email from last December (at age 90) that he definitely
does not think that the bare charge is infinite.

I am appending a summary of our efforts in this line of work [89] which I wrote
as a contribution to the 5th Winter Workshop on Non-Perturbative Quantum
Field Theory. 22-24 March 2017, Sophia-Antipolis.

2016-12-18 Vladimir I. Ritus <v_i_ritus@mail.ru> to Christian:
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Thank you for your note about the papers by Johnson, Baker, Willey (Phys.
Rev. 1967, 1969, 1971) and by Adler, Bardeen (Phys. Rev. 1971). 6 I for-
got them while writing my papers [139, 140]. Some months ago I accidently
saw the abstracts of these papers in one of my notebooks with conspectus of
the literature. Johnson et al assertion confirms qualitatively my geometric and
holographic duality approach to the problem. Both of them deal with photons
without self-energy insertions. Have you any objections to this approach?

Nobody believes in infinite bare charge neither with space distribution more sin-
gular than δ(x) nor as Landau pole at final transfer momentum. Please, reed the
several first phases in JRLR-paper (changing the “emitted" to “emitting").

I regret that I could not come to Tomsk, where I was at war time 1941-1943 in
evacuation.

2017-06-14 Christian to Ritus Just to make sure that I understand your conjecture
correctly - are you claiming that 1/4π is the value of the bare constant in the
quenched approximation, or in the full QED?

2017-06-29 Vladimir Ritus The 1/4π is the value of the bare fine structure constant in
the full QED. It follows from duality of 4-dimensional QED and 2-dimensional
quantum field theory. The point charge moves along timelike trajectory, hence it
has nonzero mass, but the photons emitted to infinity by this charge are massless
as the duality connected with them scalar quanta of pairs emitted by the pointlike
mirror in (1+1)-space. Constants αL and αB are also geometrical. So, this theory
is pure geometrical and connected neither with the divergent perturbation theory
series, nor with the different methods of their summing. Please, read refs. [139,
140].

2017-06-18 Naser Ahmadiniaz <ahmadiniaz.naser@gmail.com> (currently a postdoc-
toral fellow at the Center for Relativistic Laser Science (CoReLS), Institute for
Basic Science (IBS), Gwangju, South Korea).
My main research interests are in amplitude calculations in QED, QCD and
quantum gravity from the worldline formalism. Recently, we have been inter-
ested in (off-shell) tree-level amplitudes for QED processes in vacuum as well
as in the presence of classical background fields which will also be applied to
higher order corrections.

2017-06-20 James P. Edwards <jedwards@ifm.umich.mx>, homepage:
I am currently working with Christian on the worldline approach. In some of
our recent work we have been working on more efficient ways to determine g-
2 based upon a worldline expression for the dressed spinor propagator (both in
vacuum and in a constant background).

2017-06-11 Predrag to Dirk Kreimer <kreimer@physik.hu-berlin.de>

6Predrag: 2017-08-04 K. Johnson, M. Baker, and R. Willey, Phys. Rev. 136, B1111 (1964); ibid. 163,
1699 (1967); and S. L. Adler and W. A. Bardeen, Phys. Rev. D 4, 3045 (1971) These papers are about the
possibility of the existence of an ultraviolet fixed point αc.
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Stefano Laporta has recently published analytic values of all 4-loop electron
magnetic moment gauge sets, and they look very intriguing. It might be a good
time to make a new attempt to prove/disprove the QED finiteness conjecture.
This set of notes is my current best attempt to motivate this effort.

If individual gauge sets can be bounded to anything growing slower than com-
binatorially, quenched QED (and hopefully full QED) is a finite theory, not an
asymptotic series. The form of vertex gauge sets is suggestive of a way forward;
it is defined in terms of N -photon exchanges. Hopf algebras might hold the key,
but I do not know how to use these ideas.

I would be grateful for any further pointers to the literature. Anybody else I
should send these notes to? And I’m finally ready to stand up an be counted - I
can fly to Berlin on a short notice if that helps.

2017-06-14 Dirk Kreimer consider coming to Les Houches — June 4-15, 2018 on
structures in local quantum field theory.

1.9 QCD gauge sets - a blog
In 1981 Cvitanović et al. [51] constructed gauge invariant subsectors in QCD.

2016-12-10 Predrag Penante [133] 2016 On-shell methods for off-shell quantities in
N=4 Super Yang-Mills: from scattering amplitudes to form factors and the di-
latation operator has an up-to-date review of on-shell methods.

2016-12-26 Predrag Read Cruz-Santiago, Kotko and Staśto [38] 2015 Scattering am-
plitudes in the light-front formalism: “The idea is to divide the process into
appropriate gauge invariant components. It turns out that the gauge invariant
subsets are invariant under cyclic permutations of the external gluons. This de-
composition was proposed in works of [58–61] for the tree level amplitudes. A
thorough analysis of the relation between color structures and gauge invariance
was done in ref. [51]. The color decomposition principle was extended beyond
the tree level to loop amplitudes in [63].”

2016-12-26 Predrag Should also read Dixon [55] 1996 Calculating scattering ampli-
tudes efficiently.

2017-05-26 Predrag The decomposition of scattering amplitudes into gauge invariant
subsets of diagrams is studied by Boos and Ohl [14, 24]. Boos and Ohl [24]
Minimal gauge invariant classes of tree diagrams in gauge theories, arXiv:hep-
ph/9903357 (see arXiv:hep-ph/9911437 and arXiv:hep-ph/0307057 for more
detail) is motivated by applications to Standard Model multi-particle diagrams,
mostly at the tree level.

Perturbative calculations require an explicit breaking of gauge invariance for
technical reasons and the cancellation of unphysical contributions is not manifest
in intermediate stages of calculations. The contribution of a particular Feynman
diagram to a scattering amplitude depends in the gauge fixing procedure and has
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no physical meaning. the identification of partial sums of Feynman diagrams that
are gauge invariant by themselves is of great practical importance. Calculation a
subset of diagrams that is not gauge invariant has no predictive power, because
they depend on unphysical parameters introduced during the gauge fixing.

A gauge invariance class is a minimal subset of Feynman diagrams that is inde-
pendent of the gauge parameter and satisfies the Slavnov-Taylor identities.

The set of diagrams connected by flavor and gauge flips they call forest, a set of
diagrams connected by gauge flips the call grove. They shown that the groves
are the minimal gauge invariance classes of tree Feynman diagrams. In unbroken
gauge theories, the permutation symmetry of external gauge quantum numbers
can be used to subdivide the scattering amplitude corresponding to a grove fur-
ther into gauge invariant sub-amplitudes.

This (largely uncited) work seems to have no impact on the (g − 2) gauge sets
discussed here.

2017-05-27 Predrag Reuschle and Weinzierl [137] Decomposition of one-loop QCD
amplitudes into primitive amplitudes based on shuffle relations cite our ref. [51].
They say:

QCD calculations organise the computation of the one-loop amplitude as a sum
over smaller pieces, called primitive amplitudes. The most important features of
a primitive amplitude are gauge invariance and a fixed cyclic ordering of the ex-
ternal legs. Primitive amplitudes should not be confused with partial amplitudes
(also referred to as a dual amplitude or a color-ordered amplitude), which are
the kinematic coefficients of the independent colour structures. The first step in
a discussion of perturbative Yang-Mills is the decoupling of color from kinemat-
ics,

Atot =
∑

cJAJ (1.37)

where Atot represents the total amplitude for a scattering process, AJ are all the
possible color structures, and AJ are partial amplitudes which depend only on
the kinematical data (momenta and polarizations). Partial amplitudes are gauge
invariant, but not necessarily cyclic ordered. Partial amplitudes are far simpler to
calculate than the full amplitude. There exist linear relations among the partial
amplitudes, called Kleiss-Kuijf relations, which reduce the number of linearly
independent partial amplitudes to (n− 2)! The leading contributions in an 1/N -
expansion (with N being the number of colours) are usually cyclic ordered, the
sub-leading parts are in general not. The decomposition of the full one-loop
amplitude into partial amplitudes is easily derived. However, it is less trivial to
find a decomposition of the partial amplitudes into primitive amplitudes.

There are several possible choices for a basis in colour space. A convenient
choice is the colour-flow basis [171].

2017-05-27 Predrag Schuster [154] Color ordering in QCD: “ We derive color de-
compositions of arbitrary tree and one-loop QCD amplitudes into color-ordered
objects called primitive amplitudes. ”
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2017-05-27 Predrag Zeppenfeld [183] Diagonalization of color factors (Georgia Tech
has no access to this paper)

2017-05-27 Predrag Edison and Naculich [62] Symmetric-group decomposition of
SU(N) group-theory constraints on four-, five-, and six-point color-ordered am-
plitudes at all loop orders: “ Color-ordered amplitudes for the scattering of n
particles in the adjoint representation of SU(N) gauge theory satisfy constraints
that arise from group theory alone. These constraints break into subsets associ-
ated with irreducible representations of the symmetric group Sn, which allows
them to be presented in a compact and natural way. ”

2017-05-27 Predrag Kol and Shir [109, 110] Color structures and permutations has
a useful overview of the literature in the introduction, and is a very interesting
read overall.

We may permute (or re-label) the external legs in the expression for a color
structure and thereby obtain another color structure. This means that the space
of color structures is a representation of Sn, the group of permutations. A nat-
ural question is to characterize this representation including its character and its
decomposition into irreducible representations (irreps).

The decomposition of color structures into irreps was suggested by Zeppen-
feld [183].

The space of tree-level color structures TCSn of dimension

dim(TCSn) = (n− 2)! (1.38)

is the vector space generated by all diagrams with n external legs and an oriented
cubic vertex, which are connected and without loops (trees), where diagrams
which differ by the Jacobi identity are to be identified.

The f -based and t-based color structures are related by celebrated Kleiss-Kuijf [108]
relations (rederived in this paper).

The original problem, that of capturing symmetries of the partial amplitudes
which originate with those of the color structures, is now formulated as the prob-
lem of obtaining the Sn character of the space of color structures. It turns out that
(at least at tree level) this problem was fully solved in the mathematics literature
by Getzler and M. M. Kapranov [81].

The free Lie algebra over some setA, denoted by L(A), is the Lie algebra gener-
ated byAwith no further relations apart for antisymmetry and the Jacobi identity
which are mandated by definition.

Self duality under Young conjugation: for some n values TCSn is self-dual
under Young conjugation, namely under the interchange of rows and columns in
the Young diagrams

2017-05-27 Predrag Getzler and Kapranov [81] Modular operads: “ We develop a
‘higher genus’ analogue of operads, which we call modular operads, in which
graphs replace trees in the definition. We study a functor F on the category of
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modular operads, the Feynman transform, which generalizes Kontsevich’s graph
complexes and also the bar construction for operads. We calculate the Euler
characteristic of the Feynman transform, using the theory of symmetric func-
tions: our formula is modelled on Wick’s theorem. ”

2017-05-27 Predrag Maltoni et al. [125] Color-flow decomposition of QCD ampli-
tudes

The color-flow decomposition is based on treating the SU(N) gluon field as an
N×N matrix. (PC: I think that is what I actually do.) It has several nice fea-
tures. First, a similar decomposition exists for all multiparton amplitudes, like
the fundamental-representation decomposition. Second, the color-flow decom-
position allows for a very efficient calculation of multiparton amplitudes. Third,
it is a very natural way to decompose a QCD amplitude. As the name suggests,
it is based on the flow of color, so the decomposition has a simple physical inter-
pretation.

To calculate the amplitude, one orders the gluons clockwise, and draws color-
flow lines, with color flowing counterclockwise, connecting adjacent gluons.
One then deforms the color-flow lines in all possible ways to form the Feyn-
man diagrams that contribute to this partial amplitude. The Feynman diagrams
that contribute to a partial amplitude are planar. This is not due to an expan-
sion in 1/N ; the partial amplitudes are exact. They note (see their Table 1) that
the number of Feynman diagrams contributing to an n-gluon partial amplitude
grows as ≈ 3 · 8n. In contrast, the number of Feynman diagrams contributing to
the full amplitude grows factorially, as ≈ (2n)!.

2017-06-09 Predrag Henn et al. [86] Four-loop photon quark form factor and cusp
anomalous dimension in the large-Nc limit of QCD, arXiv:1612.04389, is a
thoroughly modern paper, a listing of different codes used to generate diagrams
and evaluate integrals.

2017-06-16 Predrag Chang, Liu and Roberts [33] Dressed-quark anomalous mag-
netic moments

2017-06-16 Predrag Choudhury and Lahiri [36] Anomalous chromomagnetic moment
of quarks

2017-06-16 Predrag Bermudez et al. [18] Quark-gluon vertex: A perturbation theory
primer and beyond, arXiv:1702.04437: The on-shell limit enables us to compute
anomalous chromomagnetic moment of quarks.

[...] we present some “physically" relevant results for the on-shell limit p2 =
k2 = m2 and q2 = 0. The Dirac and Pauli form factors, F1(q2) and F2(q2),
respectively, define the Gordon decomposition of the quark current as in (1.3).
The anomalous chromomagnetic moment (ACM) of quarks can be identified as
F2(q2) for q2 → 0. The Abelian version of this decomposition with CF = 1 and
CA = 0 is the electron-photon vertex of quantum electrodynamics. The great
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successes of the Dirac equation is the prediction of the magnetic moment of a
charged fermion µ = eg/(2m)S. The radiative corrections lead to [156]

e

2m
⇒
(

1 +
α

2π

) e

2m
. (1.39)

Note that the quark-gluon vertex differs from the electron-photon vertex already
at one loop, by the contributions of an additional Feynman diagram, involving the
triple-gluon vertex. In fact, apart from introducing additional color structure, this
non-Abelian diagram introduces, at the one-loop level, a kinematical structure
which is absent in the QED.

It is straightforward to see that for the soft gluon limit, q2 = 0, the Abelian con-
tribution for the ACM reduces to the non-Abelian counterpart of Schwinger’s
result, F a2 (0) = −α/12π, already derived in ref. [33]. On the other hand, the
corresponding non-Abelian contribution yields a divergence [36], for a non-zero
quark mass, m 6= 0. We find this divergence to be logarithmic. For deep in-
frared gluon momenta it behaves as F b2 (q2 → 0) = Cb ln

(
−q2/m2

)
. Of course,

perturbation theory in QCD is not the way to explore deep infrared region. All
perturbative conclusions will be taken over by non-perturbative effects, over-
shadowing this divergence.

2017-06-16 Predrag Brambilla et al. [27] QCD and strongly coupled gauge theories:
challenges and perspectives

2017-06-16 Predrag Simonov and Tjon [163] The Feynman–Schwinger representa-
tion in QCD:“ The proper time path integral representation is derived for Green’s
functions in QCD. After an introductory analysis of perturbative properties, the
total gluonic field is separated into a nonperturbative background and valence
gluon part. For nonperturbative contributions the background perturbation the-
ory is used systematically, yielding two types of expansions. As an application,
we discuss the collinear singularities in the Feynman–Schwinger representation
formalism. ”

2017-06-16 Predrag Kälin [97] Cyclic Mario worlds – color-decomposition for one-
loop QCD, arXiv:1712.03539: “ a new color decomposition for QCD ampli-
tudes at one-loop level [...] Starting from a minimal basis of planar primitive
amplitudes we write down a color decomposition that is free of linear dependen-
cies among appearing primitive amplitudes or color factors. [...] The standard
SU(N) trace-based color decomposition at tree level does not take advantage
of all linear dependencies of primitive amplitudes and color factors, as the sum
goes over an overcomplete set of linear dependent primitive amplitudes and color
factors. [...] we propose a compact color decomposition that eliminates linear
dependencies of one-loop QCD amplitudes ”

He uses “Melia’s basis,” “Dyck words.”
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1.10 Is QED finite? A blog

1.10.1 Quenched QED/QFT

2013-11-24 Predrag As far as I can tell, terminology “of quenched type” was first
introduced in this context by Marinari, Parisi and Rebbi [126] Monte Carlo
simulation of the massive Schwinger model, in the context of lattice gauge the-
ory. They write: “A first approximation to the effect of the gauge field on the
fermion observables may be achieved by [...] neglecting the contributions from
the fermionic vacuum polarization diagrams and, using a terminology developed
in the theory of condensed matter, we shall call the expectation values thus ob-
tained ‘quenched’",

Parisi is reputable, so in the “quenched approximation" one neglects the fermionic
vacuum polarization effects (i.e, the fermion loops) from the fermion determi-
nant in the effective action. If it is good enough for Kinoshita, it is good enough
for you.

“In the ‘quenched approximation’ the quark determinant is set equal to unity,
i.e., neglecting the effect of virtual quark loops. In other words, this extreme
approximation in terms of heavy quarks with a vanishing number of flavors as-
sumes that gauge fields affect quarks while quarks have no dynamical effect on
gauge fields."

A more general usage: “In Quantum Cosmology “quenching,” amounts to quan-
tizing a single scale factor thereby selecting a class of cosmological models,
for instance, the Friedmann-Robertson-Walker space-time while neglecting the
quantum fluctuations of the full metric.”

But I still do not like it - it is mostly associated with Kogut, where it means
something different (as in “... treating the gauge interaction in the quenched,
planar (ladder) approximation"); search for quench here. Or here is what Brezin
says:

“concept of quenching is well-known in the statistical mechanics of random me-
dia ; consider a system of particles, for instance, an electron gas, interacting with
impurities. If these impurities are mobile, they will thermalize with the electron
gas and the average physical quantities are obtained by a trace over the electron
gas and the impurities degrees of freedom. However if the impurities are frozen,
the ‘quenched’ case, the physical observables are obtained by calculating their
value for fixed impurities and then averaging over these impurities. "

That is how I know it - nothing about fermion loops, just dirt physics...

From my point of view, the question is whether the sum of all corrections to (g-
2) is a convergent series, or an asymptotic one. If on can prove the convergence
for the quenched sector, I would expect each un-quenched sector (diagrams with
one, two, .... lops) separately to be convergent, and their sum as well.

Here is something to amuse you: on amplituhedron. More serious: Lance Dixon
on calculating amplitudes.
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1971-08-01 Lautrup, Peterman, and de Rafael 1972 Recent developments in the com-
parison between theory and experiments in quantum electrodynamics [122] list
the 3-loop, no-electron loop “gauge invariant subclasses” (their Fig. 4.3).

The inventor of the “gauge invariant diagram sets" concept is Benny Lautrup.

1974-01-07 Samuel 1974 Estimates of the eighth-order corrections to the anomalous
magnetic moment of the muon [146]:

“We speculate that in making radiative corrections to a class of graphs by in-
serting a single photon in all possible ways, one obtains a contribution which is
roughly −απ times the contribution of the class. This seems to be obeyed by the
known contributions.”

1.10.2 Is QED finite? A blog, continued
1950-12-22 Schwinger On gauge invariance and vacuum polarization [157] has 3700

citations. He writes: “ This paper is based on the elementary remark that the
extraction of gauge invariant results from a formally gauge invariant theory is
ensured if one employs methods of solution that involve only gauge covariant
quantities. We illustrate this statement in connection with the problem of vac-
uum polarization by a prescribed electromagnetic field. The vacuum current of
a charged Dirac field, which can be expressed in terms of the Green’s function
of that field, implies an addition to the action integral of the electromagnetic
field. Now these quantities can be related to the dynamical properties of a “parti-
cle" with space-time coordinates that depend upon a proper-time parameter. The
proper-time equations of motion involve only electromagnetic field strengths,
and provide a suitable gauge invariant basis for treating problems. Rigorous so-
lutions of the equations of motion can be obtained for a constant field, and for
a plane wave field. A renormalization of field strength and charge, applied to
the modified lagrange function for constant fields, yields a finite, gauge invariant
result which implies nonlinear properties for the electromagnetic field in the vac-
uum. [...] one can employ an expansion in powers of the potential vector. The
latter automatically yields gauge invariant results, provided only that the proper-
time integration is reserved to the last. This indicates that the significant aspect of
the proper-time method is its isolation of divergences in integrals with respect to
the proper-time parameter, which is independent of the coordinate system and of
the gauge. The connection between the proper-time method and the technique of
“invariant regularization" is discussed. Incidentally, the probability of actual pair
creation is obtained from the imaginary part of the electromagnetic field action
integral. Finally, as an application of the Green’s function for a constant field,
we construct the mass operator of an electron in a weak, homogeneous external
field, and derive the additional spin magnetic moment of α/2π magnetons by
means of a perturbation calculation in which proper-mass plays the customary
role of energy. ”

“ A proper time wave equation, in conjunction with the second order Dirac oper-
ator, has been discussed by V. A. Fock [71] Proper time in classical and quantum
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mechanics. See also Nambu [131] (1950). ”

In Appendix B Schwinger computes the anomalous spin magnetic moment α/2π
produced by second-order electromagnetic mass effects.

1977-03-03 Drell and Pagels Anomalous magnetic moment of the electron, muon, and
nucleon [56] attempt got the sign right, but was not successful in predicting the
magnitude of the sixth-order magnetic moment; 0.15

(
α
π

)3
instead of 1.19

(
α
π

)3
.

2013-12-08 Predrag to Piotr, Wanda and Andrea (Piotr Czerski <piotr.czerski@ifj.edu.pl>,
wanda.alberico@to.infn.it, andrea.prunotto@gmail.com):

I’m no fan of Feynman diagrams (my rant is here), and I’m always looking for
other ways to look at perturbative expansions. So just a little email - if you have
a new angle [136] on subsets of diagrams which are gauge invariant sets, I would
be curious to learn how you look at that.

Just something to keep in mind :)

PS to Andrea: I realize you might rather forget this stuff (takes you a decade to
write a paper?) but at least I got a ringtone out of you. The only problem is, I do
not have a cell phone, so I do not know how to make it ring. At least I’m more
technologically savvy than Peter Higgs.

2013-12-10 Andrea Sorry for late reply (well, we’re used to longer gaps). Yes! I
actually took 10 years to write this paper out of my master thesis, but I have some
excuses: I did my PhD in Biochemistry (Zürich) and now I work on genetics
(Lausanne). This summer my “old” professor Wanda found my work in a drawer
and then contacted me, telling me that it would be a good idea to publish it.

About your request: I’m really interested in seeing if the rooted-map approach
to Feynman diagrams can address the problem you’ve risen. But I have no idea
what the ”subsets of diagrams which are gauge invariant sets” are. I’ve checked
a bit on the web but I’m sure you can give me better indications (the works I
found were too technical: I need to know the basis of the problem). Can you
send me some specific link at freshman level, in particular where I can see the
geometry of these subclasses of diagrams?

2013-12-11 Predrag Googling is good, but it is faster to click on this link. The article
defines the gauge invariant sets.

2014-02-11 M. Borinsky Feynman graph generation and calculations in the Hopf al-
gebra of Feynman graphs [25] “Programs for the computation of perturbative
expansions of quantum field theory amplitudes are provided. feyngen can be
used to generate Feynman graphs for Yang-Mills, QED and phik theories. feyn-
cop implements the Hopf algebra of those Feynman graphs which incorporates
the renormalization procedure necessary to calculate finite results in perturbation
theory of the underlying quantum field theory. ”

2016-02-08 Predrag Prunotto [135] A Homological Approach to Feynman Diagrams
in the Quantum Many-Body Theory, and Prunotto, Alberico and Czerski [136]
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2013 Feynman Diagrams and Rooted Maps has been submitted to the European
Physical Journal A as manuscript ID EPJA-103480, seems not to have been pub-
lished anywhere by 2017. They write: “ The Rooted Maps Theory, a branch
of the Theory of Homology, is shown to be a powerful tool for investigating
the topological properties of Feynman diagrams, related to the single particle
propagator in the quantum many-body systems. The numerical correspondence
between the number of this class of Feynman diagrams as a function of perturba-
tive order and the number of rooted maps as a function of the number of edges is
studied. A graphical procedure to associate Feynman diagrams and rooted maps
is then stated. Finally, starting from rooted maps principles, an original defini-
tion of the genus of a Feynman diagram, which totally differs from the usual one,
is given. ”

2017-03-15 Predrag Dunne and Krasnansky [57] 2006 “Background field integration-
by-parts” and the connection between one-loop and two-loop Heisenberg-Euler
effective actions: “ We develop integration-by-parts rules for diagrams involv-
ing massive scalar propagators in a constant background electromagnetic field,
and use these to show that there is a simple diagrammatic interpretation of mass
renormalization in the two-loop scalar QED Heisenberg-Euler effective action
for a general constant background field. This explains why the square of a one-
loop term appears in the renormalized two-loop Heisenberg-Euler effective ac-
tion, and dramatically simplifies the computation of the renormalized two-loop
effective action for scalar QED, and generalizes a previous result obtained for
self-dual background fields. ”

2017-05-23 Predrag M. G. Schmidt and C. Schubert [148] 1994 Multiloop calcula-
tions in the string-inspired formalism: the single spinor-loop in QED, arXiv:hep-
th/9410100: They use the worldline path-integral Bern-Kosower formalism for
to calculate the sum of all diagrams with one spinor loop and fixed numbers of
external and internal photons. Of interest: in this formalism the three 2-loop
photon polarization graphs, see figure 1.7, are a single integral, easier to evaluate
than any of the three Feynman graphs. They also note an unexplained cancela-
tion not only of poles, but also of “transcedentals.” A knot-theoretic explanation
for the rationality of the quenched QED beta function is given in ref. [29].

2017-05-23 Predrag Nieuwenhuis and Tjon [132] 1996 Nonperturbative study of gen-
eralized ladder graphs in a φ2χ theory, arXiv:hep-ph/9606403:

2017-05-23 Predrag Christian Schubert [152] 2001 Perturbative quantum field theory
in the string-inspired formalism, arXiv:hep-th/0101036:

The Feynman rules for (Euclidean) spinor QED in the second order formalism
(see Morgan [130] 1995, Strassler [169] 1992, and references therein) are, up to
statistics and degrees of freedom, the ones for scalar QED with the addition of
a third vertex. The third vertex involves σµν = 1

2 [γµ, γν ] and corresponds to
the ψµFµνψν – term in the worldline Lagrangian Lspin. For the details and for
the non-abelian case see Morgan [130]. There also an algorithm is given, based
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on the Gordon identity, which transforms the sum of Feynman (momentum) in-
tegrals resulting from the first order rules into the ones generated by the second
order rules.

2017-06-12 Predrag Morgan [130] Second order fermions in gauge theories, arXiv:hep-
ph/9502230 seems to be the same discussion that I use in my QFT course to
define the electron magnetic moment via σµν (see lectures 25 and 26 here)

2017-06-12 Predrag Gies, Sanchez-Guillen, Vázquez [84] Quantum effective actions
from nonperturbative worldline dynamics, arXiv:hep-th/0505275: “ We demon-
strate the feasibility of a nonperturbative analysis of quantum field theory in the
worldline formalism with the help of an efficient numerical algorithm. In partic-
ular, we compute the effective action for a super-renormalizable field theory with
cubic scalar interaction in four dimensions in quenched approximation (small- N
f expansion) to all orders in the coupling. We observe that nonperturbative ef-
fects exert a strong influence on the infrared behavior, rendering the massless
limit well defined in contrast to the perturbative expectation. ”

2017-06-12 Predrag Giesand Hämmerling [82] Geometry of spin-field coupling on
the worldline, arXiv:hep-th/0505072:

2017-03-15 Predrag Huet, McKeon, and Schubert [88] 2010 Euler-Heisenberg la-
grangians and asymptotic analysis in 1+1 QED. Part I: Two-loop (no GaTech
online access, arXiv:1010.5315):“ We continue an effort to obtain information
on the QED perturbation series at high loop orders, and particularly on the issue
of large cancellations inside gauge invariant classes of graphs, using the exam-
ple of the l-loop N-photon amplitudes in the limit of large photon numbers and
low photon energies. The high-order information on these amplitudes can be
obtained from a nonperturbative formula, due to Affleck et al. [1], for the imag-
inary part of the QED effective lagrangian in a constant field. The procedure
uses Borel analysis and leads, under some plausible assumptions, to a number
of nontrivial predictions already at the three-loop level. Their direct verification
would require a calculation of this ‘Euler-Heisenberg lagrangian’ at three-loops,
which seems presently out of reach (though see Huet, de Traubenberg, and Schu-
bert [90] below). Motivated by previous work by Dunne and Krasnansky [57]
on Euler-Heisenberg Lagrangians in various dimensions, in the present work we
initiate a new line of attack on this problem by deriving and proving the analo-
gous predictions in the simpler setting of 1+1 dimensional QED. In the first part
of this series, we obtain a generalization of the formula of Affleck et al. [1] to
this case, and show that, for both scalar and spinor QED, it correctly predicts the
leading asymptotic behaviour of the weak field expansion coefficients of the two
loop Euler-Heisenberg lagrangians.

“The present work continues an effort [58–60, 127] to study the multiloop be-
haviour of the QED N -photon amplitudes using the QED effective lagrangian,
and in particular to prove or disprove Cvitanović’s conjecture for these ampli-
tudes.”
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2017-05-24 Predrag Bastianelli, Huet, Schubert, Thakur and Weber [17] 2014 Inte-
gral representations combining ladders and crossed-ladders write:

This property is particularly interesting in view of the fact that it is just this
type of summation which in QED often leads to extensive cancellations, and to
final results which are substantially simpler than intermediate ones (see, e.g.,
ref. [29, 41]). More recently, similar cancellations have been found also for
graviton amplitudes (see, e.g., ref. [13]). Although this property of the worldline
formalism is well-known, and has been occasionally exploited [15, 141, 142,
148] (see also ref. [76]) a systematic study of its implications is presently still
lacking.

The first classes of Green’s functions is the x-space propagator for one scalar
interacting with the second one through the exchange of N given momenta.

This object, to be called “N -propagator”, is given by a set ofN ! simple tree-level
graphs, is in the worldline formalism combined into a single integral.

The second class are the similarly looking x-space N + 2 - point functions de-
fined by a line connecting the points x and y and N further points z1, . . . , zN
connecting to this line in an arbitrary order.

An advantage of the worldline representation over the usual Feynman parame-
terization is the automatic inclusion of all possible ways of crossing the “rungs”
of the ladders. They obtain such representations in explicit form both in x-space
and in momentum space.

The inclusion of the crossed ladder graphs is essential for the consistency of the
one-body limit where one of the constituents becomes infinitely heavy, and for
maintaining gauge invariance.

They concentrate on the case of infinite N , i.e., the sum over all ladder and
crossed ladder graphs.

As their main application, they consider the case of two massive scalars interact-
ing through the exchange of a massless scalar, obtain an the case of a massless
exchanged particle (along the “rungs” of the ladders).

Applying asymptotic estimates and a saddle-point approximation to the N -rung
ladder plus crossed ladder diagrams, they derive a semi-analytic approximation
formula for the lowest bound state mass in this model.

They use the worldline formalism to derive integral representations for the N -
propagators and theN -ladders - in scalar field theory, and give a compact expres-
sion combining the N ! Feynman diagrams contributing to the amplitude. They
give these representations in both x and (off-shell) momentum space. Being off-
shell, can be used as building blocks for more complex amplitudes. They derive
a compact expression for the sum of all ladder graphs with N rungs, including
all possible crossings of the rungs.

Nieuwenhuis and Tjon [132] 1996 have numerically evaluated the path integrals
of the worldline representation for the same scalar model field theory, thus in-
cluding all ladder and crossed ladder graphs.
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2017-05-23 Predrag Huet, de Traubenberg, and Schubert [90] 2017 Multiloop Euler-
Heisenberg Lagrangians, Schwinger pair creation, and the photon S-matrix:
“Schwinger pair creation in a constant electric field, may possibly provide a
window to high loop orders; simple non-perturbative closed-form expressions
have been conjectured for the pair creation rate in the weak field limit, for scalar
QED in 1982 by Affleck, Alvarez, and Manton [1], and for spinor QED by Lebe-
dev and Ritus [123] in 1984. Using Borel analysis, these can be used to obtain
non-perturbative information on the on-shell renormalized N-photon amplitudes
at large N and low energy.”

“there is something quite implausible about it: a summation to all loop orders has
produced the perfectly analytic factor eαπ! This is certainly contrary to standard
QED wisdom”

Preliminary results of a calculation of the three-loop Euler–Heisenberg Lagrangian
in two dimensions indicate that the exponentiation conjecture by Affleck et al.
and Lebedev/Ritus probably fails in D = 2.

Dunne and Schubert conjectured in 2005 that the QEDN−photon amplitudes in
the quenched (one electron loop) approximation are convergent in perturbation
theory [60]. In this article they say; “Later they learned that Cvitanović in 1977
had already made the analogous conjecture for (g − 2) [41].”

2017-06-14 Predrag Academician Ritus [139] writes: “ The requirement e2/~c = 1
leads to unique values of the point-like charge and its fine structure constant,
e0 = ±

√
~c , α0 = 1/4π. Arguments are adduced in favor of the conclusion

that this value of the fine structure constant is the bare, nonrenormalized value. ”

In 1951 Ritus was assigned to what was known at the time as the First Main
Directorate of the USSR Council of Ministers, later rechristened the Ministry
of Medium Machine Building (Sredmash) – a powerful state body placed above
any other in the name of implementing the Soviet Government sponsored pro-
gram of thermonuclear weapons design. [...] The legend of his infallibility when
conducting complicated and cumbersome computations, just started to take root;
its protagonist did nothing that would sully this reputation, neither then nor later.
Science is unaware of any errors ever made by Ritus! (from ref. [23].)

2017-05-23 Predrag Das, Frenkel and Schubert [53] 2013 Infrared divergences, mass
shell singularities and gauge dependence of the dynamical fermion mass; arXiv:1212.2057:

2017-05-23 Predrag Ahmadiniaz, Bashir and Schubert [3] 2016 Multiphoton ampli-
tudes and generalized Landau-Khalatnikov-Fradkin transformation in scalar QED,
arXiv:1511.05087:

Dµν is the x-space photon propagator. In D dimensions and arbitrary covariant
gauge

Dµν(x) =
1

4π
D
2

{1 + ξ

2
Γ
(D

2
−1
) δµν

(x2)
D
2 −1

+(1−ξ)Γ
(D

2

) xµxν
(x2)

D
2

}
. (1.40)

Calculation methods:
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1. The analytic or “string-inspired” approach, based on the use of worldline
Green’s functions: all path integrals are brought into Gaussian form; this
requires some expansion and truncation. They are then calculated by Gaus-
sian integration.

2. The semi-classical approximation, based on a stationary trajectory (“world-
line instanton”).

We will focus on the closed-loop case in the following, since it turns out to be
simpler than the propagator one. Nevertheless, it should be emphasized that
everything that we will do in the following for the effective action can also be
done for the propagator.

Some reasonable gymnastics leads to the “Bern-Kosower master formula” [19,
20, 169]

2017-05-23 Predrag Strassler [169] Field theory without Feynman diagrams: One-
loop effective actions, arXiv:hep-ph/9205205;

2017-05-23 Predrag Ahmad et al. [2] 2017 Master formulas for the dressed scalar
propagator in a constant field, arXiv:1612.02944

2007-01-31 Kurusch Ebrahimi-Fard Here are the links I mentioned:

Anatomy of a gauge theory by Dirk Kreimer, arXiv:hep-th/0509135

Renormalization of gauge fields: A Hopf algebra approach by Walter D. van
Suijlekom, arXiv:hep-th/0610137

The Hopf algebra of Feynman graphs in QED by Walter D. van Suijlekom,
arXiv:hep-th/0602126

This is Jean-Yves Thibon’s web-page, a very good combinatorialist!

2016-11-15 Kevin Hartnett Strange Numbers Found in Particle Collisions

2017-05-23 Predrag Should I talk to Spencer Bloch?

2017-05-23 Predrag Broadhurst, Delbourgo and Kreimer [29] 1996 Unknotting the
polarized vacuum of quenched QED has lots of magic leading to cancelations
of “transcedentals.” They say: “Complete cancellation of transcendentals from
the beta function, at every order, is to be expected only in quenched QED and
quenched SED, where subdivergences cancel between bare diagrams.”

Online collection of papers on this topic.

2013-10-23 Warren D. Smith D. J. Broadhurst and D. Kreimer: Association of multi-
ple zeta values with positive knots via Feynman diagrams up to 9 loops, Physics
Letters B 393 (1997) 403-412, arXiv:hep-th/9609128.

Furthermore, the number of different kinds of knots with N crossings, Knot-
Count(N), is known asymptotically to be bounded between two simple-exponentials,

AN < KnotCount(N) < BN
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where B ≤ 13.5 according to
D.J.A. Welsh,On the number of knots and links, Sets, graphs and numbers (Bu-
dapest, 1991), 713– 718, Colloq. Math. Soc. Janos Bolyai, 60, North-Holland,
Amsterdam, 1992,
while A ≥ 2.68 according to
C.Ernst & D.W.Sumners The growth of the number of prime knots, Proc Cam-
bridge Philo Soc 102 (1987) 303-315.

So, that’s the funny thing. My attempt to further-destroy Cvitanović, just led
to an estimate involving simple exponential growth and NOT superexponential
(e.g. factorial style). This is right on the boundary for convergence questions,
i.e. ∑

ANx
N

has a finite, nonzero radius of convergence if |AN | grows exponentially. So
maybe there remains some hope for some form of Cvitanović conjecture.

The Welsh upper bound also works for links. Which means: if you believe this
could rescue Cvitanović’s quenched-QED convergence conjecture, that would
also presumably mean you believe full unquenched QED series have finite nonzero
radius of convergence.

2013-11-25 David Broadhurst <David.Broadhurst@open.ac.uk>

Dirk and kind of gave up when it turned out that a pair of counterterms at 7
loops, unidentified in 1996, have weight 11, whereas our intuition about the
knots 10_139 and 10_154 has suggested weight 10.

Maybe there is some sort of connection, but I know not what.

2017-05-23 Predrag Dirk Kreimer and Karen Yeats [115] 2008 Recursion and growth
estimates in renormalizable quantum field theory

Our method is very different in spirit from the constructive approach or the func-
tional integral approach. It relies on a Hopf algebraic decomposition of terms in
the perturbative expansion into primitive constituents, not unlike the decomposi-
tion of a ζ function into Euler factors.

Our construction of a basis of primitives with a given Mellin transform resolves
overlapping divergences, thanks to the Hochschild cohomology of the relevant
Hopf algebras [113].

We next assume there to be p(k) primitives at k loops where p is a polynomial.

Yeats [181] 2017 A Combinatorial Perspective on Quantum Field Theory. I have
put a copy here.

2016-08-20 Predrag Kißler [106] Hopf-algebraic renormalization of QED in the lin-
ear covariant gauge: “The possibility of a finite electron self-energy by fixing a
generalized linear covariant gauge is discussed. An analysis of subdivergences
leads to the conclusion that such a gauge only exists in quenched QED.”
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2017-06-16 Henry Kißler The term “finite electron self-energy" does not re-
fer to the convergence of the perturbation series, but to an order-by-order can-
cellation of divergences. The idea was to gauge away all divergences in the
self-energy order-by-order as used by Broadhurst [28] in “Four-loop Dyson-
Schwinger-Johnson anatomy" for quenched QED.

2017-06-16 Predrag Broadhurst [28] Four-loop Dyson-Schwinger-Johnson anatomy:
“Dyson–Schwinger equations are used to evaluate the 4-loop anomalous dimen-
sions of quenched QED in terms of finite, scheme-independent, 3-loop integrals.
The 4-loop beta function has 24 unambiguous terms. The rational, ζ(3) and ζ(5)
parts of the other 22 miraculously sum to zero. Vertex anomalous dimensions
have 40 terms, with no dramatic cancellations. Our methods come from work by
the late Kenneth Johnson, done more than 30 years ago. They are entirely free
of the subtractions and infrared rearrangements of later methods.”

2016-08-20 Predrag Kißler and Kreimer [107] 2016 Diagrammatic cancellations and
the gauge dependence of QED, arXiv:1607.05729: “ The perturbative expansion
given in terms of Feynman graphs might be rearranged in terms of meta graphs
or subsectors with a maximum number of cancellations implemented. ”

“The summation over all insertions requires considering connected rather then
one-particle irreducible Feynman graphs.”

In his (unpublished) thesis Henry defines the above “self-energy set" as an “equiv-
alence class” obtained by all insertions of an external electron-photon vertex
into the external electron line propagator of a self-energy graph. On mass-shell
the summation over this class is gauge invariant by the Ward-Takahashi iden-
tity [172, 180].

This gets more interesting when he considers insertion of internal photon propa-
gator “gaugeons" (a Lautrup name?). Then, for example (his eq. (2.75)) the sum
of all connected quenched 2-loop graphs is equivalent to the one-loop self en-
ergy. Perhaps iteration of such insertions into Schwinger 1-loop anomaly might
offer a proof of invariance of gauge sets...

“ The four-photon interaction is called light-by-light scattering and supposed
to be finite by renormalizability –in other words there is no interaction vertex
in Quantum Electrodynamics that could serve to absorb the divergences of the
four-photon type. Unfortunately, the author is not aware of a general argument
beyond the first-loop order that proves this statement. In arXiv:1406.1618 and
arXiv:1703.01094, a basis of Lorentz tensors was construct for the class four-
photon graphs; it consists of 138 Lorentz tensors and the challenge is to show
that each coefficient becomes finite when all graphs at a certain loop order are
considered. ”

He shows that the sum over all one-particle irreducible four-photon graphs is
transversal (it vanishes whenever one of its external legs is contracted with the
associated momentum). This global property restricts the possible occurrence of
divergences to 43 Lorentz tensors (see arXiv:1505.06336 for an alternative basis
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of Lorentz tensors which includes the anti-symmetry tensor), whose coefficients
remain to be proven finite.

They discuss how the QED tree-level cancellation identity implies cancellation
between Feynman graphs of different topologies and determines the gauge de-
pendence. They parameterize the momentum part of Landau gauge, then start
by keeping only a liner term in graphs (i.e., insert only one Landau propagator,
rest Feynman). They focus on the electron propagator in the massless limit of
Quantum Electrodynamics. Not sure it is useful to us...
2017-06-16 Henry Your definition of gauge sets differs from the one we use in
Diagr. cancellations and the gauge dependence [107]. The anomalous mag. mo-
ment is gauge independent due to the on-shell electrons, so studying the gauge
parameter terms is not important, but I find it interesting to compare both defini-
tions of gauge invariant sets, maybe one can improve the other.

Read also Kreimer [114] 2000 Knots and Feynman diagrams.

2017-06-16 Henry Kißler Here an alternative idea to approach the finiteness conjec-
ture: There is a bound for the value of a scalar Feynman diagram due to Eric
Panzer, which he called the Hepp bound. This bound is derived using the 1974
Cvitanović and Kinoshita [48] Feynman-parametric representation. A natural
question is: does this bound generalize to a sum of Feynman graphs when the
sum goes over something as your gauge sets. Of cause, the gamma matrices in
the numerator make things more complicated, but imposing on-shell conditions
and choosing an appropriate gauge might simplify this task. Unfortunately, there
is little in the literature about the Hepp bound [151]; the only thing I am aware
of is a short section in the thesis of Iain Crump [37].
2017-06-16 Predrag I do not see how this would work: The Hepp invariant
H(G) is defined for a given graph G. Suppose we use instead of a Feynman dia-
gram the km′mmulti-photons gauge set diagram G̃ (for examples, see figure 1.4
and figure 1.5). In worldline formalism one has a proper time parametrization
intermingled with Feynman-parametric bits. Any clue how the weights in the
Hepp invariant H(G̃) would be defined? Just for a scalar theory, let us forget
QED for the time being, along the lines of 2017-05-24 Predrag entry above, on
Bastianelli et al. [17]?

2017-06-19 Predrag Iain Crump [37] thesis Graph Invariants with Connections to
the Feynman Period in φ4 Theory (he follows Yeats [181]):

The Feynman period is a simplified version of the Feynman integral. The period
is of special interest, as it maintains much of the important number theoretic
information from the Feynman integral. It is also of structural interest, as it is
known to be preserved by a number of graph theoretic operations.

2017-05-23 Predrag Badger, Bjerrum-Bohr and Vanhove [13] 2009 Simplicity in the
structure of QED and gravity amplitudes.

2017-05-23 Predrag Rosenfelder and Schreiber [141, 142] 1996,
arXiv:nucl-th/9504002, arXiv:nucl-th/9504005:
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2017-06-02 Predrag Rosenfelder and Schreiber [143] 2004 An Abraham-Lorentz-like
equation for the electron from the worldline variational approach to QED:

They discuss the of a spin-1/2 electron dressed by an arbitrary number of pho-
tons in the quenched approximation to QED. The approach is patterned after
Feynman’s celebrated variational treatment of the polaron problem [69], which
was first applied by Mano, Progr. Theor. Phys. 14, 435 (1955) [8] to a rela-
tivistic scalar field theory and rediscovered and expanded by them in a series of
papers [141, 142]. Its main features are the description of relativistic particles by
worldlines [152] parametrized by the proper time, an exact functional integra-
tion over the photons and a variational approximation of the resulting effective
action by a retarded quadratic trial action. In recent work we have extended this
approach to more realistic theories, in particular to quenched QED [4] (the di-
vergence structure and renormalization, a compact expression for the anomalous
mass dimension of the electron). Here they calculate the finite contributions.

The variational formulation of worldline QED leads to an equation which is
similar to Abraham, Lorentz and Dirac description of the electron and its self-
interaction with the radiation field. The approach contains (almost) all the in-
gredients of the relativistic field theory of electrons and photons, in particular its
divergence structure. This has been demonstrated by deriving an approximate
nonperturbative expression for the anomalous mass dimension of the electron.

2017-05-23 Predrag K. Barro-Bergflödt, R. Rosenfelder and M. Stingl [15] 2006 Vari-
ational worldline approximation for the relativistic two-body bound state in a
scalar model, arXiv:hep-ph/0601220.

2017-05-23 Predrag Fried and Gabellini [75] 2009 Analytic, nonperturbative, almost
exact QED: The two-point functions. The remarkable (but speculative) result
of this paper is that in a convenient gauge, the (unphysical) electron propagator
renormalization is a multiplicative, non-perturbative finite factor bounded be-
tween 0 and 1:

Z2 = exp

[
−2γ

((π
2

)2

+ ln2

(
Λ2

µ2

))]
, (1.41)

where γ = e2/4π2 is the fine structure constant (referred to by the vulgar mul-
titudes as α), µ → 0 is the infrared cutoff, and Λ → ∞ is the UV cutoff.
One would still need to compute the vertex renormalization Z1 to get a gauge
and renomalization method invariant result. Fried seem to only cite Schwinger,
Fradkin and himself, so the similarity of this to 1982 Affleck, Alvarez, and Man-
ton [1] nonperturbative result eαπ is not remarked upon.

Fried and Gabellini [76] 2012 On the Summation of Feynman Graphs, arXiv:1004.2202.

Fried and Gabellini [77] 2013 QED vacuum loops and vacuum energy

2017-03-15 Predrag I have tried reading Fried [74] 2014 Modern Functional Quan-
tum Field Theory: Summing Feynman Graphs: “a simple, analytic, functional
approach to non-perturbative QFT, using a functional representation of Fradkin
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to explicitly calculate relevant portions of the Schwinger Generating Functional
(GF). In QED, this corresponds to

summing all Feynman graphs representing virtual photon exchange

between charged particles. It is then possible to see, analytically, the cancellation
of an infinite number of perturbative, UV logarithmic divergences, leading to an
approximate but most reasonable statement of finite charge renormalization. A
similar treatment of QCD, with the addition of a long-overlooked but simple
rearrangement of the Schwinger GF which displays Manifest Gauge Invariance,
is then able to produce a simple, analytic derivation of quark-binding potentials
without any approximation of infinite quark masses. A crucial improvement of
previous QCD theory takes into account the experimental fact that asymptotic
quarks are always found in bound state.”

This book can be read online via GaTech library link here or here.

Even though I am a grandchild of Schwinger (via Tung Mow Yan), and have
written/drawn a book where Schwinger’s functional formalism is explained to
everywoman, I still find the functional formalism of Schwinger and Fradkin [72]
hard to follow. I believe the results are essentially the same as wordline formal-
ism developed by Schubert et al..

2017-06-15 Predrag I’ve now reread much of the relevant literature known to me.
There might be much more - people who do things related to my 1977 paper [41]
never alert me to their papers, presumably because the reports of my death have
been greatly exaggerated.

2017-06-16 Predrag Jia and Pennington [93] How gauge covariance of the fermion
and boson propagators in QED constrain the effective fermion-boson vertex

Jia and Pennington [94] Gauge covariance of the fermion Schwinger–Dyson
equation in QED

Jia and Pennington [95] Landau-Khalatnikov-Fradkin transformation for the fermion
propagator in QED in arbitrary dimensions

2017-06-16 Christian Melnikov, Vainshtein and Voloshin [128] Remarks on the effect
of bound states and threshold in g-2: “ The appearance of positronium poles in a
photon propagator in QED formally requires a summation of an infinite series of
terms in perturbation theory. [...] we show how these nonperturbative contribu-
tions disappear, using the case of the electron anomalous magnetic moment as an
example. [...] it never happens that a summation of infinite classes of Feynman
diagrams enhanced at any threshold generates additional effects beyond pertur-
bation theory. The misunderstanding of this fact appears to be quite common.
”

The same conclusion is reached by Eides [63] Recent ideas on the calculation
of lepton anomalous magnetic moments and Fael and Passera [66] Positronium
contribution to the electron g − 2.
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2017-06-16 Predrag Herzog and Ruijl [87] The R*-operation for Feynman graphs
with generic numerators: “The R*-operation by Chetyrkin, Tkachov, and Smirnov
is a generalisation of the BPHZ R-operation, which subtracts both ultraviolet and
infrared divergences of euclidean Feynman graphs with non-exceptional exter-
nal momenta. It can be used to compute the divergent parts of such Feynman
graphs from products of simpler Feynman graphs of lower loops. In this paper
we extend the R*-operation to Feynman graphs with arbitrary numerators, in-
cluding tensors. We also provide a novel way of defining infrared counterterms
which closely resembles the definition of its ultraviolet counterpart. We further
express both infrared and ultraviolet counterterms in terms of scaleless vacuum
graphs with a logarithmic degree of divergence. By exploiting symmetries, inte-
grand and integral relations, which the counterterms of scaleless vacuum graphs
satisfy, we can vastly reduce their number and complexity.”

Ruijl, Ueda, Vermaseren and Vogt [145] Four-loop QCD propagators and ver-
tices with one vanishing external momentum: “ We have computed the self-
energies and a set of three-particle vertex functions for massless QCD at the
four-loop level. The vertex functions are evaluated at points where one of the
momenta vanishes. Analytical results are obtained for a generic gauge group
and with the full gauge dependence, which was made possible by extensive use
of the Forcer program for massless four-loop propagator integrals. The bare re-
sults in dimensional regularization are provided in terms of master integrals and
rational coefficients; the latter are exact in any space-time dimension.”

Chetyrkin and Tkachov [35] Infrared R-operation and ultraviolet counterterms
in the MS-scheme, together withWe Chetyrkin and Smirnov [34] R*-Operation
corrected

Smirnov and Chetyrkin [165] R* operation in the minimal subtraction scheme

Johnson and Zumino [96] Gauge dependence of the wave-function renormaliza-
tion constant in Quantum Electrodynamics: “ [...] point out the existence of an
exact and simple relation between the electron Green’s function renormalization
constants in the general class of manifestly covariant gauges. ”

Korthals Altes and De Rafael [111] 1976 Infrared structure of non-abelian gauge
theories: An instructive calculation

Korthals Altes and De Rafael [112] 1977 Infrared structure of non-abelian gauge
theories: Comments on perturbation theory calculations

Frenkel et al. [73] 1976 Infra-red behaviour in non-abelian gauge theories

2017-06-27 Predrag Søndergaard, Palla, Vattay, and Voros [167] Asymptotics of high
order noise corrections: “We consider an evolution operator for a discrete Langevin
equation with a strongly hyperbolic classical dynamics and noise with finite mo-
ments. Using a perturbative expansion of the evolution operator we calculate
high order corrections to its trace in the case of a quartic map and Gaussian
noise. The asymptotic behaviour is investigated and is found to be independent
up to a multiplicative constant of the distribution of noise.”
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2017-06-16 Predrag Read also Simonov and Tjon 1996 article (PC: cannot find any
such) which applies the the so-called Fock–Feynman–Schwinger representation
(FSR), based on the Fock–Schwinger [157] proper time and Feynman path inte-
gral formalism, to QED.

Simonov [161] Relativistic path integral and relativistic Hamiltonians in QCD
and QED writes: “ The proper-time 4D path integral is used as a starting point to
derive the new explicit parametric form of the quark-antiquark Green’s function
in gluonic and QED fields entering as a common Wilson loop. The subsequent
vacuum averaging of the latter allows us to derive the instantaneous Hamiltonian.
The explicit form and solutions are given in the case of the qq̄ mesons in magnetic
field. ”

Simonov [162] QED spectra in the path integral formalism writes: “ Relativistic
Hamiltonians, derived from the path integrals, are known to provide a simple
and useful formalism for hadron spectroscopy in QCD. The accuracy of this ap-
proach is tested using the QED systems, and the calculated spectrum is shown to
reproduce exactly that of the Dirac hydrogen atom. [...] The calculated positron-
ium spectrum, including spin-dependent terms, coincides with the standard QED
perturbation theory to the considered order O(α4). ”

2017-08-03 Predrag Schwartz [155] Chapter33 Effective actions and Schwinger proper
time looks very pedagogical.

2017-08-04 Predrag Mielniczuk et al. [129] The anomalous magnetic moment of a
photon propagating in a magnetic field

Valluri, Jentschura and Lamm [176] The study of the Heisenberg-Euler Lagrangian
and some of its applications

2017-08-18 Predrag Antonov [6] World-line formalism: Non-perturbative applica-
tions

2017-09-17 Predrag Schäfer and I. Huet and H. Gies [147] Worldline numerics for
energy-momentum tensors in Casimir geometries: “We develop the worldline
formalism for computations of composite operators such as the fluctuation in-
duced energy-momentum tensor. As an example, we use a fluctuating real scalar
field subject to Dirichlet boundary conditions. The resulting worldline represen-
tation can be evaluated by worldline Monte-Carlo methods in continuous space-
time. The method generalizes straightforwardly to arbitrary Casimir geometries
and general background potentials.”

2017-09-17 Predrag A closer reading of sect. 6. Worldline formalism of Gelis and
N. Tanji [80] Schwinger mechanism revisited might be helpful - it goes to the
barycenter to reexpress the integral as an average over Wilson loops.

In sect. 6.4. Lattice worldline formalism they describe a formulation of the
worldline formalism the (Euclidean) space–time discretized on a cubic lattice
[113–116].
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Schmidt and Stamatescu [149, 150] Matter determinants in background fields
using random walk world line loops on the lattice, using Schwinger’s propert
time formalism, pointed out that the fermion and boson determinant on the lattice
can be viewed as a gas of closed loops which can be simulated numerically via a
random walk.

Seiler and Stamatescu [160] A note on the loop formula for the fermionic deter-
minant: “ A formula expressing the fermionic determinant as an infinite product
of smaller determinants is derived and discussed. These smaller determinants
are of a fixed size, independent of the size of the lattice and are indexed by loops
of increasing length.

We will discuss in more detail the derivation of the formula as well as its limita-
tions and possible misunderstandings in using it, since one might think that the
zeroes of the determinant are given by the zeroes of the factors of the product.
In fact this is not the case, and the formula should instead be understood as a
systematic approximation.

In particular, for a finite lattice this formula expresses the determinant which
is a polynomial of finite order in the hopping parameter as an infinite product.
Obviously this can make sense only where the infinite product converges, which
is equivalent to convergence of the expansion of its logarithm; this convergence
will break down at the latest at the first zero encountered, either on the left-hand
side (lhs) or in one of the factors on the right-hand side (rhs). ”

Turns out this is the same discussion as my discussion of the Euler product rep-
resentation fo dynamical ζ functions in ChaosBook.org.

Fry [78] Nonperturbative quantization of the electroweak model’s electrody-
namic sector: “ Consider the Euclidean functional integral representation of any
physical process in the electroweak model. Integrating out the fermion degrees
of freedom introduces 24 fermion determinants. Suppose the functional integral
over the Maxwell field is attempted first. This paper is concerned with the large
amplitude behavior of the Maxwell effective measure. We examine the large
amplitude variation of a single QED fermion determinant. To facilitate this the
Schwinger proper time representation of this determinant is decomposed into a
sum of three terms. The advantage of this is that the separate terms can be non-
perturbatively estimated for a measurable class of large amplitude random fields
in four dimensions. It is found that the QED fermion determinant grows to fast
in the absence. Including zero mode supporting background potentials can result
in a decaying exponential growth of the fermion determinant. This is prima fa-
cie evidence that Maxwellian zero modes are necessary for the nonperturbative
quantization of QED ”

Gies and Langfeld [83] Loops and loop clouds — a numerical approach to the
worldline formalism in QED point out that the fermion (and boson) determinant
on the lattice can be viewed as a gas of closed loops which can be simulated
numerically via a random walk: “ A numerical technique for calculating effec-
tive actions of electromagnetic backgrounds is proposed, which is based on the
string-inspired worldline formalism. As examples, we consider scalar electro-

printed August 20, 2018 57

http://ChaosBook.org


1.10 Is QED finite? A blog 1.10 Is QED finite? A blog

dynamics in three and four dimensions to one-loop order. Beyond the constant-
magnetic-field case, we analyze a step-function-like magnetic field exhibiting a
nonlocal and nonperturbative phenomenon: “magnetic-field diffusion". ”

Epelbaum, Gelis and Wu [65] From lattice Quantum Electrodynamics to the dis-
tribution of the algebraic areas enclosed by random walks on Z2.

Epelbaum, Gelis and Wu [64] Lattice worldline representation of correlators in
a background field: “ We use a discrete worldline representation in order to study
the continuum limit of the one-loop expectation value of dimension two and four
local operators in a background field. We illustrate this technique in the case of
a scalar field coupled to a non-Abelian background gauge field. The first two
coefficients of the expansion in powers of the lattice spacing can be expressed as
sums over random walks on a d-dimensional cubic lattice. Using combinatorial
identities for the distribution of the areas of closed random walks on a lattice,
these coefficients can be turned into simple integrals. Our results are valid for an
anisotropic lattice, with arbitrary lattice spacings in each direction. ”

Laufer and Orland [120] Metric of Yang-Mills orbit space on the lattice: “ We
find coordinates, the metric tensor, the inverse metric tensor and the Laplace-
Beltrami operator for the orbit space of Hamiltonian SU(2) gauge theory on a
finite, rectangular lattice, with open boundary conditions. This is done using a
complete axial gauge fixing. ”

Vilela Mendes [177] A consistent measure for lattice Yang–Mills (no GaTech ac-
cess to the journal): “ The construction of a consistent measure for Yang–Mills
is a precondition for an accurate formulation of nonperturbative approaches to
QCD, both analytical and numerical. Using projective limits as subsets of Carte-
sian products of homomorphisms from a lattice to the structure group, a con-
sistent interaction measure and an infinite-dimensional calculus have been con-
structed for a theory of non-Abelian generalized connections on a hypercubic
lattice. Here, after reviewing and clarifying past work, new results are obtained
for the mass gap when the structure group is compact. ”

2017-09-17 Predrag a letter

to: Erhard Seiler <ehs@mpp.mpg.de>,
Ion-Olimpiu Stamatescu <I.O.Stamatescu@thphys.uni-heidelberg.de>

Dear Erhard and Ion-Olimpiu

I have read your paper (well, not read it sufficiently deeply)

@Article{SeiSta16,
author = {E. Seiler and Stamatescu, I. O.},
title = {

A note on the loop formula for the fermionic determinant},
journal = {J. Phys. A},
year = {2016},
volume = {49},
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pages = {335401},
doi = {10.1088/1751-8113/49/33/335401},

}

with great interest.

2017-09-19 Schubert With g-2 we have not made a lot of headway yet, either, but my
students Cesar and Misha have started chipping away at it, and with James we
are making some progress in using parity and integration by parts to simplify the
integrands.

2017-09-19 Schubert Arkani-Hamed, Huang and Huang [12] Scattering amplitudes
for all masses and spins, arXiv:1709.04891 contains an elegant calculation of
the one-loop g-2 which shares with our approach the property that it lumps to-
gether the irreducible and the reducible diagrams.

2017-09-19 Predrag Arkani-Hamed, N. and Huang, T.-C. and Huang [12] Scattering
amplitudes for all masses and spins: “ We introduce a formalism for describing
four-dimensional scattering amplitudes for particles of any mass and spin. This
naturally extends the familiar spinor-helicity formalism for massless particles
to one where these variables carry an extra SU(2) little group index for massive
particles, with the amplitudes for spin S particles transforming as symmetric rank
2S tensors. We systematically characterise all possible three particle amplitudes
compatible with Poincare symmetry. [...]

We illustrate a number of applications of the formalism at one-loop, giving few-
line computations of the electron (g-2) as well as the beta function and ratio-
nal terms in QCD. “Off-shell" observables like correlation functions and form-
factors can be thought of as scattering amplitudes with external "probe" particles
of general mass and spin, so all these objects–amplitudes, form factors and cor-
relators, can be studied from a common on-shell perspective. ”

2017-12-17 Christian Schubert We have not forgotten about g-2 here, my student
Misha is working on the LBL diagram, and we have also made progress in de-
composing the pure fermion-line contributions, the ones that interest you most,
into spin and orbit parts. My big hope is that not all will equally contribute for
large N .

Last week James and I were in Bologna where we had an opportunity to talk to
Remiddi. He seems not terribly interested in the convergence issue, but in any
case he said he would find nothing odd if that happened to be true, since the issue
of cancellations is so little understood.

Laporta has obtained a job at Padua University. More than well-deserved.

2018-01-08 Christian Schubert We are planning to have a workshop devoted to world-
line methods in Germany at the Mainz Center of Theoretical Physics sometime
in 2019, most likely in February. Would you be interested in principle to attend?
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2018-06-02 Predrag Jegerlehner17 [91] The Anomalous Magnetic Moment of the Muon
is a very detailed review of everything known about anomalous magnetic mo-
ments.

Todorov lecture [174] From Euler’s play with infinite series to the anomalous
magnetic moment is a fun overview of the history of the (g-2) calculations.

2018-06-02 Predrag Aoyama and T. Kinoshita and M. Nio [11] Revised and improved
value of the QED tenth-order electron anomalous magnetic moment: “ we have
carried out a new numerical evaluation of the 389 integrals of Set V, which repre-
sent 6 354 Feynman vertex diagrams without lepton loops. We found that one of
the integrals, called X024, was given a wrong value in the previous calculation
due to an incorrect assignment of integration variables. The correction of this er-
ror causes a shift of -1.26 to the Set V contribution, and hence to the tenth-order
universal (mass-independent) term 7.606 (192) (α/π)5 as the best estimate of
the Set V contribution. ” I have entered the correction into (1.1).
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[49] P. Cvitanović and T. Kinoshita, “New approach to the separation of ultraviolet
and infrared divergences of Feynman-parametric integrals”, Phys. Rev. D 10,
3991–4006 (1974).

printed August 20, 2018 63

http://dx.doi.org/10.1016/0370-2693(74)90659-5
http://dx.doi.org/10.1016/0370-2693(74)90659-5
http://dx.doi.org/10.1016/0370-2693(74)90659-5
http://dx.doi.org/10.1016/0370-2693(74)90659-5
http://dx.doi.org/10.1103/PhysRevLett.106.072001
http://dx.doi.org/10.1103/PhysRevLett.106.072001
http://dx.doi.org/10.1103/PhysRevLett.106.072001
http://dx.doi.org/10.1016/0370-2693(84)91291-7
http://dx.doi.org/10.1016/0370-2693(84)91291-7
http://dx.doi.org/10.1016/0370-2693(84)91291-7
http://dx.doi.org/10.1016/0370-2693(82)90358-6
http://dx.doi.org/10.1016/0370-2693(82)90358-6
http://dx.doi.org/10.1016/0370-2693(82)90358-6
http://dx.doi.org/10.1142/S0217732315501138
http://dx.doi.org/10.1142/S0217732315501138
http://www.math.uwaterloo.ca/~kayeats/students/icrump_thesis_final.pdf
http://www.math.uwaterloo.ca/~kayeats/students/icrump_thesis_final.pdf
http://dx.doi.org/10.1016/j.ppnp.2015.07.002
http://dx.doi.org/10.1016/j.ppnp.2015.07.002
http://dx.doi.org/10.1016/j.ppnp.2015.07.002
http://dx.doi.org/10.1016/0370-2693(76)90180-5
http://dx.doi.org/10.1016/0370-2693(76)90180-5
http://dx.doi.org/10.1016/0370-2693(76)90180-5
http://dx.doi.org/10.1103/physrevlett.37.1528
http://dx.doi.org/10.1103/physrevlett.37.1528
http://dx.doi.org/10.1103/physrevlett.37.1528
http://dx.doi.org/10.1016/0550-3213(77)90357-1
http://dx.doi.org/10.1016/0550-3213(77)90357-1
http://dx.doi.org/10.1016/0550-3213(77)90357-1
http://dx.doi.org/10.1016/0550-3213(77)90396-0
http://dx.doi.org/10.1016/0550-3213(77)90396-0
http://dx.doi.org/10.1016/0550-3213(77)90396-0
http://ChaosBook.org/FieldTheory
http://dx.doi.org/10.1016/s0378-4371(00)00415-5
http://dx.doi.org/10.1016/s0378-4371(00)00415-5
http://ChaosBook.org/
http://ChaosBook.org/
http://dx.doi.org/10.1023/B:JOSS.0000033173.38345.f9
http://dx.doi.org/10.1023/B:JOSS.0000033173.38345.f9
http://dx.doi.org/10.1023/B:JOSS.0000033173.38345.f9
http://dx.doi.org/10.1023/B:JOSS.0000033173.38345.f9
http://dx.doi.org/10.1088/0951-7715/12/4/312
http://dx.doi.org/10.1088/0951-7715/12/4/312
http://dx.doi.org/10.1088/0951-7715/12/4/312
http://dx.doi.org/10.1088/0951-7715/12/4/312
http://dx.doi.org/10.1103/physrevd.10.3978
http://dx.doi.org/10.1103/physrevd.10.3978
http://dx.doi.org/10.1103/physrevd.10.3991
http://dx.doi.org/10.1103/physrevd.10.3991
http://dx.doi.org/10.1103/physrevd.10.3991
http://dx.doi.org/10.1103/physrevd.10.3991


REFERENCES REFERENCES
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Chapter 2

Learning worldline QFT

2.1 Quantum Field Theory Spring 2018 Report
Guopeng Xu <guopengxu@gatech.edu>
term paper for Spring / Summer 2018 QFT self-study course.

The goal. Take a narrow path, learn enough Quantum Field Theory (QFT) (and
Green’s functions and such, but no more) to be able to digest sect. 1.3 Worldline for-
malism and check James sect. 1.3.2 Electron magnetic moment in worldline formalism
calculations.

What is a gauge theory? According to [6] there are two types of theories that can be
called ‘gauge theories’, the Yang-Mills theories and constrained Hamiltonian theories.

Summary In order to get correct predictions from non-Abelian field theories, which
are susceptible to large number of gauge copies, we need to choose a representative of
each gauge orbit.

2.2 Morelia Worldline Formalism course
2017-07-03 Predrag First Morelia discussion (all errors are mine):

Christian is inclined to compute (g-2) starting with their two-field spinor QED
Bern-Kosower formula. In that formulation all photons are born equal; one of
them is kept as the external field (the seagull vertex, or the kµ coefficient) is the
magnetic moment σµν), and the rest are contracted pairwise in all possible ways.
In the quenched case, this yields one gauge invariant set, the self-energy set of
sect. 1.2.3.

James would like to start with their electron propagator in constant external field,
and keep the term linear in the external field. I vastly prefer that, because it
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should be possible to distinguisn in- and out-legs, and the three kinds of N -
photon propagators that yield the minimal gauge sets.

I probably need to got through the proof of gauge invariance with them.

2017-07-04 Predrag Morelia Schubertiad day 1: the lecture written up in Schubert [15]
2012 Lectures on the worldline formalism, sects. 1.4 Gaussian integrals and
1.5 The N-photon amplitude.

Christian was right. One has to start with scalar QED one-loop effective action
to understand the Bern-Kosowar type master formulas. That yields a loop with
any number of photons attached, each photon vertex carrying a 1D proper time
Green’s function. This could be computed by usual math methods techniques
for computing Green’s functions, but they find it useful for reasons that will be
understood later to compute it as a sum of Fourier modes. The marginal modes
(4 space-time translations) are fixed in the Gauss way, by shifting the origin to
loops center of mass (i.e., different symmetry reduction for each loop).

We then separate the integration over x0, thus reducing the path integral to an
integral over the relative coordinate q:

xµ(τ) = xµ0 (τ) + qµ(τ), (2.1)

with the relative coordinate q periodic and satisfying constraint∫ T

0

dτ qµ(τ) = 0 . (2.2)

In the symmetry-reduceq-space the zero-mode integral then yields the energy-
momentum conservation δ function. The 1D Laplacian M = −d2/dτ2 has
positive eigenvalues (the usual k2 Fourier modes), (do the exercise!)

detM = (4T )D , (2.3)

and the bosonic Green’s function of − 1
2
d2

dτ2 in the symmetry-reduced space is

GcB(τ, τ ′) = 2〈τ |
(
d2

dτ2

)−1

|τ ′〉 = |τ − τ ′| − (τ, τ ′)2

T
− T

6
. (2.4)

The first derivative Ġ has a sign function, and G̈ has a δ(τ − τ ′) (because of the
translation invariance, d/dτ can always e taken to act on the left variable τ ).

This results in a Bern-Kosower [7] type master formula

Γscal[k1, ε1; . . . ; kN , εN ] = (2.5)

(−ie)N (2π)
D
δ(
∑

ki)

∫ ∞
0

dT

T
(4πT )

−D2 e−m
2T

N∏
i=1

∫ T

0

dτi

× exp

{ N∑
i,j=1

[
1
2GBijki · kj − iĠBijεi · kj + 1

2 G̈Bijεi · εj
]}
|lin(εi)
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for the one-loop N -photon amplitude in scalar QED, with photon momenta ki
and polarization vectors εi. m denotes the mass, e the charge and T the total
proper time of the scalar loop particle.

This method is not applicable to open fermion lines.

A scary realisation. This is a special case of our general, nonlinear, arbitrary or-
der interaction vertex smooth conjugacy calculation of sect. 1.6. In other words,
our calculation is not just for scalar theory in vacuum, it is for any nonconstant
background, and any order of interaction, i.e., inter alia general relativity. As
we start from a saddlepoint (classical periodic solution) that is not translation
invariant, we do not have to worry about fixing the marginal modes - there are
none.

I fear having to explain the smooth conjugacy method to civilians.

2017-07-05 Predrag Morelia Schubertiad day 2: the N = 2 photon legs case is
worked out in Schubert [15] 2012 lectures sect. 1.6 The vacuum polarization.

Even though the result is strictly zero (by Furry theorem, or by time reversal
of odd number of Ġ functions), N = 3 is useful to start understanding how
integrations by parts work.

For N photon legs, see sect. 2.5 Integration-by-parts and the replacement rule
and Ahmadiniaz, Schubert and Villanueva [4] String-inspired representations of
photon/gluon amplitudes, arXiv:1211.1821: “The Bern-Kosower rules provide
an efficient way for obtaining parameter integral representations of the one-loop
N -photon/gluon amplitudes involving a scalar, spinor or gluon loop, starting
from a master formula and using a certain integration-by-parts (“IBP”) proce-
dure. Strassler observed that this algorithm also relates to gauge invariance, since
it leads to the absorption of polarization vectors into field strength tensors. Here
we present a systematic IBP algorithm that works for arbitrary N and leads to
an integrand that is not only suitable for the application of the Bern-Kosower
rules but also optimized with respect to gauge invariance. In the photon case this
means manifest transversality at the integrand level, in the gluon case that a form
factor decomposition of the amplitude into transversal and longitudinal parts is
generated naturally by the IBP, without the necessity to consider the nonabelian
Ward identities. Our algorithm is valid off-shell, and provides an extremely ef-
ficient way of calculating the one-loop one-particle-irreducible off-shell Green’s
functions (“vertices”) in QCD. In the abelian case, we study the systematics of
the IBP also for the practically important case of the one-loop N -photon ampli-
tudes in a constant field.”

2017-07-06 Predrag Morelia Schubertiad day 3:

Idrish Huet explained to me how the numerical Monte-Carlos of worldline path
integrals work.

2017-07-05 Christian says there is a relevant new arXiv from some Vietnamese au-
thors, but I couldn’t find it.
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2017-07-07 Predrag Morelia Schubertiad day 4:

2017-07-09 5:22 am Predrag had a panic attack that we’ll never get started on (g-
2). Forgot all about going to Patzquaro, spent entire Sunday writing up the new
sect. 1.1 Electron magnetic moment and sect. 1.3.2 Electron magnetic moment in
worldline formalism.

2017-07-10 Predrag Morelia Schubertiad day 5: handwritten notes only.

2017-07-11 Predrag Morelia Schubertiad day 6:

Christian assigned homework: reformulate the magnetic moment vertex operator
(1.3), projections (1.4) and (1.5) in configuration coordinates.

2017-07-12 Predrag Morelia Edwardsiad day 7: Scalar QED open lines. Following
Ahmadiniaz, Bashir and Schubert [1] 2016 Multiphoton amplitudes and general-
ized Landau-Khalatnikov-Fradkin transformation in scalar QED, arXiv:1511.05087,
and Ahmadiniaz, Bastianelli and Corradini [2] Dressed scalar propagator in a
non-Abelian background from the worldline formalism, arXiv:1508.05144.

Worldline is sum of N! photon insertions, spinor indices and gauge transforma-
tions at the endpoints. In 1950 Feynman [11] gave the scalar QED worldline
integral (1.17). Note dT for the open line, as opposed to dT/T for the closed
loop: due to einbein gauge fixing that leads to different Fadeev-Popov for the
loop than for the line. The worldine Green’s function is now (compare to (2.4))

∆(τ1, τ2) =
1

2
|τ1 − τ2| −

1

2
(τ1 − τ2) +

τ1τ2
T

(2.6)

=
1

2
(GB(τ1, τ2)−GB(τ1, 0)−GB(0, τ2) +GB(0, 0)) .

2017-07-13 Predrag Morelia Edwardsiad day 8: handwritten notes only.

2017-07-14 Predrag Morelia Edwardsiad day 9:

Wrote down the master formula for Sxx
′

(N) and its kernel Kxx′

(N). Rewrote it in mo-
mentum space. Verified that N = 0 generates the free propagator. Checked the
N = 1 vertex. The hardest was computing the fermion self-energy, in terms of 2
dimensional regularization hypergeometric functions. Currently can compare to
Davydychev [10] only numerically.

Read also Davydychev [9] Geometrical methods in loop calculations and the
three-point function

2018-06-10 Predrag Les Houches Edwardsiad day 10:

James has an open-line Dirichlet Green’s function that should suffice to compute
(g-2). Predrag is sceptical, thinks that Dirichlet Green’s function is a bad choice,
as it breaks the translational invariance. Would prefer some periodic formulation,
where a periodic space box is taken off to infinity, than put on the mass-shell
either by some absorptive cut (yielding (1.5)) or amputated and renormalized by√
Z2 as in LSZ formulation.
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I thought that in the quenched QED worldline formulation, the one-particle re-
ducible graphs renormalize (g-2) contributions (my talk
reducesymm/presentations/LesHouch18/finiteQED.tex)
but myN -photon formulation of the QED vertex overcounts counter-terms, or, as
Magnea says in his handwritten lecture 2, “one-particle reducible graphs should
be included only once.”

2.3 Xu wordline formalism notes

2018-01-25 Predrag to Guopeng Created sect. 2.3 for you to write your QFT study
notes in (to James: they are both undergraduate students, and they are expected
to form a study group. Guopeng is from Jilin University, has gone through the
first part of Peskin and Schroeder [14].

2018-01-08 Christian Schubert that’s great the Guopeng wants to learn the worldline
formalism. The problem is that on the part that interests you most, the open
fermion line, we still have not written up anything intelligible. But James is in
the process of writing up his part of the lectures that we gave for you, which is
going to be incorporated into the lecture notes that I have on the web with Olindo
Corradini. So maybe for the time being Guopeng might want to work through
the lectures as they are, and hopefully by the time he is through with this, James’
fermion line part may already be in shape. Any questions, we are available.

2018-01-09 James Edwards It’s great to hear that Guopeng is getting involved in the
worldline formalism. Christian’s suggests that you begin with the Olindo Cor-
radini and Christian Schubert and notes [8], arXiv:1512.08694. 2012 notes by
Schubert [15], (click here) may be also helpful (Predrag: I think the 2012 notes
are included in the entirety into the Corradini and Schubert notes [8]. However,
you might find parts of Corradini 2012 lectures useful, (click here)).

In the meantime, I will write up my notes on open fermion lines and share them
with you as soon as possible. Needless to say, if Guopeng has any questions he
is most welcome to get in touch with us to discuss things in more detail.

2018-01-16 James Would Guopeng like to get involved in some ongoing calculations
pertaining to g-2? Our worldline representation of the fermion propagator pro-
vides a new technique for attacking this problem and there has already been some
progress in calculating some of the ingredients for the 3 loop contribution, but
we would also like to look at 1+ loop rainbow diagrams.

To achieve this, we would study the open fermion line with a low energy photon
attached along with a certain number of virtual photon loops. Now we know how
to deal with the fermion line we have a good idea of how to calculate these quan-
tities in a particularly efficient way (that automatically picks out the term linear
in k with the right gamma matrix structure to allow for extraction of the struc-
ture constant we seek). We expect to be able to streamline the calculation and
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maybe even earn some advantages in the limit of large numbers of virtual pho-
tons. In principle, this can be extended to the case of a constant electromagnetic
background too.

We can begin working by checking the one loop contribution as a warm-up (I
have notes on this already) before looking at the 2-loop rainbow. This requires
familiarity with the scalar propagator in the worldline approach before looking
at open spinor lines and the coupling to external photons. The latter remain as
my job to write up our notes from Predrag’s visit, and I will strive to do this asap.

2018-02-13 Predrag I find discrete lattice problems very useful in understanding con-
cepts in QFT. Study ChaosBook.org/FieldTheory/postscript.html Chapter 1 Lat-
tice field theory. You will learn that Laplacian generates all walks on a lattice
(making it easier to understand path integrals), that a Green’s function is the
propagator (sum over all walks), that the mysterious eiET/~ and eip·x/~’s of
Quantum Mechanics are roots of unity (a consequence of time and space transla-
tion invariance), and how that enables you to compute the propagators / Green’s
functions.

All of the above can be then continued in the small lattice spacing limit into
things you accept on faith when you read QFT textbook. But here it is just
matrices and vectors, and you can check every step.

Do not use much time on the discrete lattice formalism, as we shall not use it in
the current project.

2018-02-18 Predrag To see whether you have actually understood Green’s function
on the level needed for our term’s goals, see whether you can follow worldline
Green’s function calculations following eq. (1.22), eq. (2.6) above, eqs. (2.35)
and (2.41) in Corradini and Schubert notes [8].

2018-03-27 Guopeng to James I think I have understood the material “Spinning par-
ticles in QM and QFT” [8]. I skipped the 1.4 section and 2.5. If you could give
me the calculation, I can go through it.

2018-03-28 James Great to hear that you have gone through the material from the
notes. At this stage, I don’t think you need to worry about the gravitational
case in section 1.4 and it’s true that initially we are more concerned with Abelian
QED (that said, I would recommend that you do take a look at section 2.5.1 when
you have a chance, just because it gives the simplest extension of the worldline
formalism to the non-Abelian case). These days we have some more powerful
techniques to deal with colour degrees of freedom, but it’s good to see the simpler
presentation in that section).

I understand that you were referring to the material on open lines in the worldline
approach, which is of course relevant to the g-2 calculation. I have almost written
up my notes from Predrag’s visit and hope to send them to you by the end of the
week; I hope you don’t mind being an “alpha tester” for these notes as one of
the first people to go through them! I would encourage you to go through them
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critically in case any typos have crept in. At the very least, I will send you the
vacuum propagators for the scalar and spinor particle this week.

In the meantime, do let us know if you have any questions about the notes or
exercises so far. If you’re eager to get started, I would suggest that you review
the path integral calculation of quantum mechanical kernels (i.e. matrix elements
of the form K(x, y;T ) = 〈y| exp[−iTH]|x〉 including electromagnetic interac-
tions that will be used repeatedly in the open line calculations. For example,
sects. 2.18 to 2.20 of Kleinert [12] path integral textbook has full details. 1

2018-03-31 Predrag to Guopeng - time to start LaTexing Skip section 2.5.1 (exten-
sion of the worldline formalism to the non-Abelian case) in Corradini and Schu-
bert notes [8], we are very short on time. Focus on QED. I believe you have gone
through the path integral calculation of quantum mechanical kernel.

Instead, please write up your derivation of the Green’s functions (1.35) and
(2.15), then (1.41), here, in this text, in LaTeX, with all signs and prefactors
correct. If you have time before James’ notes arrive, going through sect. 2.4 The
vacuum polarization might be good - that connects these mysterious worldline
Green’s functions to the standard Feynman integrals like those you see in Peskin
and Schroeder.

2018-04-16 Predrag to Guopeng Go through Stone and Goldbart [16], Mathematics
for Physics: A Guided Tour for Graduate Students, Chapter 5 Green Functions.
A pre-publication draft can be found here.

It is all about 1-dimensional Green’s functions - understanding material related
to kind of function you need for worldline formalism should be helpfull to you.

Stone and Goldbart [16] is an advanced summary where you will find almost
everything one needs to know. More pedestrian and perhaps easier to read is
Arfken and Weber [5].

I like Mathews and Walker [13], based on lectures by Richard Feynman at Cor-
nell University. You can download it from here. However, I’m not sure it will
help you understand the problem at hand.

The above examples are the usual way students are taught Green’s functions. I
personally find deriving them as continuum limits of lattice formulations ( click
here) the most insightful and easiest to understand. My derivation is for periodic
boundary conditions. You will have to also understand other kinds of boundary
conditions that arise in your project.

2018-07-12 Guopeng Added the Edwards reference Ahmadiniaz et al. [3] One-particle
reducible contribution to the one-loop spinor propagator in a constant field

2018-07-12 Guopeng, Predrag Added the Edwards / Cvitanović June 2018 white-
board notes, reducesymm/guopeng/ :

1Predrag: 2018-04-16 I have a copy of Kleinert [12]
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Mrenorm.pdf The perturbative expansions for
the magnetic moment anomaly (1.6).

M4.pdf
GammaVertex.pdf
WardIds.pdf
worldLprop.pdf
M4.pdf
aSums.pdf The next five files are gauge sets akm′m defined in (1.10):
a111.pdf
a111Gset.pdf
a111old.pdf
a120.pdf
a210.pdf
1loopPhi3.pdf is an outline of Edwards purported 1-loop calculation.

2018-07-13 Guopeng working through Edwards’ 1loopPhi3.pdf calculation sketch:

The note starts out with the N photon insertions propagator for a charged scalar
field in external field (1.21) 2

N photon ins. fig =

∫ ∞
0

dT e−m
2T

= (ie)N
∫ ∞

0

dT e−m
2T

∫ T

0

dτ1 · · ·
∫ T

0

dτN

×
∫ x(T )=x

x(0)=y

Dx ei
∑N
i=1 ki·x(τi)e−

∫ T
0
dτ 1

4 ẋ
2

. (2.7)

The expression #/[(xa − xb)
2]D/2−1 can be obtained by change of variable

u = 1/T , and evaluating the Gaussian integral∫ ∞
0

dT

(4πT )D/2
e−(xa−xb)2/4T .

The Ingredient #1:
3 4 I calculate this by factorizing the Laplacian,

Det
(
−1

4

∂2

∂τ2
+
Bab
4T

)
= Det

[
−1

4

∂2

∂τ2

(
1− (

∂2

∂τ2
)−1Bab

T

)]
(2.8)

= Det
(
−1

4

∂2

∂τ2

)
Det

(
1− (

∂2

∂τ2
)−1Bab

T

)
.

2Guopeng 2018-07-29: A confusing point about the master formula at the top of the 1loopPhi3.pdf
calculation: it seems like there is no linear part of the polarization vector. Where have those vectors gone?

3Guopeng 2018-07-29: I wonder if there should be a T in the denominator of the derivative term,
because I can’t find the extra T in the eq. (2.11) of “Spinning particles in the QM and QFT" [8].

4James 2018-07-29: It is probable that in the notes you refer to the authors had made a rescaling of the
interval [0, T ] to the unit interval, which induces a 1/T for the derivative term.
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where Det
(
− 1

4
∂2

∂τ2

)
= (4πT )−

D
2 . 5 As for the Det

(
1− ( ∂2

∂τ2 )−1Bab
T

)
, it

would appear that 6 7

−(
∂2

∂τ2
)−1Bab

T
=
GBab
T

,

so that the determinant could be (1 + GBab
T )−

D
2 , where GBab is the loop Green’s

function. As

Bab(τ1, τ2) = [δ(τa − τ1)− δ(τb − τ1)][δ(τa − τ2)− δ(τb − τ2)] ,

−( ∂2

∂τ2
1

)−1Bab
T is proportional to τ − 1

2 (τa + τb), since

∂2

∂τ2
1

|τ1 − τ2| = 2δ(τ1 − τ2)

|τa − τ | − |τb − τ | = 2τ − (τa + τb) . (2.9)
8

The Ingredient #2:

∆(1)(τ1, τ2|τa, τb) := 〈τ1|
1

− 1
4T

∂2

∂τ2 + Bab
4T̄

|τ2〉 . (2.10)

For 〈τ1|Bab4T̄
|τ2〉 , we have

< τ1|Bab(τ1, τ2)|τ2 >
= < τ1|[δ(τa − τ1)− δ(τb − τ1)][δ(τa − τ2)− δ(τb − τ2)]|τ2 >

=

∫ ∞
0

dτ < τ1|[δ(τa − τ1)− δ(τb − τ1)][δ(τa − τ2)− δ(τb − τ2)]|τ >< τ |τ2 >

= δ(τ1 − τ2)([δ(τa − τ1)− δ(τb − τ1)][δ(τa − τ2)− δ(τb − τ2)] (2.11)

since < τ1|τ >= δ(τ1 − τ) , < τ |τ2 >= δ(τ − τ2) and∫ ∞
0

dτ δ(τ1 − τ)δ(τ − τ2) = δ(τ1 − τ2) ,

but this calculation doesn’t match the result in the 1loopPhi3.pdf note.

However, note that when we calculate Det
(

1− ( ∂2

∂τ2 )−1Bab
T

)
, we assume that

−( ∂2

∂τ2 )−1Bab
T = GBab

T , 9 so the matrix is diagonal matrix, that’s why we have

Det
(

1− (
∂2

∂τ2
)−1Bab

T

)
= (1 +

GBab
T

)−
D
2

5Predrag: 2018-08-04 to Guopeng: Have you gone through exercise of evaluating (2.3)? If so, write it
up.

6James 2018-07-29: This is not correct! See Chris’ review eq. (8.9) (you are missing some delta
functions).

7Guopeng 2018-08-03: What’s the eq. (8.9) in Chris’s review that you refer to? I have looked at tree
level notes and “Spinning particles in QM and QFT” [8], and I find no eq. (8.9).

8Guopeng 2018-07-29: I don’t know why this is equal to the loop Green’s function.
9Guopeng 2018-07-29: I don’t know how to prove this.

printed August 20, 2018 80



CHAPTER 2. LEARNING WORLDLINE QFT

but in terms of the result in James calculation,

< τ1|Bab(τ1, τ2)|τ2 >=
(∆1a −∆1b)(∆a2 −∆b2)

T̄ +GBab

when τ1 6= τ2, the matrix element should be zero if it is diagonal, so the matrix
shouldn’t be diagonal, then how is the determinant to be calculated?

2018-07-30 Predrag Best to make intermediate calculation questions into footnotes,
which you then comment out as you correct (or expand upon) the steps in the
calculation as you fix them, so the resulting blog is the clean, correct calculation.

Also, one always has a space after ‘,’ and ‘.’ but not a space before them.

2018-08-01 Predrag to Guopeng: A crucial ingredient in any research is keeping up
with literature. I did not write down the lecture notes for 2017-07-12 Predrag
Morelia Edwardsiad day 7 (above), but presumably the reference Ahmadiniaz,
Bashir and Schubert [1] preceding (2.6) teaches you how to do one-loop vertex
corrections for scalar QED. Though I have to admit that I do not see Edwards’
Green’s functions with different boundary conditions there. So just give a quick
read to the two articles, and than maybe we go in depth in some calculation in
them.

Possibly references listed under 2017-07-14 Predrag are also relevant.

2018-08-03 Guopeng In 1loopPhi3.pdf note the ∆(1) is defined as in (2.10). If I ex-
tract − 1

4T
∂2

∂τ2 , and expand the latter term, 10 I obtain

∆(1)(τ1, τ2|τa, τb) = 〈τ1|[−
1

4T

∂2

∂τ2
]−1[1 + (− 1

4T

∂2

∂τ2
)−1Bab

4T̄
]−1|τ2〉

' 〈τ1|[−
1

4T

∂2

∂τ2
]−1[1− (− 1

4T

∂2

∂τ2
)−1Bab

4T̄
]|τ2〉

= 〈τ1|[(−
1

4T

∂2

∂τ2
)−1 − Bab

4T̄
]|τ2〉 . (2.12)

Using

〈τ1|(−
1

4T

∂2

∂τ2
)−1|τ2〉 = ∆(τ1, τ2)

I get

〈τ1| −
Bab
4T̄
|τ2〉 =

(∆1a −∆1b)(∆a2 −∆b2)

T̄ +GBab
,

so it appears again that we need to know how to prove the latter equation. The
reason why I expand the latter term is that I assume the deviation from the clas-
sical path is small. But I could be wrong.

Currently I am looking through Ahmadiniaz, Bashir and Schubert [1] and prepar-
ing my TOEFL exam:)

10Predrag: 2018-08-04 to Guopeng: I hope we are not allowed any such “small deviation” approximations,
and that Edwards’ Green’s functions are exact. But I have not gone through 1loopPhi3.pdf myself.
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2018-08-14 Guopeng A small handwriting mistake is founded. In treelevel note, there
misses a charge in the right side of equation 1.97 in the second term.

Some thoughts or questions about worldline formalism. When we derive the
master formula for scalar QED, we assume that the electromagnetic field is com-
posed of N photons, so we can use this formula to describe a scalar particle(like
a proton or electron) interact with N photons. So when N = 0, it describe a
free scalar particle. WhenN = 1, it describe a scalar particle emit one photon
or absorb one photon, in this case, I wander whether it satisfy the Special Rel-
ativity. For an electron emit a photon, if we observe this process in the center
of mass frame with respect to ingoing electron, then it will violate the energy
conservation law. For N = 2, a scalar particle emit(absorb) a photon and then
absorb(emit) a photon at somewhere else, if the two photon is two different pho-
tons( I mean the source is different), then this describe Compton scattering pro-
cess. If the two photon is the same one(for instance, emitted first then absorbed
by the same electron), this describe self-energy process, in this case, we take the
replacement

εµεν −→
∫

dDk

(2π)D
ηµν
k2

in master formula. This is obtained from "sew" two photon together.

In 1loopPhi3 calculation. The extra term behind the master formula∫ T

0

dτa

∫ T

0

dτb
]

[(x(τa)− x(τb))2]D/2−1

This act like the photon vector operator, thus we add this term.
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Chapter 3

Daily QFT blog

2010-03-04 Predrag Kevin Mitchell is here, says we should study Littlejohn and M.
Reinsch [39]: “Gauge fields in the separation of rotations and internal motions
in the n-body problem.” I will put it into ChaosBook.org/library. Read 3-body
problem sections. See p. 14 for a discussion of the three-body coordinates and
p. 25 for a discussion of the three-body section (gauge).

2011-07-27 PC What follows is casting eye far ahead - to the role of gauge invariance
in Quantum Field Theories. Following articles seem of interest as follow-ups
on Cvitanović [11], Group theory for Feynman diagrams in non-Abelian gauge
theories:

Khellat [34] strikes me as dubious...

Martens [43] writes: “We calculate the two-loop matching corrections for the
gauge couplings at the Grand Unification scale in a general framework that aims
at making as few assumptions on the underlying Grand Unified Theory (GUT) as
possible. In this paper we present an intermediate result that is general enough to
be applied to the Georgi-Glashow SU(5) as a “toy model”. The numerical effects
in this theory are found to be larger than the current experimental uncertainty on
αs . Furthermore, we give many technical details regarding renormalization pro-
cedure, tadpole terms, gauge fixing and the treatment of group theory factors,
which is useful preparative work for the extension of the calculation to super-
symmetric GUTs. ”

Tye and Zhang [61] write: “ Bern, Carrasco and Johansson have conjectured
dual identities inside the gluon tree scattering amplitudes. We use the properties
of the heterotic string and open string tree scattering amplitudes to refine and
derive these dual identities. These identities can be carried over to loop ampli-
tudes using the unitarity method. Furthermore, given the M -gluon (as well as
gluon-gluino) tree amplitudes, M -graviton (as well as graviton-gravitino) tree
scattering amplitudes can be written down immediately, avoiding the derivation
of Feynman rules and the evaluation of Feynman diagrams for graviton scattering
amplitudes

84
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Eto et al. [23] write: “We construct the general vortex solution in the color-flavor-
locked vacuum of a non-Abelian gauge theory, where the gauge group is taken
to be the product of an arbitrary simple group and U(1). Use of the holomorphic
invariants allows us to extend the moduli-matrix method and to determine the
vortex moduli space in all cases. Our approach provides a new framework for
studying solitons of non-Abelian varieties with various possible applications in
physics.”

and there is much much more...; will continue some other time.

2011-11-03 PC Today is that time. I’m sitting in Intractability Workshop: Count-
ing, Inference and Optimization on Graphs with a bunch of high-level computer
nerds, and I almost afraid to say what I’ll say next (plumbers avoid physicists
that say such things): In constructing our atlas of inertial manifold of turbulent
pipe flow, we fix the SO(2) × O(2) phase separately on each local chart. The
freedom of doing that is called “local gauge invariance” (blame Hermann Weyl
for the ugly word) and in the limit of ∞ period cycles, cycle points are dense
and their local charts are infinitesimal, so this is really local gauge invariance.
In the world of computer science they use this freedom profitably, to reduce the
number of terms they use in their computations. That suggests that there might
be a (variational?) principle that selects an optimal choice of (relative) template
phases (i.e., gauge transformations that connect a chart to the next chart).

Nerds call this ’reparametrization’ - it supposedly speeds up calculations. Have
not really seen that in quantum field theory, with exception of light cone gauges
and their relatively recent applications by the Witten cult.

Literature: ref. [7, 8] and stuff on this site (if you can understand any of it).

Feel free to ignore this remark. It’s future research.

2012-05-16 Parameswaran Nair vpnair@optonline.net writes on saddle solutions of
Yang-Mills:

I attributed the conjecture to Hitchin; it was actually due to Atiyah and Jones.
”The only finite action solutions of the YM equations are instantons, either self-
dual or antiself-dual.” This was the conjecture for which the refs provide counter
examples.

Here is the paper by my student Schiff [55], who writes: “ Following a pro-
posal of Burzlaff (Phys.Rev.D 24 (1981) 546), we find solutions of the classical
equations of motion of an abelian Higgs model on hyperbolic space, and thereby
obtain a series of non-self-dual classical solutions of four-dimensional SU(3)
gauge theory. The lowest value of the action for these solutions is roughly 3.3
times the standard instanton action. ”

“ In physics, despite the fact that the non-self-dual solutions correspond to sad-
dle points, and not minima, of the Yang-Mills functional, to do a correct semi-
classical approximation by a saddle-point evaluation of the path integral, it is
certainly necessary to include a contribution due to nonself-dual solutions, and
if it should be the case that there is a non-self-dual solution with action lower
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than the instanton action (this question is currently open, and of substantial im-
portance), then such a contribution would even dominate. Unfortunately, it is
questionable whether the semiclassical approximation can give a reliable picture
of quantized gauge theories; it has been argued that in four-dimensional gauge
theory small quantum fluctuations around classical solutions cannot be respon-
sible for confinement, unlike in certain lower-dimensional theories. But it may
still be possible to extract some physics from the semiclassical approach. A first
step in such a direction would be to obtain a good understanding of the full set of
non-self-dual solutions and their properties. [...] We pursue an old idea, due to
Burzlaft [10], for obtaining a non-self-dual, ”cylindrically symmetric” solution
for gauge group SU(3). If we write R4 = R × R3, and identify some SU(2) [or
SO(3)] subgroup of SU(3), with generators that we will denote T’, then we can
look at the set of SU(3) gauge potentials which are invariant under the action
of the group generated by the sum of the T”s and the generators of rotations on
the IR factor of E (we choose the T”s and the IR rotation generators to satisfy
the same commutation relations). We call such potentials ”cylindrically sym-
metric” (in analogy to the standard notion of cylindrical symmetry in IR, which
involves writing R =RXIR and requiring rotational symmetry on the E factor).
Such potentials will be specified by a number of functions of two variables: the
coordinate on the IR factor of E (which we will denote x), and the radial coor-
dinate of the E factor (which we will denote y). Clearly the equations of motion
for such cylindrically symmetric potentials (if they are consistent) will reduce to
equations on the space I (x,y ):y 0]. „

The earlier work is by Sibner, Sibner, Uhlenbeck [58]. They write “ The Yang-
Mills functional for connections on principle SU(2) bundles over S 4 is studied.
Critical points of the functional satisfy a system of second-order partial differ-
ential equations, the Yang-Mills equations. If, in particular, the critical point is
a minimum, it satisfies a first-order system, the self-dual or anti-self-dual equa-
tions. Here, we exhibit an infinite number of finite-action non-minimal unstable
critical points. They are obtained by constructing a topologically nontrivial loop
of connections to which min-max theory is applied. The construction exploits the
fundamental relationship between certain invariant instantons on S 4 and mag-
netic monopoles on H 3. This result settles a question in gauge field theory that
has been open for many years. ”

Bor [2] writes “ We prove the existence of a new family of non-self-dual finite-
energy solutions to the Yang-Mills equations on Euclidean four-space, with SU(2)
as a gauge group. The approach is that of “equivariant geometry:” attention is
restricted to a special class of fields, those that satisfy a certain kind of rotational
symmetry, for which it is proved that (1) a solution to the Yang-Mills equations
exists among them; and (2) no solution to the self-duality equations exists among
them. The first assertion is proved by an application of the direct method of the
calculus of variations (existence and regularity of minimizers), and the second
assertion by studying the symmetry properties of the linearized self-duality equa-
tions. The same technique yields a new family of non-self-dual solutions on the
complex projective plane. ”
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2012-04-19 Daniel “graveyard of obvious ideas” rings a little aggressive, no? “if you
are a master of quantum-mechanics or QFT symmetries and their linear irre-
ducible representations, [14] you may leave your baggage at the door” rings a
little aggressive, too.
Predrag: Get’s edgy. In “master of their linear irreducible representations” I
make fun of myself. Let the referee object to that?

[2012-06-14 Predrag] Grin and bear it. Pulling my Senior discount card here.

2013-07-15 Predrag I’ve collected a bunch of QFT e-books, saved them in Chaos-
Book.org/library:

5449Grigorenko06.pdf

Abarbanel 2013.pdf

CoKaWa04.pdf

DasFerbel03.pdf

Zee03.pdf

hao89.pdf

Nichkawde13.pdf

Das06.pdf

Milton01.pdf

SeoSan12.pdf

NagashimaI10.pdf

Elbaz12.pdf [19]

Sadovskii [54] Quantum Field Theory

Sadovskii [53] Diagrammatics: Lectures on Selected Problems in Condensed
Matter Theory

2013-01-20 Predrag This really belongs to planar field theory, but for time being I
note it here: Lucini and Panero [40] (in Chaosbook.org/library) might be of in-
terest. All I get is one sentence and a reference only to ref. [13].

I should also read Kang and Loebl [33] The enumeration of planar graphs via
Wick’s theorem.

2013-03-27 Predrag Do not understand this article: Jiménez-Lara and J. Llibre [29],
Periodic orbits and nonintegrability of generalized classical Yang–Mills Hamil-
tonian systems.

Hu [28] General initial value form of the semiclassical propagator, write: “ We
show a general initial value form of the semiclassical propagator. Similar to cel-
lular dynamics, this formulation involves only the nearby orbits approximation:
the evolution of nearby orbits is approximated by linearized dynamics. This
phase space smearing formulation keeps the accuracy of the original Van Vleck-
Gutzwiller propagator. As an illustration, we present a simple initial value form
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of the semiclassical propagator. It is nonsingular everywhere and is efficient for
numeric implementation. ”

2013-04-16 Predrag There seems to be whole literature on classical Yang-Mills (CYM).
In Entropy production in classical Yang-Mills theory from Glasma initial con-
ditions Hideaki Iida, Teiji Kunihiro, Berndt Müller, Akira Ohnishi, Andreas
Schäfer, and Toru T. Takahashi, arXiv:1304.1807, write:

Pure Yang-Mills theory in temporal gauge with the Hamiltonian in the noncom-
pact (A, E) scheme on a cubic spatial lattice. The initial condition satisfies
Gauss’ law; check its validity as well as Energy conservation carefully at ev-
ery time step. Define distance (6), (7) that is gauge invariant under residual (time
independent) gauge transformations.now in CB

They call the stability matrix ‘Hessian’, and its eigenvalues at time slice the
‘local Lyapunov exponents (LLEs)’ [38]: LLE plays the role of a “temporally
local” Lyapunov exponent, which specifies the departure rate of two trajectories
in a short time period. Then they say this (?): “For a system where stable and
unstable modes couple with each other as in the present case, an LLE does not
generally agree with the Lyapunov exponent in a long time period.” “Ref. [38]
introduced another kind of Lyapunov exponent called the intermediate Lyapunov
exponent (ILE), which is an “averaged Lyapunov exponent” for an intermediate
time period; i.e., a time period which is sufficiently small compared to the ther-
malization time but large enough to sample a significant fraction of phase space.
By its definition (13) it is the set of stability exponents for a finite time Jacobian
matrix.

“Two comments are in order, here: A Lyapunov exponent [PC: not the Lyapunov
exponent, they mean the stability exponent] can be (real) positive, negative, zero
or purely imaginary. Liouville’s theorem tells us that the determinant of the time
evolution matrix U is unity, implying that the sum of all positive and negative
ILEs is zero. The KS entropy is given as a sum of positive Lyapunov exponents.
The second comment concerns gauge invariance of the Lyapunov exponents. In
the Appendix we show that LLE and ILE are indeed gauge invariant under time-
independent gauge transformations in the temporal gauge.”

2013-11-27 Predrag One way to reduce symmetry seems obvious; average over the
group orbit. That reduces the dimension of the state space by the dimension of
the group orbit; in the reduced state space each group orbit is replaced by a point,
it’s average value. It is a natural construct in the theory of linear representations
of groups, very important, where it is called a ‘character’ of the representation; I
use it in my trace formula for systems with continuous symmetries. But it is a
trace of a linear evolution operator.

Still, I do not seem to know how to do this for (1) nonlinear systems, (2) QFT
gauge fixing. Barth and Christensen [1] is an example where this is done - per-
haps a way too complicated example... (here are my notes on it, which I no
longer understand myself :)
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2014-01-11 Predrag I always wonder whether we should be reducing symmetries by
averaging over group orbits (method of characters, used in my derivation of the
spectral determinant in presence of continuous symmetries). Churchill, Kummer
and Rod [9] write in On averaging, reduction, and symmetry in Hamiltonian
systems: The existence of periodic orbits for Hamiltonian systems at low positive
energies can be deduced from the existence of nondegenerate critical points of
an averaged Hamiltonian on an associated “reduced space.” The paper exploits
discrete symmetries, including reversing diffeomorphisms, that occur in a given
system. The symmetries are used to locate the periodic orbits in the averaged
Hamiltonian, and thence in the original Hamiltonian when the periodic orbits
are continued under perturbations admitting the same symmetries.”

2014-01-11 Predrag Kummer [37], On the construction of the reduced phase space
of a Hamiltonian system with symmetry writes: “ Weinstein [...] uses this corre-
spondence between connections and lifts in his construction of Sternberg’s phase
space for a particle in a Yang-Mills field. ”

l. A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett.
Math. Phys. 2 (1978), 417-420.
2. S. STERNBERG, Minimal coupling and the symplectic mechanics of a clas-
sical particle in the presence of a Yang-Mills field, Proc. Nat. Acad. Sci. 74
(1977),5253-5254.
3. S. STERNBERG, On the role of field theories in our physical conception of
geometry in Differential geometric methods in mathematical physics II, Springer
Lecture Notes in Mathematics, 676 (1977), 1-80.

2014-07-18 Predrag Mariño [42] lectures on non-perturbative effects are perhaps of
interest: “a review of non-perturbative instanton effects in quantum theories,
with a focus on large N gauge theories and matrix models. I first consider the
structure of these effects in the case of ordinary differential equations, which
provide a model for more complicated theories, and I introduce in a pedagogical
way some technology from resurgent analysis, like trans-series and the resurgent
version of the Stokes phenomenon. After reviewing instanton effects in quantum
mechanics and quantum field theory, I address general aspects of large N in-
stantons, and then present a detailed review of non-perturbative effects in matrix
models.”

2014-07-30 Predrag Paul Hoyer recent talk at Light Cone 2014 is too packed to be
useful, but maybe has some pointers to recent interesting non-perturbative QCD
results.

2014-08-01 Burak Sydney Coleman [10] gave a lecture on semi-classical formula-
tions of QFT in 1975. He has several semi-classical treatment methods with
names “Zeroth-Order Weak-Coupling Expansion", “Coherent-State Variation",
“First-Order Weak-Coupling Expansion", “Bohr-Sommerfeld Quantization", and
“DHN Formula". I didn’t yet understand what any of these means, I’m just start-
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ing to read it, but if we can find a way of adapting these methods to the numerical
calculations that might be a good starting point.

2014-08-01 Predrag Coleman was a great expositor - on a level of a Nobelist. Would
be cute if we found something in his lectures we can use today. “DHN For-
mula" (I knew all three - the first two authors are currently dead) should be the
Gutzwiller formula for QFT. Paolo Muratore-Ginanneschi, a former student in
our Copenhagen group, wrote something on that [48] that I still have not studied
in depth. But we maybe should.

2014-08-01 Burak Coleman refers to the pedagogical overview by Rajaraman [51]
for the derivation of “DHN Formula” and I think this will be a good starting
point for me. So far, keywords are familiar, in the introduction, he talks about
periodic orbits and their stability and how hard it is to find them for realistic
cases. A lot of work apparently in this period has been done using Sine-Gordon
equation because they had analytical solutions. I looked for articles which cite
[51] but didn’t see anything that relies on numerical solutions of field equations.

2014-08-13 Predrag In my notes it says that Dyson himself told me to read Draw-
ing theories apart: the dispersion of Feynman diagrams in postwar physics, by
Kaiser [31]. So we better read it - I will put a pilfered eBook copy Kaiser09.pdf
into ChaosBook.org/library.

2014-11-05 Predrag Do not know if this is something for us, but worth having a look
at:

Luca Salasnich, Discrete bright solitons in Bose-Einstein condensates and di-
mensional reduction in quantum field theory, arXiv:1411.0160: “ We review the
derivation of an effective one-dimensional (1D) discrete nonpolynomial Schrödinger
equation from the continuous 3D Gross-Pitaevskii equation with transverse har-
monic confinement and axial periodic potential. Then we study the bright soli-
tons obtained from this discrete nonpolynomial equation showing that they give
rise to the collapse of the condensate above a critical attractive strength. We also
investigate the dimensional reduction of a bosonic quantum field theory, deriv-
ing an effective 1D nonpolynomial Heisenberg equation from the 3D Heisenberg
equation of the continuous bosonic field operator under the action of transverse
harmonic confinement. Moreover, by taking into account the presence of an
axial periodic potential we find a generalized Bose-Hubbard model which re-
duces to the familiar 1D Bose-Hubbard Hamiltonian only if a strong inequality
is satisfied. Remarkably, in the absence of axial periodic potential our 1D non-
polynomial Heisenberg equation gives the generalized Lieb-Liniger theory we
obtained some years ago.”

2014-11-23 Predrag Zvonkin [65] ( click here) writes in Matrix integrals and map
enumeration: An accessible introduction: “Physicists working in two-dimensional
quantum gravity invented a new method of map enumeration based on compu-
tation of Gaussian integrals over the space of Hermitian matrices. This paper
explains the basic facts of the method and provides an accessible introduction to
the subject.”
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2015-01-09 Predrag Tudor Dimofte gave a talk in Math on Geometric representation
theory, symplectic duality, and 3d supersymmetric gauge theory

Abstract: Recently, a “symplectic duality" between D-modules on certain pairs
of algebraic symplectic manifolds was discovered, generalizing classic work of
Beilinson-Ginzburg-Soergel in geometric representation theory. I will discuss
how such dual spaces (some known and some new) arise naturally in supersym-
metric gauge theory in three dimensions.

Tudor is a mathematical physicist at the IAS, School of Physics, Princeton.

I went to the talk, and - wow! You would think I know something about a gauge
theory but is is like it was in Lithuanian: I understood individual words, and the
alphabet seemed to be Latin - there were things that looked like letter G or letter
H and what we call quotient M/G is apparently called ‘resolution’. The founda-
tional paper is Braden, Licata, Proudfoot and Webster [5], and its followups on
“Quantizations of conical symplectic resolutions II: category O and symplectic
duality”. Good luck reading these...

and of course, it was emphatically N=4 and not N=2, so now I’m at peace

:)

2015-02-04 Predrag Stephan Stetina <stetina@hep.itp.tuwien.ac.at> thesis
on arXiv:1502.00122 uses my Field Theory, and says that 2PI graphs are no
sweat (for me they were). Wrote to him:

You seem to have proven Feynman wrong :) That’s no mean achievement. Con-
grats!

Me and my friends have been studying turbulence in fluid dynamics as a warmup
for doing the same in Yang-Mills. If you see some interesting turbulence in
relativistic fluid dynamics, we are always willing to have a look at things more
field-theoretical.

2015-02-09 Stephan Stetina If you are referring to Feynman comments on your book,
I definitely disagree with them - I found your book on field theory more than
helpful!

It is very difficult to study (quantum) turbulence within our approach - however
it would be very interesting to do so! The original idea was to derive the two-
fluid hydrodynamics of superfluids from an underlying field theory. To be able
to obtain analytical results, we had to apply some rather drastic simplifications:

We assumed the superfluid condensate to be uniform and homogeneous (which
translate in a homogeneous superflow in the hydro picture). Further more we
used imaginary time formalism which strictly limits us to study systems in equi-
librium. It would most likely be very challenging (in particular numerically) to
introduce a condensate with arbitrary space and time dependence. In the current
calculations, a probable onset of turbulence manifests itself as "something go-
ing wrong" - for example above certain velocities of the superfluid it is no longer
possible to construct a stable and homogeneous superfluid phase. Another exam-
ple is the appearance of the “two-stream instability" which can also be detected
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in our approach (see for instance arXiv:1312.5993). I am not sure yet how much
this approach has in common with the one you have cited.

2015-08-20 Predrag Strauss, Horwitz, Levitan, and Yahalom [60] Quantum field the-
ory of classically unstable Hamiltonian dynamics might be a good starting point
to learn about dynamical systems for which the motions can be described in
terms of geodesics on a manifold. They say : “ ... ordinary potential models
can be cast into this form by means of a conformal map. The geodesic deviation
equation of Jacobi, constructed with a second covariant derivative, is unitarily
equivalent to that of a parametric harmonic oscillator, and we study the second
quantization of this oscillator. The excitations of the Fock space modes corre-
spond to the emission and absorption of quanta into the dynamical medium, thus
associating unstable behavior of the dynamical system with calculable fluctua-
tions in an ensemble with possible thermodynamic consequences. ”

2016-01-08 Predrag Bogomolny wants us to study Englert and Schwinger [20–22].
Why? Ref. [22] Semiclassical atom seems to be reinventing Gutzwiller, with-
out citing him. These papers are not cited much either, a pair of Nobel prizes
notwithstanding :) Rohwedder and Englert [52] continue with Semiclassical
quantization in momentum space. There is something called the Englert-Schwinger
equation used in graphite studies [41]. Ullmo et al. [62] cite it: Semiclassical
density functional theory: Strutinsky energy corrections in quantum dots

2016-04-06 Predrag Went to hear Sung-Jin Oh talk about

“... wave equations that arise from geometric considerations. Prime
examples include the wave map equation and the Yang-Mills equation
on the Minkowski space. On one hand, these are fundamental field
theories arising in physics; on the other hand, they may be thought
of as the hyperbolic analogues of the harmonic map and the elliptic
Yang-Mills equations, which are interesting geometric PDEs on their
own. I will discuss the recent progress on the problem of global reg-
ularity and asymptotic behavior of solutions to these PDEs.”

This kind of work might offer a path to computing non-trivial “exact coher-
ent states” (non-perturbative classical solutions) of Yang-Mills. Experimentally
I used Evernote on my phone to take notes and photos of the white board -
160406SungJinOh.pdf in this repository - maybe it helps if one wants to get
started reading the literature, though it is going to be hard going.

Both in the Abelian case (what they call “Maxwell-Klein-Gordon” for a scalar
charged particle and “Maxwell-Dirac” for spin 1/2), and in the non-Abelian case
(what they call “Yang-Mills”) they cheerfully set the particle mass to m = 0,
which is a killer for us.

I tried to briefly explain to Sung-Jin Oh two things of possible interest to people
solving the classical Maxwell-Klein-Gordon and Yang-Mills PDEs:
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1. finiteness conjecture: perhaps they can find saddle-points (non-perturbative
classical solutions of QED) that give the gauge-invariant sets as the starting
step in perturbative calculations, rather than computing Feynman-diagrammatic
corrections to trivial vacuum.
My explanation probably did more harm than good, as I liberally mixed in
QFT, and kept confusing the quantum and the classical problem - it is for a
reason that PDE people do not know what expressions like “on-mass-shell
amplitudes" and “Ward identities" mean.

2. I ran Sung-Jin Oh quickly through ChaosBook.org/tutorials to make him
aware that for turbulent nonlinear PDEs one has to work in the∞-dimensional
state space, rather than look at the solutions only in the (d+1)-dimensional
configuration space.
He would have been more impressed if we could find such solutions for
Eulerian flows, and give him a criterion which solutions are important, but I
have no idea how to find smooth solutions for Euler (no viscosity Laplacian
to help us there...).

All in all, I still have no idea for what kind of ‘exact coherent states’ to compute
for Yang-Mills.

2016-05-26 Predrag William Graham Hoover and Kenichiro Aoki Order and Chaos
in the One-Dimensional φ4 Model : N-Dependence and the Second Law of
Thermodynamics, arXiv:1605.07721 write: “ We revisit the equilibrium one-
dimensional φ4 model from the dynamical systems point of view. We find an
infinite number of periodic orbits which are computationally stable while at the
same time exhibiting positive Lyapunov exponents. We formulate a standard
initial condition for the investigation of the microcanonical chaotic number de-
pendence of the model. We speculate on the uniqueness of the model’s chaotic
sea and on the connection of such collections of deterministic and time-reversible
states to the Second Law of Thermodynamics.

2016-10-12 Predrag Read Nguyen [49] The perturbative approach to path integrals:
A succinct mathematical treatment: “ We study finite-dimensional integrals in
a way that elucidates the mathematical meaning behind the formal manipula-
tions of path integrals occurring in quantum field theory. This involves a proper
understanding of how Wick’s theorem allows one to evaluate integrals perturba-
tively, i.e., as a series expansion in a formal parameter irrespective of conver-
gence properties. We establish invariance properties of such a Wick expansion
under coordinate changes and the action of a Lie group of symmetries, and we
use this to study essential features of path integral manipulations, including co-
ordinate changes, Ward identities, Schwinger-Dyson equations, Faddeev-Popov
gauge-fixing, and eliminating fields by their equation of motion. We also discuss
the asymptotic nature of the Wick expansion and the implications this has for
defining path integrals perturbatively and nonperturbatively. ”

2016-10-28 Predrag Read Hegg and Phillips [26] Strongly coupled fixed point in ϕ4

theory: “ We show explicitly how a fixed point can be constructed in scalar
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gϕ4 theory from the solutions to a nonlinear eigenvalue problem. The fixed
point is unstable and characterized by ν = 2/d (correlation length exponent),
η = 1/2−d/8 (anomalous dimension). For d = 2, these exponents reproduce to
those of the Ising model which can be understood from the codimension of the
critical point. The testable prediction of this fixed point is that the specific heat
exponent vanishes. 2d critical Mott systems are well described by this new fixed
point. ”

2016-12-10 Predrag Possibly useful in a QFT course:

Weinzierl [63] Tales of 1001 Gluons.

2015-09-15, 2017-02-13 Predrag Dashen, Hasslacher and Neveu [16–18], Nonper-
turbative methods and extended-hadron models in field theory. I. Semiclassical
functional methods, are reputed to be the first people to use WKB methods in
field theory.

Juan-Diego Urbina is a big fan of the 3rd paper [18]: “ a more modest approach
by finding classical solutions of finite energy and bounded spatial extent. [...]
We exhibit a four-dimensional model involving non-Abelian Yang-Mills fields.
”

Juan-Diego:

Ablowitz, Faddeev and Korepin have solitons for nonlinear Schrodinger on dis-
crete lattice, with quartic term written as |ψi|2 1

2 (ψi−1 + ψi+1). Even time can
be taken discrete. Nohl took a one solition solution, treated as a periodic orbit,
got exact energy.

Soliton is an integrable, 4-parameter 4-dimensional manifold of solutions, in the
infinite-dimensional space. All other action-angle pairs equal zero.

2016-12-26 Predrag Read Borinsky [3] Renormalized asymptotic enumeration of Feyn-
man diagrams. It is a follow-up to Cvitanović, Lautrup and Pearson [15].

and Borinsky [4] PhD Thesis Graphs in perturbation theory: Algebraic structure
and asymptotics

2017-05-26 Predrag Martin and Kearney [44] An exactly solvable self-convolutive
recurrence fancy math reproduces (among much else) also counting of Cvi-
tanović, Lautrup and Pearson [15] and Cvitanović [12]. The study the sequences
S(α1, α2, α3) of self-convolutive recurrences, derive a closed-form solutions as
a Mellin transforms. The representation is useful for study the asymptotics via
Laplace’s method. Their counting problem is the number of connected, or inde-
composable, permutations, which naturally leads them to QFT diagram count-
ing; For example, the number of nonisomorphic connected Feynman diagrams
of order 2(n + 1) arising in a simplified model of quantum electrodynamics
(QED) [15]; the number of ‘vertex graphs’ of order 2n arising in the QED per-
turbation series for the electron magnetic moment [12]; the number of Feynman
diagrams with exact propagators [12]; and the number of Feynman diagrams
with proper self-energies arising in QED [15]. Their integral representation is
apparently new.
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Smith [59] Planar version of Baym-Kadanoff theory

Kugler [36] Counting Feynman diagrams via many-body relations

Kaneko [32] Enumeration of N-rooted maps using quantum field theory: “ In-
formation about the number of Feynman graphs for a given physical process
in a given field theory is especially useful for confirming the result of a Feyn-
man graph generator used in an automatic system of perturbative calculations.
A method of counting the number of Feynman graphs with weight of symme-
try factor was established based on zero-dimensional field theory, and was used
in scalar theories and QED. In this article this method is generalized to more
complicated models by direct calculation of generating functions on a symbolic
calculating system. This method is applied to QCD with and without counter
terms, where many higher order are being calculated automatically. ”

2017-05-29 Predrag Read Pavlyukh and W. Hübner [50] Analytic solution of Hedin’s
equations in zero dimensions: “ Feynman diagrams for the many-body perturba-
tional theory are enumerated by solving the system of Hedin’s equations in zero
dimension. We extend the treatment of Molinari [45] and give a complete solu-
tion of the enumeration problem in terms of Whittaker functions. An important
relation between the generating function of the electron propagator and anoma-
lous dimension in quantum field theory of massless fermions and mesons in four
dimensions (Yukawa theory) is found. The Hopf algebra of undecorated rooted
trees yields the anomalous field dimension in terms of the solution of the same
differential equation. Its relation to the mathematical problem of combinatorics
of chord diagrams is discussed; asymptotic expansions of the counting numbers
are obtained. ”

2018-04-28 Predrag Castro and Roditi [6] A combinatorial matrix approach for the
generation of vacuum Feynman graphs multiplicities in φ4 theory. They cite
Cvitanović, Lautrup and Pearson [15] and write: “ [...] generate the set of all
Feynman graphs and the respective multiplicities in a combinatoric way. These
combinatorial matrices are explicitly related with the permutation group, which
facilitates the construction of the vacuum Feynman graphs. Various insights in
this combinatoric problem are proposed, which in principle provide an efficient
way to compute the Feynman vacuum graphs and its multiplicities. ”
Gopala, Labelle and Shramchenko [30] Enumeration of N-rooted maps using
quantum field theory prove, inter alia, the equality of the number of two-point
Feynman diagrams in scalar QED [15] and the number of rooted maps.

2017-05-29 Predrag Read Molinari [45, 46] Hedin’s equations and enumeration of
Feynman diagrams

Molinari and N. Manini [47] Enumeration of many-body skeleton diagrams “Based
on Hedin’s equations for self-energy, polarization, propagator, effective poten-
tial, and vertex function, dressed (skeleton) Feynman diagrams are enumerated.”

2017-05-29 Predrag Read Krishna Gopala, Labelle and Shramchenko [35] Enumer-
ation of N-rooted maps using quantum field theory: “ A one-to-one correspon-
dence is proved between the N-rooted ribbon graphs, or maps, with e edges and
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the (e-N+1)-loop Feynman diagrams of a certain quantum field theory. This
result is used to obtain explicit expressions and relations for the generating func-
tions of N-rooted maps and for the numbers of N-rooted maps with a given num-
ber of edges using the path integral approach. ”

2017-03-15 Predrag Read Setlur [57] Dynamics of Classical and Quantum Fields:
An Introduction. Starts with Geometrical meaning of Legendre transformation
in classical mechanics; Dynamical symmetries in the context of Noether’s theo-
rem; The derivation of the stress energy tensor of the electromagnetic field; the
expression for strain energy in elastic bodies, and the Navier Stokes equation;
Functional integration is interpreted as a limit of a sequence of ordinary integra-
tions, ... . The rest is less obvious.

In principle, this book can be read online via library.gatech.edu, but
how?

2018-01-31 Predrag Check out M. J. D. Hamilton [25] Mathematical Gauge Theory:
“ This book explains the mathematical background behind the Standard Model,
translating ideas from physics into a mathematical language and vice versa. The
first part of the book covers the mathematical theory of Lie groups and Lie al-
gebras, fibre bundles, connections, curvature and spinors. The second part then
gives a detailed exposition of how these concepts are applied in physics, con-
cerning topics such as the Lagrangians of gauge and matter fields, spontaneous
symmetry breaking, the Higgs boson and mass generation of gauge bosons and
fermions. [...] Only a basic knowledge of differentiable manifolds and special
relativity is required, summarized in the appendix. ”

2018-03-31 Predrag Created the abstract for the Les Houches meeting, see
predrag/lectures/LesHouch18. The talk is in this repo,
reducesymm/presentations/LesHouch18
The worldline formula for the quenched QED form factors is currently wrong;
essentially it puts Z2 renormalization on each electron leg, rather than

√
Z2.

2018-06-05 Predrag Notes on Summer school on structures in local quantum field
theory Les Houches — June 4-15, 2018

Gerald Dunne Resurgence and Perturbative/Non-Perturbative Relations is pretty
amazing - exact expression for trace formula in terms of WKB saddles and the
non-perturbative corrections, based on 2-torus duality relations, see here for lec-
ture notes (I have also written down some notes). I think this works only for
integrable models. Told him to have a look at Wirzba [64] as a physically moti-
vated chaotic problem whose analytic formulation is suited to Dunne’s methods.

Jacob Bourjaily Improving Integrands and Integrals for Amplitudes: It’s com-
plicated. However, I did explain to him how to reduce all adjoint rep birdtracks
(quotient Jacobi relation, treat the rest as a free algebra) to a basis set of treees +
fully fully symmetric Casimir tensors; he should get back to me once he tries it.

2018-06-06 Predrag James M. Drummond Cluster algebras and scattering ampli-
tudes, arXiv:1710.10953, was a stunning performance, a picture of which I’ll
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post on Flickr.com. Analytic relations for scattering amplitudes expressed the
cluster algebras for planar N = 4 super Yang-Mills theory that generalize the
Steinmann relations. I still do not know what hit me.

2018-06-07 Predrag Lorenzo Magnea (an intellectual, with opinions on many things,
masquerading as a phenomenologist, five layers removed from LHC experimen-
talists) Eikonal Correlators and form factors in perturbation theory, and Franz
Herzog Geometric IR subtraction in real radiation, arXiv:1804.07949, are our
best shot for developing approximations to N -photon propagators to all orders.
The idea is to claim that the N -photon propagator in the “rainbow" gauge sets
aN00 is concentrated on (Schwinger) backbone that hops over the magnetic mo-
mentum vertex with a large momentum q, with all photons ‘soft’ respective to
the backbone, with momenta q − kj , |kj | � 1. Then the same discussion as for
IR contributions should apply, with only one γµ per N -photon propagator mass-
shell vertex surviving in the IR limit, the rest reducing to scalar, gauge invariant
and universal Msoft, commuting vertices, and exponentiating. The limit is ex-
plained in Magnea Advanced Lectures on the Infrared structure of Perturbative
QCD handwritten lecture 2, sect. 2 The soft approximation, and the all order
summation is given in lecture 3.

Study also Herzog [27] Zimmermann’s forest formula, infrared divergences and
the QCD beta function.

The trick then would be to formulate next-to-leading order (NLO) and next-to-
next-to-leading order (NNLO) corrections systematically.

Henry Kißler The t’Hooft–Veltman gauge: Finally understood the point of Henry’s
thesis. The t’Hooft–Veltman gauge condition is quadratic in Aµ, leading to
4-vertices, and QED ghost sector with structure reminiscent of a non-Abelian
QCD. By Ward identities it all adds up to zero, but individual graphs are non-
trivial.

Erik Panzer The Hepp bound for Feynman periods. “Feynman period” is this
cult’s jargon for the value of a Feynman integral, a quantity hard to evaluate
except for the known zoo of integrals evaluated so far, catalogued by Oliver
Schnetz [56]. The “Hepp bound" or “Hepp invariant," however, is a rational
number computed efficiently for all graphs. Some of the striking properties of
this bound: it correlates very well with the actual Feynman period (the empirical
ratio of the two fluctuates within 1%, a numerical fact not explained yet) and it
respects all known identities among periods (I have some handwritten notes on
this talk).

From gauge-sets point of view, analytic formulas for (g-2) seem useless, as they
are sets of large exact numbers (see eq. (29) in Schnetz [56]; arXiv:1711.05118),
that then sum up to a much smaller number.

I had extensive discussion with Erik, and gauge sets are now in his “to-do” list.
While Schnetz and Panzer had focused on φ4, and I have this deep prejudice that
gauge theories are profoundly different (because I assume that the gauge invari-
ance induces cancelations among finite parts), perhaps they are not so different.
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Let’s think of gauge symmetry as we think of other continuous symmetries in
theory of dynamical systems. Then quotienting the symmetry leads us to gauge
sets, which have no symmetry, but each has n! Feynman diagram contributions
- a “φ4” for each gauge set. Erik tells me that someone has proven that Borel-
resummed φ4 has a finite radius of convergence, so it still could work out that
the quenched QED has a finite radius of convergence.

2018-06-08 Predrag Spencer Bloch The algebraic geometry of the kite graph ampli-
tude assumed more pre-knowledge than what I posses. Lake I’ve spent last 20
years chatting to Spencer, and he’s telling me what’s new in the last 6 weeks,
without defining a single thing.

Berghoff

2018-06-11 Predrag Dirk Kreimer Complex graphs and graph complexes

Schlotterer

Marcel Golz Parametric QED [24]. The Schwinger parametric Feynman inte-
grals for gauge theories quickly become prohibitively complicated due to the
very involved numerator polynomials. He reported on a simplification via com-
binatorics for QED; the integrand is only a very small sum of scalar integrands
with Dodgson polynomial (introduced by Francis Brown) numerators. Dodgson
polynomial (related to cycle polynomials) satisfy Dodgson identities. Marcel is
interested in simplifications such as organization by gauge sets, so I gave him
access to this blog.

Bogner

Brödel

Jaclyn Bell is a charismatic young Liverpoolian (from working class background),
theoretical particle physics PhD advised by a Northern Irish childhood friend
and colleague of Georgia Tech’s Brian Kennedy, who did a stint on the BBC
astronauts show as potential astronaut, and now runs a UK STEM education or-
ganization, with outreach to children in UK’s poorer naighborhoods. If I got it
right....

2018-06-12 Predrag Wulkenhaar (Meintz) had a breakthrough assist from Erik Panzer
during this workshop, which seems to establish that a non-commutative matrix
φ4 model is integrable. (My mother’s φ4 QFT model remains definitely non-
integrable.) I have handwritten notes on his talk.

Alexander Hock Noncommutative 3-colour scalar quantum feld theory model
in 2D is a closely related model with the same structure: “ We introduce the
3-colour noncommutative quantum

eld theory model in two dimensions. For this model we prove a generalised
Ward-Takahashi identity, which is special to coloured noncommutative QFT
models. It reduces to the usual Ward- Takahashi identity in a particular case.
The Ward-Takahashi identity is used to simplify the Schwinger-Dyson equations
for the 2-point function and the N -point function. The absence of any renormal-
isation conditions in the large (N , V )-limit in 2D leads to a recursive integral
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equation for the 2- point function, which we solve perturbatively to sixth order
in the coupling constant. One important fact is the appearance of polylogarithms
in the per- turbative solution, which is generated by the closed integral equation.
With the knowlegde of the experts here in Les Houches I hope to im- prove my
results to higher order or even

nd an exact solution for the 2-point function. ”

Masha Vlasenko Motivic Gamma Functions, see “what is a motivic gamma
function?”. Not a chance that I would understand anything.

2018-06-13 Predrag Burgos-Gil is a lovely Spanish-speaking refugee from Barcelona
living in Madrid.

Ralph Kaufmann Feynman categories and applications: geometry, number the-
ory and physics

David Prinz Einstein-Maxwell-Dirac theory is the canonical generalization of
spinor electrodynamics to curved spacetimes of general relativity. He explains
the underlying geometry of the theory and its Lagrange density, with gauge fix-
ing, ghost terms, Feynman rules and tree-level interactions. The obstructions to
multiplicative renormalization are overcome by a generalization of Furry’s theo-
rem.

2018-06-16 Predrag Remember to send Henry Kißler a hard copy of my “Field The-
ory” book(lett).
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