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Abstract. Discrete symmetries of dynamical Aows give rise to relations between periedic orbits,
reduce the dynamics to a fundamental domain, and lead to factorizations of zeta functions. These
factorizations in turn reduce the labour and improve the convergence of cycle expansions for
classical and quantum spectra associated with the flow. In this paper the general formalism is
developed, with the N-disk pinball model used as a concrete example and 2 series of physically
interesting cases worked out in detail.

PACS numbers: 0545, 0365, 0220, 0320

1. Introduction

The periodic orbit theory of classical chaotic dynamical systems has a long and distinguished
history; initiated by Poincaré {1}, and developed as a mathematical theory of hyperbolic
dynamical systems by Smale, Sinai, Bowen, Ruelle and others [2-5), it has in recent years
been applied to many systems of physical interest [6-9]. The periodic orbit theory of
quantum mechanical systems largely parallels this development; originating in the work of
Hadamard [10] and Selberg [11], it has been developed as a quantum mechanical theory
by Gutzwiller, Balian and Bloch, Berry and others [12-16], and has been the focus of
much recent research. In both the classical and the quantum contexts, one is interested in
computing spectra of certain evolution operators; this can be done by determining zeros of
Fredholm determinants or associated zeta functions [5, 11, 17]. The periodic orbits emerge
in this context essentially through the identity logdet = trlog which relates the spectrum to
the traces of the evolution operators, i.e., the periodic orbits or cycles.

As demonstrated in a series of papers [9, 18-22], cycle expansions of zeta functions
can be profitably used for the calculation of such spectra in chaotic dynamical systems.
These systems often come equipped with discrete symmetries, such as the reflection and
the rotation symmetries of various potentials. We shall show here that such symmetries
simplify and improve the cycle expansions in a rather beautiful way; they can be exploited
to relate classes of periodic orbits and factorize zeta functions, not only in quantum
mechanics (where the utility of discrete symmetry factorizations is well known [23]), but
also in classical mechanics. The -group-theoretic factorizations of-zeta functions that we
develop here were first introduced and applied in [9]. They are closely related to the
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symmetrizations introduced by Gutzwiller [24] in the context of the semiclassical periodic

orbit trace formulae, recently put into more general group-theoretic context by Robbins

[25], whose exposition, together with Lauritzen’s [26] treatment of the boundary orbits, has

influenced the presentation given here. A related group-theoretic decomposition in confext
of hyperbolic billiards was utilized in [27].

Invariance of 2 system under symmetries means that the symmetry nnage of a cycle is
again a cycle, with the same weight. The new orbit may be topologically distinct (in which
case it contributes to the multiplicity of the cycle) or it may be the same cycle, shifted
in time. In the latter case, the cycle can be subdivided into segments, each of which is a
symmetry image of an irreducible segment. The period or the action of the full orbit is
given by the sum along the segments, whereas the stability is given by the product of the
stability matrices of the individual segments. The phase space can be completely tiled by
a fundamental domain and its symmetry images {‘phase space’ in this paper stands for the
coordinates of any d-dimensional dynamical system whose evolution is described by a set
of first order differential equations or iterative mappings, not necessarily Hamiltonian). The
irreducible sepments of cycles in the full spage, folded back into the fundamental dornain,
are closed orbits in the reduced space.

The main point of this paper is that if the dynamics pﬂssesses a discrete symmetry, the
contribution of a cycle p of multiplicity m, to a dynamical zeta function factorizes into a
product over the d,-dimensional irreducible representations D, of the symmetry group,

(=)™ =T Jdetl = Du®)epy*  tp=15" )
&

where 15 is the cycle weight evaluated on the fundamental domain, g is the dimension
of the group, h; is the group element relating the fundamental domain cycle 5 to a
segment of the fuil space cycle p, and m, is the muliplicity of the p cycle. Emergence
of symmetrized subspaces, 2 common phenomenon in quantum mechanics, is perhaps
surprising in a classical dynamics context. The basic idea is simple: in classical dynamics,
just as in quanturn mechanics, the symmetrized subspaces can be probed by linear operators
{observables) of different symmetries. If a linear operator commutes with the symmetry, it
can be block-diagonalized and the associated determinants will therefore factorize.

This paper is meant to serve as a detailed guide to computation of zets functions
for systems with discrete symmetries. We develop here the cycle expansions needed for
evaluation of factorized zeta functions, and exemplify them by working out a series of
cases of physical interest: ' C2, Cay, C3y and Csy symmetries. For instance, one has a €,
symmetry in the Lorenz system [28,29], the Ising model, and in the three-dimensional
anisotropic Kepler potential [24,30,31], a Cs, symmetry in Hénon—HeiIes type potentials
[32-34,26], a C4, symmetry in quartic oscillators [35, 36], in the pure x2y? potential [37, 33)
and in hydrogen in a magnetic field [39), and a Cy, = C2 x C; symmetry in the stadium
billiard [25]. - ‘

We will illustrate our results using the pmba]I scattering by three and four disks [40] as
an example. Besides their intrinsic-interest as examples of classical and quantum mechanical
chaotic dynamics [23,9,41,42], they are also relevant to smooth potentials, The pinball
model may be thought of as the infinite potential wall limit of 2 smooth potential, and, rhuch
as the ID tent map captures the topology of a general unimodal map, the N-disk symbol
dynamics can serve as a covering symbolic dynamics in smooth potentials, One may either
define potential wall collisions in phase space [39,43] or one may start with the infinite wall
limit and continuously relax an unstable cycle onto the corresponding one for the potential
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under investigation. If things go well, the cycle will remain unstable and isolated, no new
orbits (unaccounted for by the N-disk symbolic dynamics) will be borm, and the lost orbits
will be accounted for by a set of pruning rules. For example, this adiabatic approach has
been profitably used in {44] in disproving the conjecture that the x%y? potential is ergodic.
Its validity has to be checked carefully in each application, as things can easily go wrong;
for example, near bifurcations the same naive symbol string assignments can tefer to a
whole island of distinct periodic orbits. ‘

In addition to the symmetries exploited here, time reversal symmetry and a variety of
other non-trivial discrete symmetries can induce further relations among orbits; we shall
point out a number of examples of cycle degeneracies under time reversal. We do not know
whether such symmetries can be exploited for further improvements of cycle expansions.

The paper is organized as follows. In the next section, we recall some basic facts of the
zeta-function formalism and cycle expansions, and describe the symbolic dynamics of the
N-disk model. In section 3 we illustrate the utility of zeta function formalism by using it
to count cycles. In section 4 we introduce discrete symmetries and apply them to identify
degenerate classes of cycles. In section 5 we describe the reduction of the N-disk dynamics
to the fundamental domain and the special treatment required by boundary orbits. Finally,
in section 6 we apply symmetries to reduce the symbolic dynamics and to factorize zeta
functions. Several examples are worked out in detail. Cycle expansions for the (symmetry
unreduced) 3- and 4-disk dynamics are listed in the appendix. We conclude with a summary
and an outlook for further work.

2. Preliminaries

Here and in section 3 we review the cycle expansion formalism; the subject proper of
the paper, group-theoretic factorizations, commences only in section 4. The reader might
profitably start with section 4, and refer back to the preliminaries of sections 2 and 3 as
need arises.

2.1, Zeta functions

Transfer operators and the associated zeta functions are treated extensively in the literature
(5]. Here we merely state the results needed for the purposes of this paper, in the notation
of [18]. ; .

The general setting is as follows: given a dynamical system, presented either as a d-
dimensional map f(x), or as a d + 1 dimensional flow (in the latter case, the fiow can
be reduced to a d-dimensional mapping by means of appropriate Poincaré sections), one is
interested in time evolution of certain distributions, such as classical probability distributions
and quantum mechanical wave functions. The effect of the dynamics on such distributions
is given by linear evolution operators, such as the integral kernel used in evaluation of the
escape rate from a repeller {45] described by a map xp4¢ = f(x),

L(y, x) =8 — fFx). ‘ 2)

The time dependence of distributions in question is determined by the eigenspectrum and
eigenfunctions of evolution operators, and the problem that concerns us here is the problem
of effective evaluation of such eigenspectra for a given dynamical system.
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The eigenvalues A, of L are the inverses of the zeros of
o
Z(z) =Det(l —zL) = H(l — zAg). 3)
£=0

The periodic orbit approach to the determination of zeros of Z(2) is bascd on the observation
that the determinant of an operator is related to its traces by

det(1 — zL) = exp (—- i% II:C”). @)

=1

Traces of an operator like (2) receive contributions from all prime cycles p of period n,
and their multiple traversals, weighted by the cycle Jacobians

Z(z)=exp( eridﬂ(l T )]) )

por=l

This expression for Det (1 — zL) is specific to the mapping (2). In more general settings
{51, z" is replaced by a weight whose precise form depends on the particular average being
computed; for example, in the corresponding determinant for classical smooth flows, z%
is replaced by e*’», where T, is the p cycle period [46]. The quantum mechanical kernel
corresponding to (2) is smeated out by a path integral, but in the semiclassical approximation
[14] the zeta function [17] has essentially the same form as (5):

eum)s,,(z)r—mnprﬁ)

Z(E):cxp( ZZ |det(1 Jr) |12

por=I

Sp denotes the classical action and u, is the Maslov index. As the group-theoretic
factorizations that we shall develop here rely only on the linearity of evolution operators,
they will apply to both the classical and the quantum cases.

For evaluation of spectra, the expansion (5) can be used pretty much as it stands [20],
it can be expanded as a multinomial in cycle weights [47], or the leading eigenvalues can
be extracted from the associated dynamical zeta function [5]

Vo=t  tp=z™/A, or 1, =iMSEmLZALR (6)
P

obtained by approximating det(1 — J,) = g=1(1 —~ Apq) by the product of expanding
eigenvalues A, = |15 Ap,| in (5). For example, for a one-dimensional ‘expanding map
each periodic point contributes with the weight 1/|1 — AL):

2
Entrﬁ EZ:‘H—A’

a=l P r=l
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Substituting 1/]1 — A] = JA|"!(1 — A=1)=1 = |A]~! 3" A~% we obtain

det(l - z£) =exp(—ZZZ':‘ (fAzn[:\") )

k=0 r=1 '3 P
IR @
=1—H_I I_zi ‘p='znp'
P k=0 AL ) [Apl

The dynamical zeta function (6) is the & = 0 part of the above Selberg-type product. The
{ull zeta functions (3) are infinite products over dynamical zeta functions which depend on
both the expanding and the contracting eigenvalues. Most of the developments below are
independent of the precise form of the zeta functions.

As the dynamical zeta functions have a particularly simple cycle expansion, a
simple geomeirical shadowing interpretation of their convergence, and as they suffice
for determination of leading eigenvalues, we shall concentrate in this paper on their
factorizations; the full Z(z) determinants can be factorized by the same techniques. To
emphasize the group theoretic structure of zeta functions, we shall combine all the non-
group-theory dependence of a p-cycle into a cycle weight #,. We shall also often absorb z
into the transfer operator: zLZ — £, z%¢, — t5.

The first prerequisite for converting expressions like (6) into cycle expansions is efficient
enumeration of periodic orbits—the problem to which we turn next.

2.2. Symbolic dynamics

The key to a theory of a chaotic dynamical system is its qualitative, topological description
[2) or, as it is usually called, its symbolic dynamics. The strategy is to partition phase space
into topologically distinct regions, associate with each region a symbol from an alphaber,
and use those symbols to label every possible trajectory. Covering symbolic dynamics
assigns a distinct label to each distinct trajectory, though there might be symbol sequences
which are not realized as trajectories. If all possible symbol sequences can be realized as
physical trajectories, the symbolic dynamics is called complete; if some sequences are not
allowed, the symbolic dynamics is pruned (the word is suggested by ‘pruning” of branches
corresponding to forbidden sequences for symbolic dynamics organized hierarchically into
a tree structure). In that case the alphabet must be supplemented by a grammar, a set of
pruning rules. A periodic symbel string corresponds to a periodic orbit or a cycle. Periodic
orbits will here be distinguished by a bar over the primitive symbol block, but we often
omit the bar if it is clear from the context that we are dealing with a petiadic orbit,

These concepts are easily Hlustrated by the pinball models that we shall study here.
Consider the motion of a point particle in a plane with N elastically reflecting convex disks.
Any trajectory can-be labelled by the sequence of disk bounces, and a symbolic dynamics
is given by the alphabet of N symbels {1,2,3,---,N}. As the bodies are convex, there
can be no two consecutive reflections off the same disk, hence the first rule of the grammar
of allowed sequences is that symbol repetitions _11_,. 22_, --., N N_ are forbidden. More
generally, we shall refer to a symbolic dynamics as an ‘N-disk’ symbolic dynamics if the
phase space can be partitioned in N distinct regions such that an orbit starting in a partition
¢an in one step reach all other partitions except itself.

A finite length scaftering trajectory is not uniquely specified by its (finite) symbol
sequence, but an unstable cycle (consisting of infinitely many repetitions of a prime building
block) is. We shall show in section 3 that the prime cycles for such simple grammars are
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Table 1. List of the 3-disk prime cycles up 10 length 10. Here n is the cycie length, M, the
number of prime cycles, &, the number of periodic points and §, the number of distinct prime
cycles under the C3, symmetry. Column 3 also indicates the splitting of N, into contributions
from orbits of lengths that divide s. The prefactors in the fifth column indicate the degeneracy
my of the cycle; for example, 3-12 stands for the three prime cycles 12, 13 and 23 related by
27 /3 rotations. Among symmetry related cycles, a representative 5 which is lexically lowest
was chosen. The cycles of length 9 grouped by parenthesis are related by time reversal syrametry
(but not by any other Cs, transformation).

~

n My Ny Sp mp- P

1 0 0 0

2 3 6=3-2 1 312

3 2 6=2:3 1 2123

4 3 18=3-2+3-4 1 31213

5 6 30=65 1 6-12123 _ "

6 9 66=3-24+2.349-6 2 6-121213 + 3-121323 |

7 13 126=18.7 3 6-1212123 + 61212313 + 61213123

8 30 258=3-24-3-4+30-3 6 612121213 + 3-12121313 + 612121323
+6-12123123 + 6-12123213 + 3-12132123

9 56 510=2-3+56-9 10 6-121212123 + 6-(121212313 + 121212323)
+ 6-(121213123 + 121213213) + 6-121231323
+ 6:(121231213 + 121232123) + 2-121232313
+ 6.121321323

10 99 1022 ' 18

easily enumerated; for example, table 1 contains a list of all prime 3-disk cydles up to length
9, and table 2 contains a list of prime 4-disk cycles.

An important effect of a discrete symmetry is that it tesselates the phase space into copies
of a fundamental domain, and thus induces a natural partition of phase space. The group
elements g = {, b, - - -, d} which map the fundamental domain # into its copies g, can
double in function as letters of a symbolic dynamics alphabet, If the dynamics is symmetiic
under interchanges of disks, the absolute disk labels ¢; = 1,2,.--, N can be replaced by
the symmetry-invariant relative disk—>disk increments g;, where g; is the discrete group
element that maps disk { — 1 into disk i{. Experience shows that more often than not
specifics of the model at hand dictate the choice of symmetry reduced symbolic dynamics,
so rather than attempting to develop a general procedure here, we shall demonstrate the
reduction for a series of specific examples in section 6. An immediate gain arising from
symmetry invariant relabelling is that ¥-disk symbolic dynamics becomes (¥ — 1)-nary,
with no restrictions on the allowed sequences [40,48]. However, the main gain is in the
close comnection between the symbol string symmetries and the phase space symmetries
which will aid us in the zeta function factorizations. Once the connection between the full
space and the reduced space is established, working in the fundamental domain (i.e. with
irreducible segments) is so much simpler that we never use the full space orbits in actual
computations.

Whether this symbolic dynamics is complete (as is the case for sufficiently separated
disks), pruned (for, example, for. touching disks), or only a first coarse graining of the
topology {(as, for example, in systems with islands of stability) depends on the details
of the dynamics and requires further case-by-case investigation. In the N-disk model
outlined above we have tacitly assumed that the disks are sufficiently separated so that all
possible symbol sequences (excluding symbol repeats) are realized as physical trajectories.
If the disks .shadow each other, further infinite families of sequences are pruned [49-51].
Determining the pruning rules is in general a highly non-trivial undertaking, carried out
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so far for only a few dynamical systems [7,52]. In this paper we assume that the disks
are sufficiently separated so that there is no additional pruning beyond self bounces. This
assumption does not affect our main result, the symmetry induced factorizations—it only
affects the cycle counting of section 3,

2.3. Cycle expansions

In the simplest of the cases that we shall discuss here (an example is the fundamental domain
symmetric subspace of a 3-disk repeller, discussed in section 7.2) the system is described
by a complete binary symbolic dynamics. The Euler product (6) is given by [18]

1/ = (1 — zt)(1 = zt1)(1 — 224131 — Zt01)(1 — Ztg11)
x (1 = 2%000) (1 — 2*20011) (1 — 2*10111) (1 — 2200001 )(L — 2> to0011)
x (1 = 21501001 ~ 2 to0111)(1 — togon X1 — Ztp1111) - - - 3

The cyecle expansion is obtained by multiplying out the Euler product and grouping
together the terms of the same total string length (same power of z):

1/ =1—ztg — 2ty — 22[(ts1 — trto)] — 2°[(toor ~ torto) — Con — tont1)]
— 2*{(to001 — totoor) + (fornt — 2on1t1) + (foo11 — foorts — tofort + fotort )} — - - - -

9

The terms grouped in brackets are the curvature corrections [53); the terms grouped in
parentheses are combinations of longer orbits and their shorter ‘shadowing” approximants. In
the counting limit 7, = 1, and all such shadowing combinations vanish (as we show in more
detail in section 3). The practical utility of cycle expansions, in contrast to direct averages
over periodic orbits such as in the trace formula [12], lies precisely in this organization into
nearly cancelling combinations: cycle expansions are dominated by short cycles, with long
cycles giving exponentially decaying corrections. Further examples of cycle expansions are
given in section 6 and in the appendix.

3. Counting cycles

In this section we apply the cycle-counting methods of [18] to the N-disk problem. This
section is not essential to the main, group-theoretic thrust of this paper, but in practice cycle
counting is of some use as a check of correctness of various cycle expansions.

There are N, = N* possible distinct strings of length n composed of N letters. These
Ny strings include all M; prime cycles whose period d equals or divides n, and each
d—cycle contributes its cyclic permutations, 4 in number:

Ny =" dM,. (10)

dln

The number of prime cycles follows by Mdbius inversion [54]

My=n Y u ()N, ' (11)

din
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where u(1) = 1, u(n) =0 if n has a squared factor, and pw(p1p2... ) = (—1)* if all
prime factors are different.

For example, from two symbols {0, 1} one can form M, =2,1,2,3,6,9,18, ... prime
cycles, i.e., there are two fixed points O and T, one prime 2-cycle 01, two 3-cycles 001 and
011, three 4-cycles 0001, 0011, 0111 (note that e.g. 1010 = 1" is not prime), and so forth.

In table 3 we list the number of prime orbits up to length 10 for 2-, 3- and 4-letter complete
symbolic dynamics,

Tahle 2. Listing of the 4-disk prime cycles up to length 8. The meaning of the symbols is the
same as in table 1. Orbits related by time reversal symmetry (but no other symmetry) already
appear at cycle lengih 4. Listing the orbits of length 7 and 8 has been omitted,

n M, Nr S mp - ﬁ

1 Q Q Q

2 6 12=62 2 4.12 + 2-13

3 8 24=8.3 1 8123

4 18 84=6.2+18-4 4 8.1213 + 4-1214 + 2-1234 + 41243

5 48 240=48-5 6 8-(12123 + 12124) + 812313
+ B-(12134 + 12143) + §-12413

6 116 732=6-2+8-3+116-6 17 8-121213 + 8-121214 + 8-121234
+ 8-121243 + 8-121313 + 8121314
+ 4121323 + 8121324 + 121423)
+ 4121343 + 8-121424 + 4-121434
+ 8123124 + 8-123134 + 4-123143
+ 4124213 + B.124243

7 312 2184 39

8 810° 6564 108

Table 3. Number of prime cycles for various alphabets and grammars up to length 10. The first
column gives the cycle length, the second the formula (11) for the number of prime cycles for
complete N-symbol dynamics, columns three through five give the numbers for N = 2,3 and

4, ‘

n M;N) M}ﬂzl ’(,3) ;4)
i N 2 3 4
2 NN-1/2 1 3 6
3 NWI-1/3 2 8 20
4 NUNZ_-1)/4 3 18 60
5 (N N)/S : 6 43 204
6  (NE=N}P-NZL NS 9 116 670
7 N - Nm .13 312 2340
8 NHNY-1)/8 30 810 giéo
9 NINE-1)9 56 2184 29120

10 (NO-N— N2+ W10 99 5880 104754

For a generic dynamical system not all M, prime periodic symbol strings are realized as
physical orbits: in such cases M, is only an upper bound to the actual number of prime n-
cycles. To count correctly, we need to prune the disallowed orbits, i.e. specify the grammar
of the allowed sequences. A simple example of pruning is the exclusion of ‘self-bounces’ in
the N-disk pinball, To determine the number of periodic orbits, consider a [N x N wansfer
matrix whose elements are 7;; = 1 if a transition from disk j to disk { is possible, and 0
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otherwise. The number of points that are mapped back onto themselves after » iterations is
given by N, = trT". For a complete N-ary dynamics all entries would equal unity

1
0 (12)

and tr T% = N*. The pruning of self-bounces eliminates the diagonal entries, Ty-gisk =
— 1, so the number of the N-disk periodic points is

Ny =T g0 = (N — 1" + (—1)"(N = 1). (13)

Mobius inversion (11) now yields

M L3 () -+ T Y (G) 0

(T dln (14)

= M,EN"” forn > 2.

Thcrc are no fixed points, MY~4'%*= 0. The number of periodic points of period 2 is
— N, hence there are M” -disk— N(N — 1)/2 prime cycles of length 2; for lengths
n>2, the number of prime cycl&c is the same as for the complete (N — 1)-ary dynamics.
The simplest application of the cycle expansion of dynamical zeta function (6) is the
evaluation of the ropological entropy. The topological entropy is the growth rate of the
number of orbits as a function of the length of their symbol sequences:

k= lim InN,/n. ' (15)
n—=oa -

The topological entropy is given by the logarithm of the largest eigenvalue of the transition
matrix T such as the one given in the above example. Dynamical zeta functions enter via
the relationship (see equation (18) of [18])

det(1 -z =[J1—-24) (16)
p

where for the topological entropy the weight assigned to a prime cycle p of length #, is
tp = z" if the cycle is allowed, or t, = 0 if it is pruned. Expanded in powers of z one
finds

(@ =[[A-t =14 e an
P k=1

This function is called the topological zeta function {2,55]; if the grammar is finite, it
reduces to the topological polynomial, The topological entropy £ is given by the smallest
Z€10 Z == ¢~

For completc symbolic dynamics of N symbols, the topological polynomial is simply

£z =1- Nz ' (18)
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whence the topological entropy k = N.

One consequence of the finitness of topological polynomials is that the contributions
to curvatures at every order are even in number, half with positive and half with negative
sign. For instance, for compiete binary labelling (9},

€4 = —tooor — foo11 — for1s — fofoaty -+ fofoor -+ foforn - foorty - fority. (19)

We see that 2° terms contribute to ¢s, and exactly half of them appear with a negative
sign—hence if all binary strings are allowed, this term vanishes in the counting expression.
The number of terms can be counted using the identity

.2 .
H(1+"p)=l_[11_tf- 20)
P

Substituting (18) we obtain

_I”sz_ E kpark k-1
]:[(H-zp)_ . =1+Nz+ Y N — N*T). (21)

k=2

The z" coefficient in the above expansion is the number of terms contributing to ¢,, so we
find that for complete symbolic dynamics of N symbols and # > 1, the number of terms
contributing to ¢, is (N — DN™1, - ‘

This technique is easily generalized to cycle expansions for the N-disk symbol
sequences. Consider for example the 3-disk pinball. The prohibition of repeating a symbol
affects counting only for the fixed points and the 2-cycles. Everything else is the same as
counting for a complete binary dynamics (equation (14)). To obtain the topological zeta
function, just divide out the binary 1- and 2-cycles (1 —z#)(1 — z£;)(1 — z%ty;) and multiply
with the correct 3-disk 2-cycles (1 — z212)(1 — z2113)(1 — z2123):

esaiox = (1 = 22— G EY ,
o (1 ~2)%(1 —2%) (22)

={(1~22)(1 +2)?=1—322 — 2%

The 4-disk pinball topological polynomial can be derived in the same way: the pruning
affects again only the fixed points and the 2-cycles

Ss-gisk = {1 — 2(1 (=2 (23)

=(1-32)1+2)>=1-6:2-87—3z*

and, more generally, for an N-disk pinball, the topological polynominal is given by

15 (= (N = Doy A=V
N-gi = - — 1)z ‘ I
disk 1(1 — Z)V-1(1 — Z2)(N-DIN=-D/2 (24)

=(1-(N-D2) 1 +)" L
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The topological polynomial has a root z7* = N — 1, as we already know it should from
(13). We shall see in section 6 that the other roots reflect the symmetry factorizations of
zeta functions. Since the zeta functions reduce to polynomials, we are assured that there
are just a few fundamental cycles and that all long cycles can be grouped into curvature
combinations. For example, the fundamental cycles in (22) are the three 2-cycles which
bounce back and forth between two disks and the two 3-cycles which visit every disk. It is
only after these fundamental cycles have been included that a cycle expansion is expected to
start converging smoothly, i.e. only for » larger than the lengths of the fundamental cycles
are the curvatures ¢, 2 measure of the deviations between long orbits and their short cycle
approximants, expected to fall off rapidly with n.

Conversely, if the grammar is not finite and there is no finite topological polynomial,
there will be no ‘curvature’ expansions, and the convergence will be poor. That is the
generic case, and one strategy [18,51,52] for dealing with it is to find a good sequence
of approximate but finite grammars; for each approximate grammar cycle expansions yield
exponentialy accurate eigenvalues, with succesive approxlmate grammars converging toward
the desired infinite grammar system.

The N-disk topological zeta function may also be used to count the number of terms in
the curvatures. For example, for the 3-disk pinball we get

1 —3z% — 28 : 226 + 122 4 279 :
L 1,) = e = 24 953 . 25
1:[( T = TTaE s T T A T s @)

The coefficients are 1, 0, 3, 2, 6, 12, 20, 48, 84, 184, .... That means that, e.g., cs has a
total of 20 terms, in agreement with the explicit 3-disk cycle expansion (62) of the appendix.
: The above concludes, our review of cycle expansions for general dynamical systems;

now we turn to the mam subject of this paper, the role of discrete symmetries in cycle
expansions.

4, Discrete symmetries

A dynamical system is invariant under a symmetry group G = {¢, g2,..., g} if the
equations of motion are invariant under all symmetries g € G. For a map xp41 = f(%)
and the evolution operator £(y, x) defined by (2) this means

flxy =g~ flgx)

(26)
Ly, x)=L(gy. gx).

Bold face letters for group elements indicate a suitable representation on phase space. For
example, if a two-dimensional map has the symmetry x; — —xy, X2 = —x3, the symmetry
group G consists of the identity and C, a rotation by 7 around the origin. The map f must
then commute with rotations by =, f(Cx) = C f(x), with C given by the [2 x 2] matrix

=1 0
C=[0._J. @n
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C satisfies C? = e and can be used to decompose the phase space into mutually orthogonal
symmetric and antisymmetric subspaces by means of projection aperators

=1(e+C) Py, =3(e—C) _
L, x) = Py Ly, 2) = § (L3, %) + L(~y, x)) (28)
L4, (3. x) = P, L(y, X) = 2(L(y, x) — L(=y, x)).

More generally [25, 26] the projection operator onto the & irreducible subspace of dimension
dy is given by Py = (do/|G) Y. xelk)R™?, where xo(h) = trD,(k) are the group
characters, and the transfer operator £ splits into a sum of inequivalent irreducible subspace
contributions 3", tr L,

La(y, x) = ﬁZxach)ah"y,x) (29)
heG

d, in the above prefactor refiects the fact that a d,-dimensional representation occurs dy
times.

4.1. Cycle degeneracies

If g € G is a symmetry of the dynamical problem, the weight of a cycle p and the weight of
its image under a symmetry transformation g are equal, #, = 7,. The number of degenerate
cycles (topologically distinct, but mapped into each other by symmetry transformations)
depends on the cycle symmetries. Associated with a given cycle p is a maximal subgroup
Hp € G, Hp = {e, b2, b, ..., by} of order hp, whose elements leave p invariant. The
elements of the quotient space b € G/H, generate the degenerate cycles bp, so the
multiplicity of a degenerate cycle is mp = g/ f1p.
Taking into account these degeneracies, the Euler product (6) takes the form

[Ta -y =TTa —am. . @30)
r ;

Here p is one of the m, degenerate cycles, picked to serve as the label for the entire class.
Qur labelling convention is usually lexical, i.e., we label a cycle p by the cycle point whose
label has the lowest value, and we label a class of degenerate cycles by the one with the
lowest label . In what follows we shall drop the hat in § when it is clear from the context
that we are dealing with symmetry distinct classes of cycles.

4.2. Example: Cs, invariance

An illustration of the above is afforded by Cs,, the group of symmetries of a pinball with
three equal size, equally spaced disks, figure 1. The group consists [56] of the identity
element e, three reflections across axes {2, 923, 073}, and two rotations by 2x /3 and 4x/3
denoted {C3, C?}, so its dimension is g = 6. On the disk labels {1, 2, 3} these symmetries
act as permutations which map cycles into cycles, For example, the flip across the symmetry
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Figure 1. The symmetries of three disks on an equilateral triangle. The fundamental domain is
indicated by the shaded wedge.

axis going through disk 1 interchanges the symbols 2 and 3; it maps the cycle 12123 into
13132, figure 2(a).

The subgroups of Cj, are C,, consmtmg of the identity and any one of the reflections, of
dimension k = 2, and C3 = {e, C3, C3}, of dimension & = 3, so possible cycle multiplicities
are g/h=2,3 or 6.

The C3 subgroup invariance is exemplified by the cycles 123 and 132 which are invariant
under rotations by 2:rr/ 3 and 473, but are mapped into each other by any reflection, figure
2, Hp = e, G, C%}, and the degeneracy is g/hc; = 2. -

The C, type of a subgroup is exemplified by the invariances of p = 1213. This
éycic is invariant under reflection 023{1213} = 1312 = 1213, so the invariant subgroup is
H; = {e, 003} Its order is k¢, = 2, so the degeneracy is ms = g/he, = 3; the cycles in
this class, 1213, 1232 and 1323, are related by 2x/3 rotatlons, figure 2(c).

A cycle of no symmetry, such as 12123, has H,, = {e} and contributes in all six terms
(the remaining cycles in the class are 12132, 12313, 12323, 13132 and 13232), figure 2(a).

Besides the above discrete symmetries, for Hamiltonian systems cycles may be related
by time reversal symmetry. An example [57] are the cycles 121212313 and 121212323 =
313212121 which are related by no space symmetry (figure 2(d)).

The Euler product (6) for the C3, symmetric 3-disk problem is given in the appendix,
equation (62).

5. Dynamics in the fundamental domain

So far we have used the discrete symmetry to effect a reduction in the number of independent
cycles in cycle expansions. The next step achieves much more: the symmetries can be used
to restrict all computations to a fundamental domain. We show here that to each global

cycle p corresponds a fundamental domain cycle 5. Conversely, each fundamental domain

cycle p traces out a segment of the global cycle p, with the end point of the cycle p mapped
into the irreducible segment of p with the group element 4 3. :

If the dynamics is invariant under a discrete symmetry, the phase space M can be

completely tiled by the fundamental domain M and its images aM, bM, ... under the
action of the symmetry group G = {e, a, b, ...},

M=2Ma=2aﬂz.

aec aeG
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2 2
a) 1 1
3 3

12123 13132

b) 1 1

c)

1232 1323

d) 1 1

3 3
121212313 121212323

Figure 2. Some examples of 3-disk cycles, (2) T2123 and 13132 are mapped into each other
by o3, the flip across 1 axis; this orbit has degeneracy 6 under C3, symmetries. Similarly (b)
123 and T32 and (¢) 1213, 1237 and 1323 are degenerate under Cs,. The orbits () 121212313
and 121212323 are related by time reversal but not by any C3y symmetry.

In the above example (27) with symmetry group G = {e, C}, the phase space M = {x,-
7 plane} can be tiled by a fundamental domain M = {half-plane x; 2 0}, and C M = {half-
plane x; € 0}, its image under rotation by =.

If the space M is decomposed into g tiles, a function ¢(x) over M splits into a g-
dimensional vector ¢,(x) defined by ¢,(x)} = ¢(x) if x € M, ¢;(x) = 0 otherwise. Let
f = ab™! be the symmetry operation that maps the endpoint domain M, into the starting
point domain M,, and let D{(h):, the left regular representation, be the [g x g] matrix
whose b, ath entry equals unity if & = hb and zero otherwise; D{h)p, = dpp. Since the
symmetries act on phase space as well, the operation # enters in two guises: as a [g x g}
matrix D{h) which simply permuies the domain labels, and as a [d x 4] matrix representation
h of a discrete symmetry operation on the 4 phase-space coordinates. For instance, in the
above example (27) h € C; and D(k) can be either the identity or the interchange of the
two domain labels,

D(e):[:) ‘1)] D(C):[(l’ (1)] )
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Note that 2(#) is a permutation matrix, mapping a tile M, into a different tile M, # M,
if & # e. Consequently only D{e) has diagonal elements, and tr D{%) = gé; .. However,
the phase-space transformation h 5 e leaves invariant sets of boundary points; for example,
under reflection o across a symmetry axis, the axis itself remains invariant. The boundary
periodic orbits that belong to such point-wise invariant sets will reqmrc special care in tr
evaluations.,

One can associate to the evolution operator (2} a [g x g] matrix evolution operator
defined by

Lpa(y, x) = D(R)pa L(y, x)

if x € M; and y € M}, and zero otherwise. Now we can use the invariance condition (26)
to move the starting point x into the fundamental domain x = a%, £(y,x) = L(a" 'y, %),
and then use the relation a~'b = A~! to also relate the endpoint y to its image in the
fundamental domain, fl(i, %Y = L(h'§, X). With this operator which is restricted to the
fundamental domain, the global dynamics reduces to

L0003, ) = D)l G5, 5).

While the global trajectory runs over the full space M, the restricted trajectory is brought
back into the fundamental domain M any tme it crosses into adjoining tiles; the two
trajectories are related by the symmetry operation £ which maps the global endpoint into
its fundamental domain image.

Now the traces (4) required for the evaluation of the eigenvalues of the transfer operator
can be evaluated on the fundamental domain alone

tr!.',=f dxﬁ(x,x)=[_d5c'ZtrD(h)£f{h“55,f). ' (32)
M ' M h i )

The fundamental domain integral [ d¥ £L(h~!%, X) picks up a contribution from évery global
cycle (for which % = ), but it also picks up contributions from shorter segments of global
cycles. The permutation matrix D(%) guarantees by thq identity tr D(h) = 0, h 5 e, that
only those repeats of the fundamental domain cycles j that correspond to complete global
cycles p contribute. Compare, for example, the contributions of the 12 and 0 cycles of figure
3. tr D(h)L does not get a contribution from the 0 cycle, as the symmetry operation that
maps the first half of the 12 into the fundamental domain is a reflection, and tr Do) =
In contrast, a2 = e, tr D{o?) = 6 insures that the repeat of the fundamental domain ﬁxed
point t.r(D(h)E}2 = 6t0, gives the correct contribution to the global trace tr £2 = 3. 2t13.
Let p be the full orbit, j the orbit in the fundamental domain and /; an element of
Hp, the symmetry group of p. Restricting the volume integrations to the infinitesimal
neighbourhoods of the cycles p and 5, respectively, and performing the standard
resummations [18], we obtain the identity

(Y —1,)" = det(1 — D(hs)t5) A (33)
valid cycle by cycle in the Euler products (6) for det(1 —£). Here ‘det’ refers to the [g x g]

matrix representation D{&3); as we shall see, this determinant can be evaluated in terms of
standard characters, and no explicit representation of D(h;) is needed. Finally, if a cycle
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W 4%

[«

7
)

{b)

{a)

Figure 3. The scattering geometry for the disk radius/separation ratio g : R =1:2.5. (¢) The
three disks, with 12, 123 and 121232313 cycles indicated, (b)) The fundamental domain, i.e.
a wedge consisting of a section of a disk, two segments of syrmetry axes acting as straight
mitror walls, and an escape gap. The above cycles restricted to the fundamental domam are
now the two fixed points 0 and T and the T00 cycle.

p is invariant under the symmetry subgroup H, C G of order 4, its weight can be written
as a repetition of a fundamental domain cycle

ty = 137 (34)

computed on the irreducible segment that coresponds to a fundamental domain cycle. For
example, in figure 3 we see by inspection that £ = toz and ta3 = t13.

We conclede this section with a few comments about the role of symmetries in actual
extraction of cycies. In the example at hand, the N-disk billiard systems, a fundamental
domain is a sliver of the N-disk configuration space delineated by a pair of adjoining
symmeiry axes, with the directions of the momenta indicated by arrows. The flow may
further be reduced to a return map on a Poincaré surface of section, on which an appropriate
transfer operator may be constructed. While in principle any Poincaré surface of section
will do, a natural choice in the present context are crossings of symmetry axes.

In actual numerical integrations only the last crossing of a symmetry line needs to be
determined (using for example the method of [38]). The cycle is run in global coordinates
and the group elements associated with the crossings of symmetry lines are recorded;
integration is terminated when the orbit closes in the fundamental domain. Periodic orbits
with non-trivial symmetry subgroups are paniicularly easy to find since their points lie
on crossings of symmetry lines [59,34]. A mult-point-shooting method combined with
Newton—Raphson iteration has proven very efficient {50} in practice.

5.1, Boundary orbits

Before we can turn to a presentation of the factorizations of zeta functions for the different
symmetries we have to discuss a peculiar effect that arises for orbits that run on symmetry
lines that border the fundamental domain [60, 26,27]. In our 3-disk example no such orbits
are possible, but they exist in other systems, such as the bounded region of the Hénon—Heiles
potential and in 1D maps [61]. For the symmetrical 4-disk billiard, there are in principle two
kinds of such orbits, one kind bouncing back and forth between two diagonally opposed
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disks and the other kind moving along the other axis of reflection symmeiry; the latter exists
for bounded systems only. While there are typically very few boundary orbits, they tend
to be among the shortest orbits, and their neglect can seriously degrade the convergence of
cycle expansions, as those are dominated by the shortest cycles.

While such orbits are invariant under some symmetry operations, their neighbourhoods
are not, This affects the matrix J, of the linearization perpendicular to the orbit and its
eigenvalues. Typically, e.g. if the symmetry is a reflection, some eigenvalues of J, change
sign. This means that instead of a weight 1/ det(1—J,) as for a regular orbit, these boundary
cycles also pick up contributions of form 1/ det(3 — &J,), where k is a symmetry operation
that leaves the orbit pointwise invariant; see for example section 6.2.

Consequences for the zeta function factorizations are that sometimes a boundary orbit
does not contribute. A derivation of a dynamical zeta function (6) from a determinant like
(5) usually starts with an expansion of the determinants of the Jacobian. The leading order
terms just contain the product of the expanding eigenvalues and lead to the zeta function
(6). Next to leading order terms contain products of expanding and contracting eigenvalues
and are sensitive to their signs. Clearly, the weights ¢, in the zeta functions will then be
affected by refiections in the Poincaré surface of section perpendicular to the orbit, In ail our
applications it was possible to implement these effects by the following simple prescription.

If an orbit is invariant under a little group M, = {e, b3, ..., by}, then the corresponding
group element in (33) will be replaced by a projector. If the weights are insensitive to the
signs of the eigenvalues, then this projector is

1< 7 .
g=72 b (35)
=1

In all the cases we have considered, the change of sign may be taken into account by
defining a sign function €, (g} = =1, with the ‘—’ sign if the symmetry element g flips the
neigbourhood. Then (35) is replaced by

h

1
g =15 2 _ebibr. (36)

i=l

The resulting zeta functions agree with the ones given by Lauritzen [26]. We illustrate the
above in section 6.2 by working out the full factorization for the one-dimensional reflection
syminetric maps.

6. Factorizations of zeta functions

In the above we have shown that a discrete symmetry induces degeneracies among periodic
orbits and decomposes periodic orbits into repetitions of irreducible segments; this reduction
to a fundamental domain furthermore leads to a convenient symbolic dynamics compatible
with the symmetry, and, most importantly, to a factorization of zeta functions. This we
now develop, first in a general setting and then for specific examples.

According to (33) and (34), the contribution of a degenerate class of global cycles
(cycle p with multiplicity mp = g/ hp) 10 a zeta function is glven by the corresponding
fundamental domain cycle p:

(1— 17 )8/ = det(1 — D(hp)ty). @37
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Let D(k) = @, duDa (k) be the decomposition of the mamx representation D{k) into the
d, dimensional irreducible representations o of a finite group G. Such decompositions are
black-diagonal, so the corresponding contribution to the Euler product {(5) factorizes as

det(1 — D)) = ]'[ det(1 — Dy (h)})*% (38)

where now the product extends over all distinct d,-dimensional irreducible representations,
each contributing d, times. For the cycle expansion purposes, it has been convenient to
emphasize that the group-theoretic factorization can be effected cycle by cycle, as in (37);
but from the transfer operator point of view, the key observation is that the symmetry
reduces the transfer operator to a block diagonal form; this block diagonalization implies
that the zeta functions (6) factorize as '

Mz 2 =T -0ut. (39)
o o F i

Determinants of d-dimensional irreducible rcprese.ntauons can be evaluated using the
expansion of determinants in terms of traces,

det(l+ M) =1+t M+ % (MY ~te M) + L ((wMY =3 (e M) M) +2 r M)

+---+31,-((trM)“—--~) (40)

and each factor in (38) can be evaluated by looking up t-he characters x,(h) = tr D (k) in
standard tables [56). In terms of characters, we have for the one-dimensional representations

det(l — D (h)t) =1 — xo(h)t

for the two-dimensional representations
det(l — Do (h}) = 1 — xo (1)t + 2 () — xa(BD))E?

and so forth. These expressions can sometimes be simplified further using standard group-
theoretical methods. For example, the 1((tr M)? — tr M2) term in (40) is the trace of
the antisymmetric- part of the M x M Kronecker product; if ¢ is a two-dunensmnal
representation, this is the A, antisymmetric representation, so

2-dim: det(l — Da(h)) = 1 — Xu (R + X, ()12 (41)

In the fully symmetric subspace tr D4, (k) = 1 for all orbits; hence a straightforward
fundamental domain computation (with no group theory weights) always yields a part of
the full spectrum. In practice this is the most mterestmg subspectrum, as it contains the
leading eigenvalue of the transfer operator.
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6.1. Factorizations of functional determinants

Faqtorization of the full functional determinant {4) proceeds in essentially the same manner
as the factorization of dynamical zeta functions of the preceeding section. By (29) and (32)
the trace of the transfer operator £ sphts into the sum of inequivalent irreducible subspace
contributions } tr £, with

Ly =dy ) xulh) f ¥ L(h™'%, 5).
M .

heG

This leads by standard manipulations [18,46] to the factorization of (3) into

: 1 an(hr z""
z@) =[] z* Za(z) = exp ( Z 2.7 r | det(l — Jr)l) “

r=1

where J5 = hjJ; is the fundamental domain Jacobian. Boundary orbits require special
treatment, discussed in section 5.1, with examples given in the next section as well as in
section 7.

The factorizations (39), (42) are the main result of this paper. We pow proceed to
examplify it by a few cases of physical interest. Additional exampies (factorization and
cycle expansions for the cyclic symmetry groups Cs and Cy) are given in [22].

6.2. Reflection symmetric 1D maps: Ca factorization

Consider f, a map on the interval with reflection symmetry f(—x) = —f(x). Denote
the reflection operation by Cx = —=x. The symmetry of the map implies that if {x,} is
a trajeciory, than also {Cx,} is a trajectory because Cx,q41 = C f(x;) = f(Cx;). The
dynamics can be restricted to a fundamental domain, in this case to one half of the original
interval; every time a trajectory leaves this interval, it can be mapped back using C.

To compute the traces of the symmetrization and antisymmetrization projection operators
{(28), we have to distinguish three kinds of cycles: asymmetric cycles a, symmetric cycles
s built by repeats of irreducible segments §, and boundary cycles b, The Fredholm
determinant can be formally written as the product over the three kinds of cycles:
det(l — L) =det(l — £), det{1 — L)z det(l — L)p.

Asymmetric cycles. A periodic orbits is not symmetric if {x,} N {Cx,} = @, where {x;}
is the set of periodic points belonging to the cycle a. Thus C generates a second orbit
with the same number of points and the same stability properties. Both orbits give the
same coniribution to the first term and no coniribution to the second term in (28); as they
are degenerate, the prefactor 1/2 cancels. Resumming as in the derivation of (7}, we find
that asymmetric orbits yield the same contribution to the symmetric and the antisymmetric
subspaces:

det(l — L)z = ]‘[]’[( ) fy = lj:"l.

a k=0

Symmetric cycles. A cycle s is reflection symmetric if operating with € on the set of cycle
points reproduces the set. The period of a symmetric cycle is always even (n; = 2n;) and
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the mirror image of the x; cycle point is reached by traversing the irreducible segment § of
length nz, f™(x;) = Cx;. 8(x — f"(x)) picks up 2n; contributions for every even traversal,
n = rng, r even, and §(x + F*(x)) for every odd traversal, n = rn;, r odd. Absorb the
group-theoretic prefactor in the stability eigenvalue by defining A; = —Df" (x;), where

Df"™(x,) is the stability computed for a segment of length n;z. Restricting the integration
to the infinitesimal neighbourhood of the 5 cycle, we obtain the contribution to tr £7.:

"t Ll > f dx 2" (8(x — f*(x)) 2 8(x + f(x))
Vo
evens 8 t- )
(}: nT 1AL I/N Z BT 1/AL 1/AL

_(E)
Z MY /AL

Substituting all symmetric cycles s into det(1 — £+) and resumming as in (7), we obtain:

det( — £23: =] [] (1 T i-g)
¥ k=0 3

Boundary cycles. In the example at hand there is only one cycle which is neither symmetric
nor antisymmetric, but lies on the boundary of the fundamental domain, the fixed point at
the origin. Such a cycle contributes simultaneously to both 8(x — f*(x)) and §(x - f"(x)):

st - [ a0 - f1@) 80+ F1)
Ve

S (et )
PR NT=1/A, T 1+ 1/A,

o0 o0
ull - Zé,,,—ﬁg_ z"ttﬂ'_‘_—»ESML—L-—-.
= 1—1/.A§’ —= Agl-—-l/A%'

Boundary orbit contributions to the factorized Fradholm determinants follow by resumma-
tion:

[o] f 00 4
det(1 — L)y = H (1 - }\izk) det(1 —L_)p = H (1 - —;Z;f) .
k=0 b k=0 Ab

Only even derivatives contribute to the symmetric subspace (and odd to the antisymmetric
subspace) because the orbit lies on the boundary. The symmetry reduced zeta functions
follow by collecting the above results:

Z+(z)=1:li[0(1 )Uﬁ( )ﬁ(l—l{iﬁ)

k=0

z_(z)=]:[ ;]1( )Uﬁ)(l-&—ﬁ,‘)n(l—z-%%l—). (43)



Symmetry decomposition of chaotic dynamics 297

As reflection symmetry is essentially the only discrete symmetry that a map of the interval
can have, this example completes the group-theoretic factorization of determinants and zeta
functions for one-dimensional maps. A specific example is worked out in [61].

7. Examples of symmetry induced factorizations

We conclude with several explicit examples of group theory factorizations of cycle
expansions of dynamical zeta functions. These expansions are a prerequisite for applications
of periodic orbit theory to the evaluation of classical and quantal spectra; in particular, they
were used in the calculations of [9, 42].

7. Cy factorizations

As the simplest example of implementing the above scheme consider the C; symmetry
which arises, for example, in the Lorenz system [29], in the three-dimensional anisotropic
Kepler problem [24,30,31] or in the cycle expansions treatments of the Ising model [62].
For our purposes, all that we need to know here is that each orbit or configuration is uniquely
. labelled by an infinite string {s;}, 5; = +, — and that the dynamics is invariant under the
+ < — interchange, i.e., it is C; symmetric. In the Lorenz system, the labels 4 and —
stand for the left or the right lobe of the attractor and the symmetry is a rotation by &
around the z-axis. Similarly, the Ising Hamiltonian (in the absence of an external magnetic
field} is invariant under spin flip. The €2 symmetry cycles separate into two classes, the
self-dual configurations +—, ++——, +++—~——, 4+ —— 4~ +—, - - -, with multiplicity
mp =1, and the asymmetric configurations +, —, ++ —, — — +, - --, with multiplicity
mp = 2. For example, as there is no absolute distinction between the ‘up’ and the *down’
spins, or the ‘left” or the ‘right” lobe, #,. = ¢, t,,_ = t4—, and s0 on.

The symmetry reduced labelling p; € {0, 1} is related to the standard s; € {+, —} Ising
spin labelling by

If 8 = Sj then . p;=1 )

It 5i % Si-1 then o =0 (44)
For example, F = .-+ + -+ + +--* maps into ---111-.- = 1 (and so does =),
—_t e — 4. maps intq 000 = (l:q::i.:: ..... o TR
maps into - -+ 0101 --. =01, and so forth, A list of such reductions is given in table 4.

Depending on the maximal symmetry group H, that leaves an orbit p invariant (cf
section 4}, the contributions to the zeta function factor as to

Ay As

H, = :(l—t-zz 1 —1)(1 —¢;5

M=l - = A -1 - 1) (45)
Hp=fe,0}: (1~1)) = (1= t)(L + 15).

For example:

Mo = {e}: (1= 1402 = (1 ~ too0)(1 — toor)
Hew={e,o}: (1=, )= =) (1+1) b =12,
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Table 4. Correspondence between the Ca symenetry reduced ¢ycies p and the standard Ising
model periodic configurations p, together with their multiplicities mp. Alsc llsted are the two
shortest cycles (length 6) related by time reversal, but distinct under Cz.

B 7 ny
1 +

0 -t . 1
01 el oo o i
Qo1 - 2
o1l ——— et 1
0001 -t —— =t 1
0011 -+ 2
0111 ———— 4+ 1
00001 = 2
00011 - ==t 1
00101 -t == -t 1
00111 —t——— 4+ -+ ++ i
01011 —— 3+ o
01111~ ===~ o b 1
001011 — 4+ ~——+——+++ 1
001101 -4 4b—— -+ 1

This yields tWwo binary expansions. The A; subspace ieta function is given by the standard
binary expansion (9). The antisymmetric A, subspace zeta function {,, differs from é’A,
only by a minus sign for cycles with an odd number of (s:
1/§a, = (L +20)(1 — 21)(1 + £10)(1 — ts00) (1 = £101) (1 + £1000) (1 — #1001)
% (1+21011)(E —210000) (2100001 +210010) (L~ 210001 Y1 — 10101 (A +-f10111) - .«
=1+1p—t + (to — t1te) — (f100 — hiote) -+ (t1o1 — tiof1)
— (oo — tifgor — Biordo + tofofi) — . vvenns (46)
Note that the group theory factors do not destroy the curvature corrections (the cycles and
pseudo cycles are still arranged into shadowing combinations).
If the system under consideration has a boundary orbit (section 5.1) with group-thec)rehc
factor k, = (e + o)/2, the boundary orbit does not contribute to the antisymmetric subspace
Al A
boundary: (1 —£,) = (1 —£5)(1 — Ot3). “@n
This is the /¢ part of the boundary orbit factorization of section 6.2.

72. 3-disk piriball: Cs, factorization

The next example, the Cs, symmetry, can be worked out by a glance at figure 3(a). For
the symmetric 3-disk pinball the fundamental domain is bounded by a disk segment and
the two adjacent sections of the symmetry axes that act as mirrors (see figure 3(5)). The
three symmetry axes divide the space into six copies of the fundamental domain. Any
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trajectory on the full space can be pieced together from bounces in the fundamental domain,
with symmetry axes replaced by fiat mirror reflections. The binary {0, 1} reduction of the
ternary three disk {1, 2, 3} labels has a simple geometric interpretation: a collision of type
0 reflects the projectile to the disk it comes from (back-scatter), whereas after a collision
of type 1 projectile continues to the third disk. For example, 23 =...232323. .. maps into
...000.-- = 0 (and so do 12 and 13), 123 = - -- 12312--- maps into +-- 111--. =1 (and
so does 132), and so forth. A list of such reductions for short cycles is given in table 5.

Table 5. Cy, correspondence between the binary labelled fundamental domain prime cycles g
and the full 3-disk ternary {1, 2, 3} labelled cycles p, together with the C3, transformation that
maps the end point of the § cycle into the irreducible segment of the p cycle. The degeneracy
of p cycle is my = 6n;/n,. The shortest pair of the fundamental domain cycles related by time
symmetry are the 6-cycles 001011 and 001101.

p P h
0 12 ’ oz
1 123 Cy
o1 1213 o
001 121232313 G
o 121323 . o3
0001 12121313 o5
0011 121231312323 3
0111 12132123 o3
00001 1212123232 31313 G
00011 1212132323 .- "o
00101 1212321213 .o
00111 12123 e
01011 121312321231323 Cs
01111 1213213123 on
000001 121212131313 o3
000011 121212313131232323 €}
000101 121213 e
000111 121213212123 a1z
001011 121232131323 - om -
001101 121231323213 o3

001111  121231232312313123 G
010111  121312313231232123  C?
O1I111 121321323123 o13

C3, has a pair of one-dimensional irreducible representations, symmetric and
antisymmetric under refiections, denoted A; and A;, and two degenerate two-dimensional
representations of mixed symmetry, denoted E. The contribution of an orbit with symmetry
g to the 1/¢ Euler product (38) factorizes according to (39)

det(t — D)) = (1 — x4, (I — xa, (MO — xg(R)t + x4, ()Y (48)

with the three factors contributing to the (3, ieducible répresentations A1, Ay and E,

respectively, and the 3-disk zeta function factorizes into & = £,Z4,¢ 2. Substituting the Cs,
characters [56]
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Cay A1 A2 E
e i 1 2
Ca, C% 1 1 -1
(Tu 1 "'1 0

into (48), we obtain for the three classes of possible orbit symmetries (indicated in the first
column)

ks Ay Az E
e: (1—15)° = (1 —25)(1 — £5)(1 = 25 +13)°
C3, CI: (1—13? = (A~ )1 =)L + 85 +13)° (49)

oy i (1= = (1 —t5)(1 + t5)(1 +0t; — £2)?

where o, stands for any one of the three reflections.

The Euler product (6) on each irreducible subspace foIlows from the factorization (49).
On the symmetric A; subspace the &4, is given by the standard binary curvature expansion
(8). The antisymmetric A, subspace £,, differs from {4, only by a minus sign for cycles
with an odd number of 0°s, and is given in (46). For the mixed-symmetry subspace E the
curvature expansion is given by

1/t = (1 42ty + 242 (1 = 222 (1 + Ptige + 2585,) (1 ~ 2*1)

x {1+ z%1001 + 28225 )(1 + 2° 10000 + 2 %8F5000)

x (L + ztyor + 278iyp ) (L — 22°kars1 + 288,10 -«

=14zt +22(F — £8) + 2 (toor — 1) + 2* [toon1 + (toor —~ 1)ty — 23]

~+ 2° [to0001 + o011 — 2toot1 + Coors — #) + (8 — Do) +--+. (50)
We have reinserted the powers of z in order to group together cycles and pseudo-cycles of
the same length. Note that the factorized cycle expansions retain the curvature form; long
cycles are still shadowed by (somewhat less obvious) combinations of pseudocycles.

Refering back to the topological polynomial (22) obtained by setting £, = 1, we see
that its factorization is a consequence of the Ca, factorization of the £ function:

e, =1-2z 1/5a, =1 /g =14z

as obtained from (8), {46) and {(50) for tp, = 1.

An example of a system with Cs, symmetry is provided by the motion of a particle in
the Hénon—Heiles potential {32] ‘

V(r.6) = Lr? + 1r* sin(36).

Qur coding is not directly applicable to this system because of the existence of elliptic
islands and because the three orbits that run along the symmetry axis cannot be labelled in
our code. However, since these orbits run along the boundary of the fundamental domain,
they require the special treatment [26] discussed in section 5.1.
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Their symmetry is K = {e, ¢}, so according to (35), they pick up the group-theoretic
factor b, = {e+o)/2. If there is no sign change in ¢, then evaluation of det(1—{e+o/2)¢3)
yields

Ay Az E
boundary: (1 — £,)% = (1 — #5)(1 — Ot5)(1 — £5)* tp =15 (51)

However, if the cycle weight changes sign under reflection, t,5; = —f5, the boundary orbit
does not contribute to the subspace symmetric under refiection across the orbit;

Ay As E
boundary: (1 — £,)* = (1 — 0tz)(1 — t3)(1 — 13)* 1y = 3. (52)

7.3. Cy factorization

If an N-disk arrangement has Cy symmetry, and the disk visitation sequence is given by disk
labels {e;ez€3. ..}, only the relative increments o; = €;+; — € mod N matter. Symmetries
under reflections across axes increase the group to Cy, and add relations between symbols:
{&:} and {N — ¢;} differ only by a reflection [40,48]. As a consequence of this reflection
increments become decrements until the next refiection and vice versa. Consider four equal
disks placed on the vertices of a square (figure 4). The symmetry group consists of the
identity e, the two reflections o, o, across x, y axes, the two diagonal reflections o3,
o, and the three rotations Cs, C and C: by angles w/2, w and 3mw/2. We start by
exploiting the C, subgroup symmetry in order to replace the absolute labels ¢; € {1, 2, 3, 4}
by relative increments p; € {1, 2, 3}. By the reflection across diagonals, an increment by 3
is equivalent to an increment by 1 and a refiection; this new symbol will be called 1. Our
convention will be to first perform the increment and then to change the orientation due to
the reflection. As an example, consider the fundamental domain cycle 112, Taking the disk
I — disk 2 segment as the starting segment, this symbol string is mapped into the disk
visitation sequence 1,12,13421 ... = 123, where the subseript indicates the increments (or
decrements) between neighbouring symbols; the period of the cycle 112 is thus 3 in both
the fundamental domain and the full space. Similarly, the cycle 112 will be mapped into
1412.11023.32413451 = 121323 (note that the fundamental domain symbol 1 corresponds
to a flip in orientation after the second and fifth symbols); this time the period in the full
space is twice that of the fundamental domain. In particular, the fundamental domain fixed
points correspond to the following 4-disk cycles:

4-disk: ' reduced:
12 - 1
1234 o 1
13 - 2

Conversions for all periodic orbits of reduced symbol pericd less than 5 are listed in table 6,

While there is a variety of labelling conventions [57,48,39] for the reduced Ca,
dynamics, we prefer the one introduced here because of its close relation to the group-
theoretic structure of the dynamics: the global 4-disk trajectory can be generated by mapping
the fundamental domain trajectories onto the full 4-disk space by the accumulated product
of the Cs, group elements g; = C, g2 = C?, 81 = OgiagC = Ouys, where C is a rotation by
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Figure 4. The syrometries of four disks on a square. The fundamental domain is indicated by
the shaded wedge.

Table 6. Cs,, comespondence between the ternary fundamental domain prime cycles 7 and the
full 4-disk {1, 2, 3, 4} labelled cycles p, together with the Cay transformation that maps the end
potnt of the 5 cycle into an ireducible segment of the p cycle. For typographical convenience,
the symbol 1 of section 7.3 has been repiaced by 0, so that the iemary alphabet is {0, 1, 2}. The
degeneracy of the p cycle is mp = 8ng/np. Orbit 2 is the sole boundary orbit, invariant under
both a rotation and a reflection. The two pairs of cycles marked by (a) and (b) are related by
time reversal, but cannot be mapped into each other by sy transformations.

-] P , 85 3 r g5
“0 12 o 0001 12121414 o2
1 1234 Cs 0002 12124343 ay
2 13 Cpoy 0011 12123434 Cs
. 0012 1212414134342323 €3

01 1214  ow 0021 (@)  1213414234312324 3

02 1243 oy 0022 1213 e

12 12413423 . c? 0102 (@)  1214232134324143  Cs
: 0111 12143234 o3

001 121232343414« Cs oLz By 12142123 o
002 121343 Ca 0121 (B) 12132124 oy
011 121434 oy 0122 12131413 o2
012 121323 a3 G311 12432134 oy
021 124324 o 0212 12431423 o
022 124213 oy 0221 12421424 o
iz 123 e 0222 12424313 ' oy
122 124231342413 G4 1112 1234234134124123 €4
1122 12313413 | Cs

1222 12424131 34242313 3

7/2. In the 112 example worked out above, this yields gyz = g28181 = C*COuis = Oings
listed in the last column of 1able 6 {our convention is to multiply group elements in reverse
order with respect to the symbol sequence). We need these group elements for our next
step, the zeta function factorizations.

The €4, group has four one-dimensional representations, either symmetric (A)
or antisymmetric {Az2) under both types of reflections, or symmemic under one and
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antisymmetric under the other (B, B,), and a degenerate pair of two-dimensional
representations £. Substituting the Cy, characters

Ca A, A B B E
e 11 1 1 2
Cz 11 1 P -2
C,C: 1 1 -1 -1 o
Taxes 1 -1 1 -1 0
Ciiap 1 —~1 -1 1 0

into (39) we obtain

kﬁ Al A By 7 By E
R - (1 ——tﬁ)s = (1 —-tﬁ) (1 --Iﬁ) (1‘--t§) (1 —15) (1 —ti,')d'
Ca: (1- t§)4 = (I-~t5 (1 —15) (1 =15 (I-¢t) A+ t§)4
CiCh (=t = (I=t5) (=1 (+5)  (+t) (46
Ouest  (1=1° = (-1 (+15) (=1 A+t (-8
cugt (=22 = (=t A+ (+1) (- (1-1)%

The possible irreducible segment group elements ks are listed in the first column; Opyes
denotes a reflection across either the x-axis or the y-axis, and ogi,e denotes a reflection
across a diagonal (see figure 4). In addition, degenerate pairs of boundary orbits can run
along the symmetry lines in the full space, with the fundamental domain group theory
weights i, = (C; + 0,)/2 (axes) and k, = (C; + 013)/2 (diagonals) respectively:
A A, B By E

axes: (1 — 22 = (1 — 1)1 — 05)(1 — 5)(1 — 0tp) (1 + 25)°

diagonals: (1 —13)* = (1 —£3)(1 — 015)(1 — Otz) (1 — 1) (1 + 25)°

(we have assumed that 5 does not change sign under reflections across symmetry axes).
For the 4-disk arrangement considered here only the diagonal orbits 13, 24 occur; they

correspond to the 2 fixed point in the fundamental domain.
The Ay subspace in C4, cycle expansion is given by

1/¢4, = (1 =1} — 11)(1 — £2)(1 — 201 )(1 — 202} (1 — t12)
% (1 = fo01)(1 — too2) (1 — 2010 (1 — t012) (1 — 2021)(1 — #o22)(1 — t112)
X (1 = 1122}(1 — t9001)(1 — 29002) (1 — Zo010)(1 — foo12)(1 — Zg021) - .
= 1=ty —t — b — (oL — fot) — (fon — fot2) — (fr — faf2)
— (toor — foto1) — (too2 — fotoa) — (for1 — titor)
— (fo22 — tat02) — (tnz — hitrz) — (i — t2t12)
— (fo1z + foz1 + totitz — fotiz— tifop — tatpr) . . - (54}

{for typographical convenience, 1 is replaced by 0 in the remainder of this section). For one-
dimensional representations, the characters can be read off [63)] from the symbol strings:
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Xa(h5) = (1), xp,(hg) = (=1)™, xp,(h5) = (—1)"*™, where ng and n; are the
number of times symbols 0, 1 appear in the § symbol string. For B, all £, with an odd
total number of 0’s and 1’s change sign:
1/¢s, = 1+ 1)L+ 1)L = )1 = to) (1 + 1) (1 + 12)

(1 + 2001 )(1 — 2002) (1 + fo11) (1 — 2012} — foa1) (1 + f022)(1 — t112)

X (14 4122)(1 — o001 }(1 + 2o002){1 — 20011 {1 + 20012) (1 + too21) . . .

=1+15+ 14 — 12 — (fo — foty) + (toz — fot2) + (a2 — 1122}

+ {foo1 — fotor) — (fooz — fotoz) + (for1 — ifo1)

+ (tozz — f2t02) — (tuz — titiz) + (hzz — R2th2)

— (torz + fo1 + tot1t2 ~ tohiz — fitz — fator) . . . (55)

The form of the remaining ¢ycle expansions depends c¢rucially on the special role played
by the boundary orbits: by (53) the orbit # does not contribute to A» and By,

1/¢4, = 1+ 1)1 — 0)(1 +201) (1 +102)(1 — t12)
x (1 = t5o1)(1 = too2)(1 + o11)(1 + 212) (1 + fo21) (1 + fop2) (1 — 1132}
x (1 = tya2)(1 + o001 )(1 + #o0a2) A — fo011) (1 — famn2) (1 ~ Zo021) - - -
= L+ ty — 11 + (o1 — foli) + fo2 — D12
— (too1 — fotor) — (foo2 — fotoz) + (fou1 + titor)
+ tppe — fy22 — (tr1z — titin} + (torz + foz1 — fotiz ~ tifga) . - - (56)

and

1/¢g, = (1 = 10)(1 + 1)(1 + 101)( — te2){1 + 112}

X (L4 o913 (1 — too2) (1 — to11 )1 + 2012)(1 + f020) (1 — fop2) (1 — #112)

X (1 + 1122)(1 + £oo01){1 ~ fo002) (1 — foor1)(1 + foo12) (1 + foo21) - . -

=1—tg+t+ (o —fot1) — 2+ t12 ' »

-+ (foo1 — fatar) — (tooz — fotaz) — Cfour = fifor)

— tozz + fizz — (t112 — fifi2) + (foiz + toz1 — fotiz — hifo} ... (57
In the above we have assumed that ¢, does not change sign under Cy, reflections. For the
mixed-symmetry subspace E the curvature expansion is given by
1/te = 1+ 1+ (0% + 1) + 2o,z — bate® — 212 + 2117

+ (20011 — 220022 + 2tatoce — tr® — 102" + 2tz — 20atina

+ 8122 — 1°1%) + (2tooonz — 2te0112 + 2ato011 — 2toorzr — 2tovas

+ 200222 — 2tatonzz + 2tor01z + o0zt — 2otioz — tator” + 202022

= bty + 201112 — 222 + 20tz — 2o + Bt — te’t”

+ 2to0a(—t6% + 11%) — 2t112(—" + 12). : (58)
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A quick test of the & = &a,84,88,L5,52 Tactorization is afforded by the topological
polynomial; substituting ¢, = z" into the expansion yields

Via,=1-32 . . fia=1/ts, =1  Vig, =1tz =1+z
in agreement with (23).

7.4. Cy, factorization

An arrangement of four identical disks on the vertices of a rectangle has (7, symmetry
(figure 5). Ca, consists of {e, oy, 0y, Ca}, i.e. the reflections across the symmetry axes and
a rotation by . Cy, is the symmetry of several systems studied in the Iiterature, such as
the stadium billiard [49], and the two-dimensional anisotropic Kepler potential [24].

Figure 5, The symmetries of four disks on a rectangle. The fundamental domain is indicated
by the shaded wedge.

This system affords a rather easy visualization of the conversion of a 4-disk dynamics
into a fundamental domain symbolic dynamics. An orbit leaving the fundamental domain
through one of the axis may be folded back by a reflection on that axis; with these symmetry
operations go = 0, and g, = o, we associate labels 1 and O, respectively., Orbits going
to the diagonally opposed disk cross the boundaries of the fundamental domain twice; the
product of these two reflections is just C» = o0y, to which we assign the label 2. For
example, a ternary string 0010201... is converted into 12143123. . ., and the associated
group-theory weight is given by ... g1802280818080-

Short ternary cycles and the corresponding 4-disk cycles are listed in table 7. Note that
already at length three there is a pair of cycles (012 = 143 and 021 = 142) related by time
reversal, but not by any C;, symmetries.

The above is the complete description of the symbolic dynamics for 4 sufficiently
separated equal disks placed at comers of a rectangle. However, if the fundamental domain
requires further partitioning, the ternary description is insufficient. For example, in the
stadium billiard fundamental domain one has to distinguish between bounces off the straight
and the curved sections of the billiard wall; in that case there exists evidence [64] that five
symbols suffice for constructing the covering symbolic dynamics.

The group C,, has four one-dimensional representations, distinguished by their
behaviour under axis reflections. The A; representation is symmetric with respect to both
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Table 7. €3, correspondence between the ternary {0, 1,2} fundamental domain prime cycles 7
and the full 4-disk {1,2, 3, 4} cycles p, together with the Ca, wansformation that maps the end
point of the p cycle into an imreducible segment of the p cycle. The degeneracy of the p cycle
is mp = 4n5/np. Note thart the 012 and 021 cycles are related by time reversal, but cannot be
mapped into each other by €y, transformations, The full space orbit listed here is generated

from the symmetry reduced code by the rules given in section 7.4, starting from disk 1.

p P g P P g
0 14 oy 0001 14143232 G
i 12 o 0002 14142323 o
2 13 C, 001l 1412 e
0012 14124143 g
o1 1432 G 021 14134142 oy
02 1423 oy 0022 1413 P
12 1243 o, 0102 14324123 o
0111 14343212 G
001 141232 o 0112 14342343 oy
002 141323 Cp 0121 14312342 o
011 143412 g 0122 14313213 &
012 143 e 0211 14212312 o
021 142 e 0212 14213243 G
022 142413 o, 0221 14243242 G
112 121343 ©C 0222 14242313 o,
122 124213 o, | 1112 12124343 oy
1122 1213 e
1222 12424313 oy

reflections; the A» representation is antisymmetric with respect to both. The B; and B,
tepresentations are symmetric under one and antisymmettic under the other reflection. The

character table is

Cxw A A B B
e 1 1 1 1
Gy 1 i -1 =
oy 1 -1 1 -1
o 1 -1 -1 1

Substituted into the factorized determinant (38), the contributions of periodic orbits split

as follows
b4
e:
Cz.‘
Ol
oyl

Cycle expansions follow by substituting cycles and their group theory factors from table 7.
For A, all characters are 41, and the comesponding cycle expansion is given in (54).
Similarly, the totally antisymmetric subspace factorization A, is given by (55), the B,

(1-— t§)4

(113
(1 -?
(-3

Aj Aa
{1— tﬁ) (1 - tﬁ)
(1 —1tp) (I =123
(1-t5 (1+)
(I—=%) A+

B
(1—125
(1 - I‘a)
(1 -tz
(1+tp)

By
(11—t
(1—1¢p)
(1415
(1 —tj;).

factorization of Cy,. For By all ¢, with an odd total number of 0’s and 2’s change sign:

1/Egp, = (1 4+ 1)1 — 1) (1 + &2)(1 + 201)(1 — to2)(1 + #12)
X (1 = 20011 + ooz (L + fo1) (Y — t2¥ (1 — 1020 (1 + to22)(1 + t112)
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x (1 — 122} (1 + fooon) (1 ~ taon)(E — toor) (L + foo12)(1 + o021 - -
=1+1g~ 1+t (to — tot1) — (tor — fora) + (12 — 1112)
- = (too1 — fotor) + (fooz — folo2) + (tor1 — t1t01)
+ (tozz — t3to2) + (f112 — tt12) — (t1z2 — tat12)

— (fo12 + o2t + fofily — fotiz —tifoz — Bt} - (59
For B, all 1, with an odd total number of 1’s and 2’s change sign:

1728, = (1 = fa)(1 + £1)(1 + 22} (1 + 1o )1 + 22} (1 — 112)
x (1 + o)1 +1002)(1 — to11) (1 — for2) (L~ toz )(1 = oaa){(1 + 112)
X (1 + 1223 (1 + fo001 )(1 + taoo2) (! ~ Zo011) (1 — foo12)(1 — o021} - . .
=1—to+t + &+t —tot1) + (e — tot2) — (12 — t112)
+ (too1 — tolo1) + (tooz — foloz) — (fo11 — fufor)
= (tozz — fotoz) -+ (tiz — iti2) + (2 - tyt12)

— (12 + tozr + fotrfo — fotiz — tloz — B2ign) - - .. (60}

Note that all of the above cycle expansions group long orbits together with their pseudo-orbit
shadows, so that the shadowing arguments for convergence [18] still apply.
The topological polynomial factorizes as
1 1
—=1-3z —

tAl ;Az gBI ) gBZ

consistent with the 4-disk factorization (23). The 4-disk system discussed here has no
boundary orbits; for other problems they might exist and factorize as described in section 5.1.

8. Summary

The techniques of this paper have been applied to computations of the 3-disk classical and
quantum spectra in [46,42, 50], and to a ‘Zeeman effect’ pinball and the x2y* potentials in
{22,63). The main lesson of such calculations is that if a dynamical system has a discrete
symmetry, the symmetry shouild be exploited; much is gained, both in understanding of the
spectra and ease of their evaluation. Once this is appreciated, it is hard to conceive of a
calculation without factorization; it would cormrespond to quantum mechanical calculations
without wavefunction symmetrizations.

* In a larger perspective, the factorizations developed above are special cases of a general
approach to exploiting the group-theoretic invariances in spectra computations, such as those
used in enumeration of periodic geodesics [27, 65,41] for hyperbolic billiards {10, 13] and
Selberg zeta functions [14). '

Reduction to -the fundamental domain simplifies symbolic dynamics and eliminates
symmetry induced degeneracies. While the resummation of the theory from the trace sums
[12] to the cycle expansions [53] does not reduce the exponential growth in number of
cycles with the cycle length, in practice only the short orbits are used, and for them the
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labor saving is dramatic. For example, for the 3-disk pinball there are 256 periodic points
of length 8, but reduction to the fundamental domain non-degenerate prime cycles reduces
the number of the distinct cycles of length 3 to 30.

In addition, as we demonstrate by explicit calculations in [9,42], cycle expansions of
the symmetry reduced zeta functions converge dramatically faster than the unfactorized
zeta functions. One reason is that the unfactorized zeta function has many closely spaced
zeros and zeros of multiplicity higher than one; since the cycle expansion is a polynomial
expansion in topological cycle length, accomodating such behaviour requires many terms.
The zeta functions on separate subspaces have more evenly and widely spaced zeros,
are smoother, do not have symmetry-induced multiple zeros, and fewer cycle expansion
terms (short cycle truncations) suffice to determine them. Furthermore, the cycles in the
fundamental domain sample phase space more densely than in the full space. For example,
for the 3-disk problem, there are 9 distinct (Symmetry unrelated) cycles of length 7 or less
in full space, corresponding to 47 distinct periodic points. In the fundamental domain, we
have 8 (distinct) periodic orbits up to length 4 and thus 22 different periodic points in % the
phase space, i.e. an increase in density by a factor 3 with the same numerical effort.

We emphasize that the symmetry factorization (49) of the dynamical zeta function is
intrinsic to the classical dynamics, and not a special property of quantal speciza {in which
context it was used before [23]). Our results are not restricted to the Hamiltonian systems,
or only to the configuration space symmetries; for example, the discrete symmetry can be
a symmeitry of the Hamiltonian phase space [25].

In conclusion, the manifold advantages of the symmetry reduced dynamics should thus
be obvious; full space cycle expansions, such as those included in the appendix, are useful
only for cross checking purposes.
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Appendix

Here we list the 3- and 4-disk cycle expansions for unfactorized zeta functions. They are
not recommended for actual computations, as the factorized zeta functions yield much better
spectra, but they might be useful for cross-checking purposes.

For the 3-disk pinball (assuming no symmetries between disks) the curvature expansion
(3) is given by

1/2 = (1 — 2*1)(1 — 22i3) (1 — Za) (1 —23&23)('1 ~ 2*h3p)

x (1 = 2% h23)(1 ~ 2012520 (1 — 211328} (1 — hizp0s) -+ -
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=1- 22!12 - 2'2!23 - 221‘31 - 231‘123 — 233132
— 2*{(t1213 — tiati3) + (fizsz — fiatas) + (frsas — i3t3)]

— 2 [(fi2123 — tiatiza) + -] ==+ (61)

The symmetric 3-disk pinball cycle expansion of the Euler product (30) (see table 2 and
figure 1) is given by
1/¢ = (1 = 2202)*(1 ~ 22013)°(1 — 21123
x (1 — 2°t1213)%(1 — 28t121213)°(1 — 2812133)° . .
= 1— 322 — 2234133 — 32*(ty213 — ) — 62°(hi2123 — t12ti23)
— 2%(6t121213 + 3t121323 + 155 — M1otia13 — tis)
— 6z (1212123 + tiz12313 + hzizizs + tlzztllzs — 3tiahizi2s — hastiiz)
— 32° @tonains + fzases + 2o + 22131
+ 202123213 + fi2132123 ++ et F fiaths

— Btiatizi213 — tiatizans — dhiostionzs — thoys) ~ -0 62)

. For the symmetrically arranged 4-disk pinball the symmetry group is Cyy, of order 8.
The degenerate cycles can have multiplicities 2, 4 or 8 (see table 3):

176 = (1 = 22t12)* (1 = 22013)%(1 = 2211238 (1 = 2*13213)3 (1 = 2%11210)°
x (1 = 2%11230)%(1 — 2*h203)*(1 — 2t12123)8(1 — 211212081 — 2°112134)°

x (1 — 211214308 (1 — 2t12313)% (1 — 2°112013)% -+ (63)
and the cycle expansion is given by

1/¢ =1 —22(4p + 2013) — 82°tim

— 2*(8ty213 + dtizia + 2izsa + 1003 — 615, — t5 — Btiaty3)

— 82° (12123 + tia124 + 12134 + f2143 + ti2s13 + taats — 42tz — 2ti3t3)

— 425(28g + S + 13, + 3thtis + tiath — Stiptingy — Mihize

— 2natizse — dtiatiss — dti3tians — 2ti3tians — tatioss

— 2y3tizas — Ttiy) — -+ oo 64)
where in the coeﬂicienf to z® the abbreviations Sg and S, stand for the sums over the weights

of the 12 orbits with multiplicity 8 and the 3 orbits of multiplicity 4, respectively; the orbits
are listed in table 2.
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