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1 INTRODUCTION

Neonlinear physics presents us with a perplexing variety of complicated fractal ob-
jrcts and strange sets. Notable examples include strange attractors for chaotic
dynamical systems, regions of high vorticity in fully developed turbulence and frac-
tal growth processes. By now most of us appreciate the fact that the phase space of
a such dypnamieal system is an infinitely interwoven mixture of islands of stability
and regions of chaos. Confronted today with a potentially turbulent dynamical sys-
tem, we analyze it in three distinet steps. First, we diagnose the intrinsic dimension
of the system - the lower bound on the number of degrees of freedom needed to
capture the essential dynamics - by some nwmerical dimension nlgorithmm. If the
systern is very turbulent, its intrinsic dimension is high, and we are, at present, out
of luck. So far we have a handle only on the transitional regime hetween regular
motions and weak turbulence. In this regiine attractors are of low dimension, the
nnmber of important parameters is small, and we can proceed to the second step:
we classify qualitatively all motions of the system into a hierarchy whose succes-
sive layers require increased precision and patience on part of the observer. This
classification is called the symbolic dynamics of the system: it is a rond map which
describes its topology. Parenthetically, through this enumeration number theory
enters and comes to play a central and often highly non-trivial role in the study of
cdeterministie chans.

Having determined what the pieces of the system are, we proceed onto the third,
quantitative step: the scaling, or metric structure of the dynamical system. Possible
trajectorien are qualitatively of three distinct types: they are either asymptotically
unstable (positive Lyapunov exponent), asymptotically marginal (vanishing Lya-
punov) or asymptotically stable (negative Lyapunov). The asymptotically stable
orhits ean be treated by the traditional integrable system methods. The asymp-
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totically marginal orbits can be called the “border of order”; they remain margin.a!
under any rescaling, and they are a domain of the renormalization theory, a topic
beyond the scope of this lecture. Here we shall concentrate on the third class of
orbits, the asymptotically unstable orbits which build up chaos. The word “chaos”
has in this context taken on a narrow technical meaning. When a physicist says
that a certain system exhibits “chaos”, he means that the system obeys determinis-
tic laws of evolution, but that the outcome is highly sensitive to small uncertainties
in the specification of the initial state. In a chaotic system any open ball of initial
conditions, no matter how small, will in finite time spread over the extent of the
entire asymptotically accessible phase space. Once this is grasped, the focus of the-
ory shifts from attempting precise prediction (which is impossible) to description
of the geometry of the space of possible outcomes, and evaluation of averages over

this space.

A precise quantitative encoding of the metric structure is given by the scaling func-
tions (or transfer operators). Their purpose is twofold:

For an experimentalist, they are the theorist’s prediction of the motions expected
in a given parameter and phase-space range. Given the observed motions, the
symbolic dynamics predicts what motions should be seen next, and the scaling
functions predict where they should be seen, and what precision is needed for their
observation.

For a theorist, the scaling functions are a tool which resolves the fine asymptotic
structure of a chaotic dynamical system and proves that the system is indeed
chaotic, and not just a regular motion of period exceeding the endurance of an
experimentalist. Furthermore - and that is theoretically very sweet - the scalings
often tend to universal limits. In such cases, the finer the scale, the better the
theorists’s prediction! So what at first sight appears to be a bewilderingly complex
dynamics might turn out to be a manifestation of a rather simple law, and common
to many apparently unrelated phenomena.

In retrospect many triumphs of both classical and quantum physics seem a stroke
of luck: a few integrable problems, such as the harmonic oscillator and the Kepler
problem, though “nongeneric”, have gotten us very far. The success has lulled
us into a habit of expecting simple solutions to simple equations - an expectation
shattered for many by the recently acquired ability to numerically sean the phase
space of non-integrable dynamical systems. The initial impression might be that
all our analytic tools have failed us, and that the chaotic systems are amenable
only to numerical statistical investigations. However, as we will attempt to show
here, we maybe already possess a perturbation theory of the deterministic chaos of



predictive quality comparable to that of the traditional perturbation expansions for
nearly integrable systems. This theory is based on the observation that the motion
in dynamical systems of few degrees of freedom is often organized around a few
fundamental cycles. These short cycles capture the skeletal topology of the motion
in the sense that any long orbit can approximately be pieced together from the fun-
damental cycles. Computations with such systems require techniques reminiscent
of statistical mechanics; however, the actual calculations are crisply deterministic
throughout. The strategy will be to expand averages over chaotic phase space re-
gions in terms of short unstable periodic orbits, with the small expansion parameter
being the non-uniformity of the flow (here referred to as “curvature”) across neigh-
borhoods of periodic points. To get some feeling for how and why unstable cycles
come about, we start by playing a game of pinball.

2 PINBALL CHAOS

A physicist's pinballl23:413] game is a pinball reduced to its bare essentials: three
disks in a plane:
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Figure 1. The 3-disk pinball with the disk radius : center separation ratio
a:R = 1:2.5. (a) the three disks, with 12, 123 and 121232313 cycles indicated.
(b) the fundamental domain, i.e. a wedge consisting of a section of a disk, two
segments of symmetry axes acting as straight mirror walls, and an escape gap.
The above cycles restricted to the fundamental domain are now the two fixed
points 0 and T and the T00 cycle.

a good game consists in predicting the asymptotic lifetime (or the escape rate) of
a pinball to many significant digits. The unstable cycles as a skeleton of chaos
are almost visible here: a good strategy for keeping the ball bouncing as long as
possible is to aim it as close as possible to a periodic trajectory. Short periodic
trajectories are easily drawn and enumerated - some examples are given in fig. 1 -
but it is rather hard to extract the systematics of the orbits from their physical
space trajectories.

A clearer picture of the dynamics is obtained by constructing a phase space Poincaré
section. We start by exploiting the sixfold symmetry of the disks, and restrict
the pinball to bouncing in the fundamental domain (fig. 1b). The whole pinball
plane can be retiled by 6 copies of the fundamental domain, but the details are
inessential for present considerations. We define our Poincaré section by marking
z,, the position of the ith bounce off the bottom wall (fig. 1b), and sin¢,, the
momentum component parallel to the bottom wall. (z,sin¢) coordinates are a

convenment choice, because they are phase-space volume preser'-fing[ﬁl.

We next mark the initial conditions 2., which do not escape in one bounce. There
are two strips of survivors, as the trajectories originating from one disk can hit
either of the other two disks, or escape. We label tlie two strips with e = 0, 1.
There are four strips .., that survive four bounces. and so forth. Another way
to look at the survivors after two bounces is to plot 1}, .,, the intersection of 0,
with the strips {1,, obtained by time reversal (sin¢ — —sing). Provided that the
disks are sufficiently well separated, what emerges is a complete binary Cantor set

with the usual Smale horseshoel®l foliation and symbolic dynamics.
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Figure 2. The Poincaré section of the phase space for the fundamental domain
pinball, fig. 1b. Indicated are the fixed points 0, T and the 2?-cycle 01,10,

Point-like pinballs are shot at the disks from random starting positions and a.nglfes;
they spend some time bouncing between the disks and then escape. For a physicist

together with strips which survive 1, 2, ... bounces. Iteration corresponds to
bit shift, so for example region ...01.01... maps into ...010.1 .. .
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After n iterations the survivors are divided into 2 distinct neighborhoods: the
ith neighhorhood consists of all points with itinerary 1 = £epey. . .60, ¢, = (0,1}
Each such pateh contains a periodic point 577757775 with the basic block infinitely
repeated. Prrindic points are skeletal in the sense that as we look further and fur-
ther, they stay put forever, while the fnite covers shrink onte them. The perindic
points are dense on the asymptotic repeller, and their number increases exponen-
tially with cyele length. As we shall see, this exponential proliferation of cycles is
not as dangerons as it might srem.

Before continuing with the pinball as an illustration of the origin and structure of
unstable cyeles, we turn briefly to the role of cycles in more general settings.

3 CYCLES AS THE SKELETON OF CHAOS

Consider a general three-dimensional flow sketched in fig. 3. To be interesting, the
flow shonld be recurrent; otherwise it 15 a transient state that we cannot observe
for long times. If the flow is recurrent, we can cut it "'y a Poincaré section; if it is
a map of a compact disk domain onto itself, it must liave at least one fixed point.
Now consider the ways in which the flow can deform the neighborheod of & fixed
point. There are essentially two possibilities: the neigliborhood can return wrapped
around the fixed point (the fixed point is stable or elliptic - see fig. 3a), or squeezed,
stretched and folded (the fixed point is unstable ar hyperbolie - see fig. 3b).
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F|gu]'|l_= 3. A recurrent flow around [a} an l?“iptit fixed point, (b) a hypﬂbﬂlit
fixed point.

In the traditional approach we use integrable motiona of fig. Ja as seroth-order
npproximations to phynical systema, and aceount for weak non-lineanties [‘H‘ﬂllr!ﬂ-
tively We tend to think of a dynamical system as a smonth system whoee evolution
enn be followed by integrating & set of differential equations. When this i actu-
ally followed through to aaymptotic times, we discover that the ateongly non linear
aystems show an amazingly rich structure which m not at all apparent in their
formulation in terma of differential equations. However, hidden in this apparent
chaos in a rigid skeleton, a tree of cycles (periodic orbits) of increaang lrngths and
sell.similar structure. The new insight is that the aereth order approximatima to
harshly chantic dynamics ahould be very different from those for the nearly inte-
grahle aystema: a good starting approximation here is the stretching and kneading
of a baker's map of fig. 3b, rather than the winding of & harmonic oscillator of

fig. Ja.

There are a number of deep rwfﬁ for the apecial role the cycles play in the the-
ory of dynamical systems; we shall motivats them here by appealing to the roncept
of invariance. A deterministic dynamical system can be presented in an infinite
numhber of ways. The theorist's choice of variables and parameters s & matter of
nesthetics; the experimentalist’s is constrainsd by instromental limitations, and s
the same physics is presented to us in many obscurely related guises as & phase.
space trajectory, as a time-delay plot, an & map such an a Poincard section of a
Aowl!2l. How are we to efficiently identify the system under ita diffrrent guises?
What is clearly needed is a complete meariant charartenization, something like spec-
ifying a representation of a Lie group by the values of its Casimir nprrators. Given
such charncterization, one could extract the invarianta from both theory and Lhe
experiment:

EXPERIMENT | THEORY

o | 1.763... 17512638 . ..
cy {032, 0.25M37. .
o | 0.02... 0.019253. ..

and quantify the closeness of the two by computing something like a “distance” in
the space of dynamical systems

lim 3o - oty



We shall argue here that for low dimensional deterministic dynamical systems the

cycles (periodic orbits) provide a possibly Dptimallla} invariant description of a

dynamical system, with the following virtues:

1. cycle symbol sequences are topological invariants: they give the spatial layout of
a strange set

2. eycle eigenvalues are metric invariants: they give the scale of each piece of a
strange set

3. cycles are dense on the asymptotic non-wandering set

4. cycles are ordered hierarchically: short cycles give good approximations to a
strange set, longer cyeles only refinements. Errors due to neglecting long cycles can
be bounded, and typically fall off exponentially with the cutoff cycle length

5. cycles are structurally robust: eigenvalues of short cycles vary slowly with smooth
parameter changes

6. asymptotic averages (such as generalized dimensions, escape rates, quantum
mechanical eigenstates and other “thermodynamic” iverages) can be computed

from short cycles by means of cycle expansions
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Figure 4. A fixed point and a cycle remain a fixed point and a cycle in any
representation of a dynamical systems. Here (a) and (c) phase space is built
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(rom = and its derivatives. (b) and (d) might he the same Lrajectories in the
time-delay coordinates.

Points 1, 2: That the cycle topology and cigenvalues are invariant properties of
dynamical systems follows from elementary considerations [f the same dynamics is
given by a map f in one set of coordinates, and a map gin the next, then f and g ior
any other good representation) are related by a reparametrization and a coordinate
transformation f = h-'ogoh. As both f and g are arbitrary representations of the
dynamical system, the explicit form of the conjugacy h 1s of no interest, only the
properties invariant under any transformation h are of general import. The most
obvious invariant properties are topological; a fixed point must be a fixed point n
any representation, a trajectory which exactly returns 1o the initial pont (a cycle)
must do so in any representation (fig. 4]. Furthermore, a good representation should
not mutilate the data; h must be a smooth transformation which maps nearby cycle
points of f into nearby cycle points of g. This smoothness guarantees that the
cycles are not enly topological invariants, but that their linearized neighborhoods
are also metrically invariant. In particular, the cycle eigenvalues (eigenvalues of the
Jacobians df(")(z,)/dz of periodic orbits fI*(ry) = r,) are invariant.

Point 3: The cycles are intuitively expected to he ." nse because on a connected
chaotic set a typical trajectory is expected to behave .1 godically, and pass infinitely
many times arbitrarily close to any point on the set. wicluding the initial point of
the trajectory itself. Generically one expects to be nlile to gently move the initial
point in such a way that that the trajectory returns precisely to the initial point:

(a}
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Figure 5. (a) A close recurrence of an unstable trajectory (b) can be exploited
to locate a nearby cycle.

This is by no means guaranteed to work, and it must be checked for the particular
system at hand. A variety of ergodic (but insufficiently mixing) rounter-examples



ean be constencted - the most familiar heing a quasiperiodic motion on a torus.

Point 5: An important virtue of cycles is their structural robustneass. Many quanti-
ties customarily associated with dynamical systems depend on the notion of “struc-

tural stahility” [3], 1.0. robustness of strange sets to small parameter variations. This

is certainly not a property of generic dynamical systems, snch as the Hénon rnapllb]
(ry) = (1 —ar? 4 y,br). For example, while numerical studies indicate that for
a = 14, b= 0.3 the attractor is “strange”, parameter variation as minute as chang-
ing a to a = 1.30945219 destroys this attractor ancd replaces is with a stahle cyele
of length 13. Still, the short unstable cyeles of length less than 17 are ~tineturally
robust in the sense that they are only slightly distorted by such parameter changes,
and averages computed using them as a skeleton are insensitive to small deforma-
tions of the strange set. In eontrast, lack of structural stability wreaks havoe with
quantities such as Lyapnnov exponents, for which there is no guarantee that they
converge in any finite numerical computation.

The theoretical advance that we will concentrate on here is point 4: we now know
how to control the errors due to neglecting longer cycles. As we shall explain in
sect. 5, even though the number of invariants is infinite (unlike, for example, the
number of Casimir invariants for a compact Lie group) the dynamics can be well
approximated to any finite accuracy by a small finite set of invariants. The origin
of this convergence is geometrical, as we shall now show hy returning to our game

of pinball.

4 PINBALL ESCAPE RATE

Consider fig: 2 again. In each bounce the initial conditions get thinned out, yielding
twice as many thin strips as at the previous bounce. The phase-space volume is
preserved by the flow, so they are contracted along the stable eigendirections, and
ejrcted along the unstable eigendirections; the total fraction of survivors after n
bounces is proportional to

Bi="%" § (1)

where ¢ is a binary label of the ith strip, and [, is the width of the ith strip. One
expects the sum (1) to fall off exponentially with n, and tend to a limit

Fo=e T oy o T = g™ (2)

T is the asymptotic Lifetime of a random initial pinball; ¥ = 1/T is the pinball
racape rate. We shall now show that this asymptotic escape rate can be extracted

from a highly convergent ezact expansion hy reformulating the sum (1) in terms of
unstable periodic orbits.

Each neighborhood 1 in fig. 2 contains a periodic point 7. The finer the intervals,
the smaller is the variation in fow across them, and the strip width I; is well
approximated by the contraction around the perindic point, I, = a,/|A,|. Here A, is
the expanding cigenvalue of the linearized map evaluated on the periodic point 1,
and a, is a prefactor defined by

a; = I‘,iA.l (3)

Now we make the only approximation in our derivation of the ¢ function: for

n the prefactors a, = O(1) are overwhelmed by the exponential growth of A,, so we
neglect them. This is called the hyperbolicity assumption. a; reflect the particular
distribution of incoming pinballs; the asymptotic trajectories are strongly mixed
by bouncing chaotically between the disks and we expect them to be insensitive
to smooth variations in the initial distribution. If the hyperholicity assumption is

justified, we can replace I, in (1) by 1/A, and form a formal sum over all periodic
orbits of all lengths:

o (n})
A=) = 3 3 I = /IAgl + 2/IAd + 22/ |Aggl + 22/ |Agr]
+2 /Al + 2/ 1A + 2| Asggl + 22/ Azl + ... (4)

As for large n the nth level sum (2) tends to the limit e~"7, the escape rate v is
determined by the smallest z = e for which (4) diverges:

L ®)
n=0
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This observation is the motivation for introducing the sum (4). Rather than at-
tempting to estimate the escape rate from the n — oo limit of preasymptotic sums
(1), we shall determine y from the singularities of (4).

If a trajectory retraces itself r times, its expanding eigenvalue is AT, where p is a
prime cycle. A prime cycle is a single traversal of the orbit; its label is a non-
repeating symbol string. There is only one prime cycle for each cyclic permutation
class. For example, p = 0011 = 1001 = 1100 = 0110 is prime, but 0101 = 01 is not.
The stability of a cycle is (by the chain rule) the same everywhere along the orbit,

so each prime cycle of length n, contributes n, terms to the sum (4). Hence (4)
can be rewritten as

o ; i np| AT
Uz) =3 n, Y A7) = ¥ n_f_ﬁj_
r=1

: > T

where the index p runs through all distinct prime cycles. The n,z"r factors in
the sum suggest rewriting it as a logarithmie derivative Q(z) = —z4In((z). The
resulting infinite product

1/¢(z) =1 (1—¢,), t, = z"|ASY, (6)

P

is an example of a dynamical ¢ funr_tion[m]. The name is motivated by the (purely
formal) similarity of the infinite product to the Euler product representation of the
Riemann (¢ function.

The above derivation of the ¢ function formula for the escape rate has one short-
coming; it estimates the fraction of survivors as a function of the number of pinball
bounces. However, the physically intercsting quantity is the mean lifetime; giv-
ing the same weight to all paths with the same number of bounces overestimates
the contributions of the long trajectories and underestimates the short trajectories
(remember, the flight paths between disks are of different lengths). The correct

w.rrightll'il.'lsI is obtained by replacing the discrete “topological” time n, by the
actual cycle period T}, in (6):

tp = A, )
12

- 2
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Perhaps more surprisingly, (6) also yields quantum resonances, with the quantum
amplitude associated with a given cycle being essentially the square root of the

classical weight (we refer the reader to refs. 1351 for detailed discussions).

Expression (6) is the main result of this scction; the problem of estimating the
asymptotic escape rates from finite n sums such as (1) is now reduced to a study
of the singularities of the ¢ function (6). The escape rate is related by (5) to a
divergence of £2(z), and {2(z) diverges whenever 1/{(z) or {(z) has a zero. Glancing
back, we see that the derivation is very general, and should work for any average
over any strange set which satisfies two conditions: 1. the weight associated with a
part of the set is multiplicative along the trajectory; 2. the set is organized in such
a way that the nearby points in the symbolic dynamics have nearby weights.

We conclude this section by a few general comments on the relation of the finite
sum (1) to the dynamical ¢ function (6). Not so long ago most physicists were
inclined to believe that given a deterministic rule, a sum like (1) could be evaluated
to any desired precision. For short finite times this is indeed true: every interval in
(1) can be accurately determined, and there is no need for a fancy theory. However,
if a dynamical system is unstable, any uncertainty in the initial conditions Erows
exponentially and attain the size of the system in a finite time. The difficulty with
estimating the n — oo limit from (1) is at least twofold:

1. due to the exponential growth in number of intervals, and the exponential

decrease in attainable accuracy, the maximal attainable cycle length is of order 5
to 20;

2. the preasymptotic sequence T, in (2) is not unique, because in general the

intervals I, in the sum (1) should be weighted by the probability distribution of
initial pinballs.

In contrast, with  function (6) the infinite time behavior of an unstable system is as
easy to determine as the short time behavior by direct evaluation of (1). The only
critical step in the derivation of the ¢ function was the h
assumption of exponential shrinkage for all parts of
the prefactors (3), we have given up on any possib
distribution of starting pinballs coordinates (which should anyhow be impossible
due to the exponential growth of errors), but in return gained a very effective
description of the asymptotic behavior of the system. -

yperbolicity assumption, 1.e.
the strange set. By dropping
ility of recovering the precise

12



Perhaps it is worth emphasizing that the Euler product formula (6) is an exact
expression for the asymptotically strange sct. Our cycle expansions will be dom-
inated by short cycles, but that does not mean that we are using finite covers to
approximate the set: by resummation that led to (6) we have already been lifted
to the tapologically exact n — co strange set. The approximation will consist in
approximating the strange set with “nearby * Cantor sets with a finite number
of already asymptotically exact scales. Qur experience is that computations with
the exact cycles expression (6) are both quicker and of better convergence than
computations that extrapolate from finite cover estimates such as (1).

5 CYCLE EXPANSIONS AND CURVATURES

How are formulas such as (6) used? We start by computing the lengths and eigen-
values of shortest cycles. In our pinball example this can be done by elementary
geometrical optics; in general potentials or maps this requires some numerical inte-
grations and Newton’s method searches for periodic solutions. The result is a table
like this {the disk radius : center separation ratio is a:R = 1:6):

p T, Ay
o|4 9.89897948557

4.26794919243

-11.7714551964

o | 8.31652948517 | -124.094801992
oio | 12.3217466162 | -1240.54255704
i0i | 12.580807741 | 1449.54507485

oioo | 16.3222764744 | -12295.706862
joii | 16.8490718592 | -17079.0190089
iooi | 16.5852429061 | 14459.97595

ooioo | 20.3223300257 | -121733.838705

The next step is the key step in our approachllgl: we observe that the expansion

of the Euler product (6)

1/¢ = 1-'2?:, - e,

13

allows a regrouping of terms into dominant fundemental costributions ¢; and de-
creasing curvature corrections ca. For example, if the strange ect is labelled by
binary symbol sequences, as is the pinball of fig. 3, then the Euler product (6) is
given by .
1/¢ = (1-1oX1 = ty(1 = tioN1 — tioX1 — tia X1 = t1080)

(1 = tioor X1 = tionn N1 — tiesce (1 — ticem)

(1 - tiooie(1 — tieon X1 — tiorn X1 — tsetns) ... ®)

The curvature expansion is obtained by multiplying out the Ealer product and
grouping together the terms of the same total symbol string length:

1/¢ = 1=1p—1t; — [tio — tito] — {(troo — trote) — (tio — trots )]
—[(t1000 — tot100) + (ts110 — titsr0)
+(ti0or — titoss — trosto + tiotels )] ~ ... (10)

The fundamental cycles t, t; have no shorter approximants; they are the “building
blocks” of the dynamics in the sense that all longer orbits can be approximately
pieced together from them. We call the sum of all terms of same total length n
(grouped in brackets above) the nth curvature correction ca, for geometrical reasons
we shall soon try to explain. It is also often possible to pair off individual longer
cycles and their shorter approximants (grouped in parenthesis above). ¥ afl orbits
are weighted equally (¢, = z"*), such combinations cancel exnctly; if orbits of
similar symbolic dynamics have similar weights, the weights in such combinations
will almost cancel.

Given the curvature expansion (10), the calculstion is straightforward. We subeti-
tute the eigenvalues and lengths of prime cycles (for the example at hand, up to 8
pinball bounces - total of 14 cycles) into the curvature expansion (10), and obtain
a polynomial apptoximnti(m[m‘ 10 1/(. We then vary the exponent v in (7) and
determine the escape rate v by finding the smallest v for which (10) vanishes. The
zeros are easily determined by standard numerical methods (such as the Newton

algorithm), with accuracy as good as 7 significant digits for the pinball example
considered here.

The convergence can be illustrated by listing v computed from truncations of (10)
to different maximal cycle lengths. (disk radius to disk-disk center separation ratio
is a:R = 1:6). The first column gives the maximal cycle length used, the second the
estimate of the classical escape rate from the full 3-disk cycle expansion, the third
from the fundamental domain expansion!5.

14



n | full 3 disks | fund. dom.
1 0.407693
2 0.43578 0.410280
3 0.40491 0.410336
4 0.40945 0.410338
5 0.41037 0.410338
6 0.41034
For comparison, a numerical simulation of ref. (3l yields v = .410..., and the

n = 2,3 approximations of ref. (3l yield 0.3102, 0.4508 respectivcly.

If one has some experience with numerical estimates of dimensions, one realizes
that the convergence here is very impressive; only three input numbers (the two
fixed points 0, T and the 2-cycle 10) already yield the escape rate to 4 significant
digits! We have emitted an infinity of unstable cycles; so why does approximating
the dynamics by a finite number of cycle eigenvalues work so well?

Figure 6. Approximation to (a) a smooth dynamics by (b) the skeleton of
periodic points, together with their linearized neighborhoods.

A typical curvature expansion term in (10) is a difference of a long cycle {ab} minus
its shadowing approximation by shorter cycles {a} and {b}:

15

A -
tap — toty = tos(1 — tata/ta) = tasll — I'AT‘AL.IC‘T‘". Teshr) (11)

To understand why this should be small compared to t,, try to visualise the de-
scription of a chactic dynamical system in terms of cycles as a tessellation of the
dynamical system, with smooth flow approximated by its periodic orbit skeleton,
each “face” centered on & periodic point, and the scale of the “face” determined by
the linearization of the flow around the periodic point (see fig. 6). )

The orbits that follow the same symbolic dynamics, such as {ab} and a "peendo
orbit” {a){b}, lie physically close; longer and longer orbits resolve the dynamics
with finer and finer resolution in the phase space. If the weights associated with
the orbits are multiplicative along the flow (for example, products of derivatives)
and the flow is smooth, the term in parenthesis in (11) falls off ezponentially with

the cycle length, and therefore the curvature expansions are expected to be highly
convergent.

We have here used the curvature expansions to evaluate pinball escape rates, but the
technique is much more general. It is, for example, npplicablel”] to a broad class
of “thermodynamical” averages such as those used in the extraction of generalized
dimensions(2!), with the sum (1) generalized to

(=} ¢

=7 (12)

as well as to the quantum periodic orbits sumsl5). The simplest example is eval-
uation of the topological entropy h: the cycles are counted by setting r = 0,
t, = e~*(") and determining h = —¢(0) for which (8) has a zero. For the value
of 7 such that ¢(7) = 0, (12) is the classical definition of the Hausdorff-Besicovitch
dimension Dy = —r, and s0 on. Each such application requires determination of
the correct cycle weigth t, - the rest is just machinery.
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6 SUMMARY

A motion on a strange attractor can be approximated by shadowing the orbit by a
sequitence of nearhy periodic orbits of finite length. This notion is here made precise
by approximating orbita by primitive cycles, and evaluating associated curvatures.
A cmvature measwres the deviation of a longer cycle from its approximation by
ahorter cycles; the smeothness of the dynamical system implies exponential fall-off
for (almost) all curvatuees. The technical prereguisite for implementing this shad-
owing 18 & goord understanding of the symbolic dynamics of the classical dynamical
systemn. The tesulting curvature expansions offer an efficient metliod for evaluating
clasmical and quantum periodic orbit sums; accurate estimates can be obtained by
using as input the lengths and cigenvalues of a few prime cycles.

For reasons of clarity we have here ilhustrated the utility of cycles and their cur-
vatures by the simple pinhall example of fig. 1, but detailed investigations of the
Hénon-type maps, scaling fitnetiona and quantum pinball.l[w'"'sl give us some
confidence in the general feasibility of the cycle anatysis advocated here.

The cycle expansions such as (8) ontperform the pedestrian methods such as extrap-
olations from the finite cover siums (1) for a number of reasons. The cycle expansion
ia & beiter averaging procedure than the naive box counting algorithms because the
strange attractor ia bere pieced together in n controlled way from neighborhoods
(“space average™) rather than explored by a long ergodic trajectory (“time aver-
nge” ). The cycle Fxpansion is (as explained above) co-ordinate and reparametriza-
tion invariant - a finite nth level sum (1) iz not. Cyclen are of finite period but
infinite duration, 0 the cycle cigenvalues are already evaluated in the n — oo
limit, but for the sum (1) the limit has to he estimated by numerical extrapols-
tions. And, crucially, the higher terms in the cycle expansion (8) are deviations of
longer primitive cycles from their approximations by shorter cycles ey9 = —t19+ 14 lo,
Croot = ~lioor + Lrtaor + thorlo — Tiately. - . ., which vanish exactly in piecewise linear
approximations and are expected to fall off exponentially for smooth dynamical
fAown,
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