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ABSTRACT
Convection in confined layers of volatile liquids has been

studied extensively under atmospheric conditions. Recent exper-
imental results [1] have shown that removing most of the air
from a sealed cavity significantly alters the flow structure and,
in particular, suppresses transitions between the different con-
vection patterns found at atmospheric conditions. Yet, at the
same time, this has almost no effect on the flow speeds in the
liquid layer. To understand these results, we have formulated
and numerically implemented a detailed transport model that
accounts for mass and heat transport in both phases as well as
the phase change at the interface. Surprisingly, the numerical
simulations show that noncondensables have a large effect on
buoyancy-thermocapillary flow at concentrations even as low as
1%, i.e., much lower than those achieved in experiment.

INTRODUCTION
Convection in a layer of fluid with a free surface due to a

combination of thermocapillary stresses and buoyancy has been
studied extensively due to applications in thermal management in
terrestrial environments. In particular, devices such as heat pipes
and heat spreaders, which use phase change to enhance thermal
transport, are typically sealed, with noncondensables (such as
air), which can impede phase change, removed [2]. However, air
tends to dissolve in liquids and be adsorbed into solids, so re-
moving it completely is practically impossible. Hence, the liquid
film almost always remains in contact with a mixture of its own

vapor and some air.

The fundamental studies on which the design of such de-
vices is based, however, often do not distinguish between dif-
ferent compositions of the gas phase. The experimental studies
are in many cases performed in geometries that are not sealed
and hence contain air at atmospheric pressure, while most the-
oretical studies ignore phase change completely. Those that do
consider phase change use transport models of the gas phase that
are limited, and hence do not properly describe the effect of non-
condensables on the flow in the liquid layer. Yet, as a recent
experimental study by Li et al. [1] shows, noncondensables can
play an important and nontrivial role, so the results in one limit
cannot be simply extrapolated to the other.

Most of the existing analytical and numerical studies use
one-sided models which describe transport in the liquid, but
not the gas, phase and ignore phase change, with both phase
change and transport in the gas phase indirectly incorporated
through boundary conditions at the liquid-vapor interface. We
have recently introduced a comprehensive two-sided model [3]
of buoyancy-thermocapillary convection in confined fluids which
provides a detailed description of momentum, heat and mass
transport in both the liquid and the gas phase as well as phase
change at the interface. In the limit where the system is at
ambient (atmospheric) conditions, this model shows that con-
vection patterns are not described by the theory developed for
the dynamic Bond number BoD = 0 limit, even though thermo-
capillarity still dominates buoyancy for Bond numbers of order
unity [4, 5]. Instead the flow in the liquid layer transitions from
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a steady unicellular pattern (featuring a single large convection
roll) to a steady multicellular pattern (featuring multiple steady
convection rolls) to an oscillatory pattern (featuring multiple un-
steady convection rolls) as the applied temperature gradient is
increased, which is consistent with previous experimental stud-
ies of volatile and nonvolatile fluids [1, 6–9], as well as previous
numerical studies of nonvolatile fluids [6, 10–13]. These results
justify the use of one-sided models in the limit where the gas
phase is dominated by noncondensables (and hence phase change
is strongly suppressed).

In comparison, very few studies have been performed in the
(near) absence of noncondensables. In particular, the theoretical
studies [14–18] employ extremely restrictive assumptions and/or
use a very crude description of one of the two phases. A varia-
tion of our two-sided model [19] predicts that the interfacial tem-
perature becomes essentially constant in the absence of noncon-
densables, so that thermocapillarity is negligible and the flow is
primarily driven by buoyancy, which leads to significant changes
in the structure of the base flow. Furthermore, the model predicts
that there is only steady unicellular flow, and that there should be
no transitions to multiple steady or unsteady rolls in this limit as
the applied temperature difference increases.

The latter prediction was confirmed by Li et al. [1], who
performed experiments for a volatile silicone oil at BoD = O(1).
They found that the transitions between different convection pat-
terns are suppressed when the concentration of noncondesables
is reduced, and observed only the steady unicellular regime over
the entire range of imposed temperature gradients at their low-
est average air concentration (11%). Interestingly, the experi-
ments also show that at small imposed temperature gradients the
flow structure and speeds remain essentially the same as the air
concentration decreases from 96% (ambient conditions) to 11%.
Since we know that the flow is dominated by buoyancy in the
absence of air, these observations suggest that thermocapillarity
is still dominant, and that the flow must change from one domi-
nated by thermocapillarity to one dominated by buoyancy at even
lower air concentrations.

To better understand the effect of noncondensables on heat
and mass transport in volatile fluids in confined and sealed ge-
ometries, our two-sided model [?, 3, 19] was further generalized
to describe situations where the gas phase is dominated by va-
por, but still contains a small amount of air [?]. The model is
described in detail, and the results of the numerical investiga-
tions of this model are presented, analyzed, and compared with
experimental observations below.

MATHEMATICAL MODEL
Governing Equations

We describe transport in both the liquid and the gas phase us-
ing a generalization of the model described in [19]. Both phases
are considered incompressible and the momentum transport in

the bulk is described by the Navier-Stokes equation

ρ (∂tu+u ·∇u) =−∇p+µ∇
2u+ρ (T )g (1)

where p is the fluid pressure, ρ and µ are the fluid’s density and
viscosity, respectively, and g is the gravitational acceleration.

Following standard practice, we use the Boussinesq approx-
imation, retaining the temperature dependence only in the last
term to represent the buoyancy force. In the liquid phase

ρl = ρ
∗
l [1−βl (T −T ∗)], (2)

where ρ∗l is the reference density at the reference temperature T ∗

and βl =−(∂ρl/∂T )/ρl is the coefficient of thermal expansion.
Here and below, subscripts l, g, v, a and i denote properties of the
liquid and gas phase, vapor and air component, and the liquid-gas
interface, respectively. In the gas phase

ρg = ρa +ρv, (3)

where both vapor (n = v) and air (n = a) are considered to be
ideal gases

pn = ρnR̄nT, (4)

R̄n = R/Mn, R is the universal gas constant, and Mn is the molar
mass. The total gas pressure is the sum of partial pressures

pg = pa + pv. (5)

On the left-hand-side of (1) the density is considered constant for
each phase (defined as the spatial average of ρ(T )).

Due to the lack of a computationally tractable generalization
of the Navier-Stokes equation for multi-component mixtures, the
model is restricted to situations where the dilute approximation
is valid in the gas phase, e.g. when the molar fraction of one
component is much greater than that of the other.

For a volatile fluid in confined geometry, the external tem-
perature gradient causes both evaporation and condensation, with
the net mass of the fluid being globally conserved. Convention-
ally, the mass transport of the less abundant component is de-
scribed by the advection-diffusion equations for its concentration
(defined as the molar fraction). To ensure local mass conserva-
tion, we use the advection-diffusion equation for the density of
the less abundant component instead. Since the case when air
dominates was treated in Ref. [3], we only describe here the case
when vapor dominates, in which case

∂tρa +u ·∇ρa = D∇
2
ρa, (6)
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where D is the binary diffusion coefficient of one component in
the other. Mass conservation for liquid and its vapor requires

∫
liquid

ρldV +
∫

gas
ρvdV = ml+v, (7)

where ml+v is the total mass of liquid and vapor. The total pres-
sure in the gas phase is pg = p+ po, where the pressure offset po
is

po =

[∫
gas

1
R̄vT

dV
]−1 [

ml+v−
∫

liquid
ρldV −

∫
gas

p
R̄vT

dV
]
.

(8)
The concentration of the two components can be computed from
the equation of state using the partial pressure

cn = pn/pg. (9)

Finally, the transport of heat is also described using an
advection-diffusion equation

∂tT +u ·∇T = α∇
2T, (10)

where α = k/(ρcp) is the thermal diffusivity, k is the thermal
conductivity, and cp is the heat capacity, of the fluid.

Boundary Conditions
The system of coupled evolution equations for the velocity,

pressure, temperature, and density fields has to be solved in a
self-consistent manner, subject to the boundary conditions de-
scribing the balance of momentum, heat, and mass fluxes. The
phase change at the liquid-gas interface can be described using
Kinetic Theory [20]. The mass flux across the interface is given
by [21]

J =
2λ

2−λ
ρv

√
R̄vTi

2π

[
pl− pg

ρlR̄vTi
+

L

R̄vTi

Ti−Ts

Ts

]
, (11)

where λ is the accommodation coefficient, which is usually taken
to be equal to unity (the convention we follow here), and sub-
script s denotes saturation values for the vapor. The dependence
of the local saturation temperature on the partial pressure of va-
por is described using the Antoine equation for phase equilibrium

ln pv = Av−
Bv

Cv +Ts
(12)

where Av, Bv, and Cv are empirical coefficients.

FIGURE 1. The test cell containing the liquid and air/vapor mixture.
Gravity is pointing in the negative z direction. The shape of the contact
line reflects the curvature of the free surface.

The mass flux balance on the gas side of the interface is
given by

J =−Dn ·∇ρv +ρv n · (ug−ui), (13)

where the first term represents the diffusion component, and the
second term represents the advection component (referred to as
the “convection component” by Wang et al. [22]) and ui is the
velocity of the interface. Since air is noncondensable, its mass
flux across the interface is zero:

0 =−Dn ·∇ρa +ρa n · (ug−ui). (14)

For binary diffusion, the diffusion coefficient of vapor in air is
the same as that of air in vapor, while the concentration gradients
of vapor and air have the same absolute value but opposite direc-
tions, which yields the relation between the density gradients of
vapor and air

n ·∇ρv

Mv
+

n ·∇ρa

Ma
=−

pg

RT 2
i
(n ·∇Tg) , (15)

Finally, the heat flux balance is given by

L J = n · kg∇Tg−n · kl∇Tl . (16)

The remaining boundary conditions for u and T at the liquid-
vapor interface are standard: the temperature is considered to be
continuous

Tl = Ti = Tv (17)

as are the tangential velocity components

(1−n ·n)(ul−ug) = 0. (18)
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The normal component of ul is computed using mass balance
across the interface. Furthermore, since the liquid density is
much greater than that of the gas,

n · (ul−ui) =
J
ρl
≈ 0. (19)

The stress balance

(Σl−Σg) ·n = nκσ − γ∇sTi (20)

incorporates both the viscous drag between the two phases and
thermocapillary effects. Here Σ = µ

[
∇u− (∇u)T

]
− p is the

stress tensor, κ is the interfacial curvature, ∇s = (1−n ·n)∇ is
the surface gradient and γ =−∂σ/∂T is the temperature coeffi-
cient of surface tension.

Newton’s iteration is used to solve for the mass flux J, the in-
terfacial temperature Ti, the saturation temperature Ts, the normal
component of the gas velocity at the interface n ·ug, the density of
the dominant component in the gas phase and the normal com-
ponent of the density gradient of the less abundant component
on the gas side (respectively vapor and air, except at atmospheric
conditions).

We further assume that the fluid is contained in a rectangular
test cell with inner dimensions L×W ×H (see Figure 1) and thin
walls of thickness hw and conductivity kw. The left wall is cooled
with constant temperature Tc imposed on the outside, while the
right wall is heated with constant temperature Th > Tc imposed on
the outside. Since the walls are thin, one-dimensional conduction
is assumed, yielding the following boundary conditions on the
inside of the side walls:

T |x=0 = Tc +
kn

kw
hw n ·∇T, (21)

T |x=L = Th +
kn

kw
hw n ·∇T, (22)

where n = g (n = l) above (below) the contact line.
Heat flux through the top, bottom, front and back walls is ig-

nored (which is usually the case in most experiments). Standard
no-slip boundary conditions u = 0 for the velocity and no-flux
boundary conditions

n ·∇ρn = 0 (23)

for the density of the less abundant component (n = a or, at at-
mospheric conditions, n = v), are imposed on all the walls. The
pressure boundary condition

n ·∇p = ρ(T )n ·g (24)

follows from (1).

RESULTS AND DISCUSSION
The model described above has been implemented numeri-

cally by adapting an open-source general-purpose CFD package
OpenFOAM [23] to solve the governing equations in both 2D
and 3D geometries. Details are available in Ref. [3].

The computational model was used to investigate the
buoyancy-thermocapillary flow of a fluid confined in a sealed
rectangular test cell with dimensions identical to that used in
the experimental study of Li et al. [1]. The working fluid is
hexamethyldisiloxane, a silicone oil with a kinematic viscosity
ν = 0.65 cSt, which is a volatile liquid with the properties sum-
marized in Table 1. A layer of liquid of average thickness
dl = 2.5 mm is confined and sealed in the test cell with the inner
dimensions L×H×W = 48.5 mm×10 mm×10 mm (see Figure
1), below a layer of gas, which is a mixture of vapor and air. The
pressures in the test cell ranged from the vapor pressure (0% air)
to atmospheric (96% air). The walls of the test cell are made of
quartz (fused silica) with thermal conductivity kw = 1.4 W/m-K
and have thickness hw = 1.25 mm. Silicone oil wets quartz very
well, but in the numerics we set the contact angle θ = 50◦ (un-
less noted otherwise) to avoid numerical instabilities. This has a
minor effect on the shape of the free surface everywhere except
very near the contact lines; moreover, previous studies [3] over a
relatively large range of contact angles show that it has a minor
influence on the flow pattern.

While the numerical model can describe the flows in both 2D
and 3D systems, the results presented here are obtained for 2D
flows (ignoring variation in the y-direction), since 3D simulations
require significant computational resources and comparison of
2D and 3D results for the same system under air at atmospheric
conditions showed that 3D effects are relatively weak [3]. The
2D system corresponds to the central vertical (x-z) plane of the
test cell.

Initially, it is assumed that the fluid is stationary with uni-
form temperature T0 = (Tc + Th)/2 (we set T0 = 293 K in all
cases), the liquid layer is of uniform thickness (such that the
liquid-gas interface is flat), and the gas layer is a uniform mix-
ture of the vapor and the air. The partial pressure of the va-
por pv = ps(T0) is set equal to the saturation pressure at T0,
ps(T0) ≈ 4.1 kPa, calculated from (12). The partial pressure of
air pa was used as a control parameter, which determines the net
mass of air in the cavity. Constant (vs. temperature-dependent)
properties were used in these simulations (although incorporat-
ing this dependence is straightforward) because initial simula-
tions showed that the variations in the fluid properties due to tem-
perature had a negligible effect on the heat and mass transport.

As the system evolves towards an asymptotic state, the flow
develops in both phases, the interface distorts to accommodate
the assigned contact angle at the walls, and the gradients in the
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liquid vapor air

µ (kg/(m·s)) 5.27×10−4 5.84×10−6 1.81×10−5

ρ (kg/m3) 765.5 0.27 1.20

β (1/K) 1.32×10−3 3.41×10−3 3.41×10−3

k (W/(m·K)) 0.110 0.011 0.026

α (m2/s) 7.49×10−8 2.80×10−5 2.12×10−5

Pr 9.19 0.77 0.71

D (m2/s) - 1.46×10−4 5.84×10−6

σ (N/m) 1.58×10−2

γ (N/(m·K)) 8.9×10−5

L (J/kg) 2.25×105

TABLE 1. Material properties of pure components at the reference
temperature T0 = 293 K [?,?]. The properties of the gas phase are taken
equal to those of the dominant component.

temperature and vapor concentration are established. The simu-
lations are first performed on a coarse hexahedral mesh (initially
all cells are cubic with a dimension of 0.5 mm), since the initial
transient state is of secondary interest. Once the transient dy-
namics have died down, the simulations are continued after the
mesh is refined in several steps, until the results become mesh-
independent.

Fluid Flow and Temperature Fields
In order to investigate the effect of noncondensables on the

the flow, we performed numerical simulations at a fixed temper-
ature difference ∆T = 10 K, with the average concentration of
air c̄a varying between 0% (pure vapor) and 96% (atmospheric
pressure). After an initial transient, the flow reaches steady state.
Figure 2 shows the streamlines of this steady flow in both the
liquid and the gas phases.

The concentration of noncondensables has a significant im-
pact on the flow in both layers. In the absence of air, the flow
in the liquid is dominated by two counterclockwise convection
rolls, a larger one near the cold wall and a smaller one near the
hot wall. At c̄a = 0.16 (16% air), the flow in the liquid in the
central region of the cell is best described as a horizontal return
flow with two convection rolls localized near the hot and the cold
end. When the system is at atmospheric pressure (when the air
dominates the gas phase with c̄a = 0.96), multiple convections
rolls emerge, covering the entire liquid layer. In this case the
flow pattern can be classified as steady multicellular flow (SMC)
and thermocapillarity is the dominant driving force [3]. These re-
sults are consistent with the experimental findings of Li et al. [1]

0% air

1% air

4% air

8% air

16% air

96% air
FIGURE 2. Streamlines of the flow (solid lines) at different average
concentrations of air. The temperature difference is ∆T = 10 K. Here
and below, the gray (white) background indicates the liquid (gas) phase.

who find that multicellular convection pattern disappears and is
replaced with unicellular flow in the liquid layer when the con-
centration of noncondensables is reduced (at a fixed ∆T ) from
96% to 11%.

The flows in the gas phase are also qualitatively different.
In the absence of air, the flow in the gas phase is unidirectional,
with the liquid evaporating near the hot wall, the resultant vapor
flowing from the hot wall to the cold wall, and then condensing
there. Noncondensable gases suppress the phase change, since
the vapor need to diffuse away from (or towards) the interface as
it evaporates (or condenses). Furthermore, since air cannot con-
dense, its presence also alters the flow pattern in the gas phase.
However, when the concentration of air is relatively small (less
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0% air

1% air

4% air

8% air

16% air

96% air
FIGURE 3. The temperature field inside the cell at different average
concentrations of air. The temperature difference is ∆T = 10 K and the
difference between adjacent isotherms (solid lines) is 0.5 K.

than about 4%), the flow of the air-vapor mixture remains essen-
tially unidirectional.

A (clockwise) recirculation roll emerges in the central region
near the top wall at around c̄a = 0.08 and expands as c̄a increases.
Additional (counterclockwise) recirculation rolls emerge in the
top corners at around c̄a = 0.16. The clockwise rolls must be
driven by thermocapillarity, which pulls the vapor above the in-
terface to the cold end wall, while the counterclockwise rolls are
driven by buoyancy. At atmospheric pressure (c̄a = 0.96), a num-
ber of small (clockwise) recirculation rolls develop in the gas
phase directly above the recirculation rolls in the liquid phase.
They are driven by thermocapillarity as opposed to the (counter-
clockwise) rolls in the top corners that are driven by buoyancy.

Figure 3 shows the temperature fields corresponding to the
flows shown in Figure 2. In the absence of air, the isotherms are
clustered near the hot and cold end walls, indicating the forma-
tion of sharp thermal boundary layers near both end walls, with
the temperature being essentially constant along almost the en-
tire liquid-gas interface. As the concentration of air increases,
the thermal boundary layers expand and the temperature gradi-
ent gradually becomes more uniform. At atmospheric pressure
the isotherms become wavy in the liquid phase, reflecting the
convective motion of the fluid.

While buoyancy is mainly controlled by the temperature of
the fluid near the end walls, which is mostly unaffected by the
presence of noncondensables, thermocapillarity is controlled by
the temperature of the fluid at the interface, which varies signifi-
cantly with c̄a. We investigate this dependence in more detail in
the next section.

Interfacial Temperature
The variation of the interfacial temperature Ti along the in-

terface (relative to its spatial average 〈Ti〉x ≈ T0) is shown in Fig-
ure 4. At atmospheric pressure, when air dominates, Ti varies
nearly linearly along almost the entire interface, with the modu-
lation corresponding to the advection of heat by convective flow.
The average of the interfacial temperature gradient τ = ∂Ti/∂x
is comparable to the value of the imposed temperature gradient
∆T/L. As the concentration of air decreases, τ also decreases.
When c̄a is reduced to around 1%, Ti starts to deviate from the
linear profile, with τ near the hot end wall decreasing more than
near the cold end wall. In the complete absence of air, the inter-
facial temperature becomes essentially constant. The value of τ

decreases by three orders of magnitude, compared with the val-
ues found under air at the same ∆T [19], and the thermocapillary
stresses become negligible.

Numerical simulations show that there is a high degree of
correlation between the spatial profiles of Ti and pv. As Figure
5 illustrates, pv also varies linearly with x over almost the entire
interface. Since

δ pv = pv−〈pv〉x = pg(cv− c̄v) =−pg(ca− c̄a) (25)

and pg ≈ (1− c̄a)
−1 pv(T0) is constant in the gas phase, this re-

sult implies that the gradient of the concentration ζ = ∂xca =
−pg∂x pv is independent of x in the core region of the flow for
all c̄a above 1%. For concentrations of order 1% and below, the
strong vapor flow from the hot to the cold wall sweeps the air
away from the hot end wall, further depleting the concentration
gradient there, which leads to the predicted asymmetry in the
gradients of both ca and pv.

The relationship between the two gradients can be obtained
by a straightforward analysis of the theoretical model. Using (11)
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the interfacial temperature can be written as

Ti ≈ Ts +
2−λ

2λ

√
2π

R̄vTs

R̄vT 2
s

ρvL
J︸ ︷︷ ︸

Tp

− Ts

ρlL
(pl− pv)︸ ︷︷ ︸

Tc

. (26)

The three terms on the right-hand side describe the effects of
variation in the saturation pressure, phase change, and interfacial
curvature, respectively. The dominant physical effect is different
in the two limiting cases considered (c̄a = 0 and c̄a ≈ 1). De-
tailed analysis in Ref. [19] shows that at ambient conditions with
air dominant in the gas phase, Tc and Tp are negligible compared
to the variation in Ts. Hence the value of the interfacial temper-
ature gradient τ is determined by the variation of the saturation
temperature which, in turn, is mostly a function of the local con-
centration ca. This will still be the case as long as the variation
in the concentration of air is non-negligible, that is for c̄a values
that exceed a fraction of a percent. In the complete absence of
air (c̄a = 0), the variation in Ts becomes negligible and the varia-
tion in Ti is mainly due to the latent heat released or absorbed at
the interface, which is described by Tp. The variation in ∆Tp in
this limit is almost four orders of magnitude smaller than the im-
posed temperature difference ∆T , so the interface can effectively
be considered isothermal.

The quantitative relation between τ and ζ can be found from
the Clausius-Clapeyron equation, which is equivalent to (12) for
moderate ∆T , with the help of (4) and (9):

τ = ∇Ts =
∂Ts

∂ pv
∇pv ≈

R̄vT 2
0

L pv
pg∇cv =−

R̄vT 2
0

L

1
1− c̄a

ζ , (27)

where pv is taken at the reference temperature T0 and so can be
considered constant. Eq. (27) shows the interfacial temperature
is controlled completely by the composition of (or mass transport
in) the gas phase.

Note that this relationship is expected to hold with very good
precision in the entire range of c̄a. This is indeed what we find
by comparing the results shown in Figures 4 and 5. In particular,
when the vapor dominates, c̄a� 1 and pg ≈ pv. Substituting the
fluid properties from Table 1 into (27) we find τ ≈ (−20 K)ζ ,
which is in good agreement with the numerical results.

Interfacial Velocity
As we have pointed out, the velocity field in the liquid is

expected to be substantially different in the two limits. Indeed,
in the limit c̄a → 0, the interfacial temperature gradient τ es-
sentially disappears, so thermocapillary stresses, which domi-
nates the flow at ambient conditions (c̄a ≈ 1), vanish. As we
have shown in Ref. [19], the ratio of the characteristic veloc-
ity at the free surface due to thermocapillarity (uT ) and due to

0 10 20 30 40

-2

-1

0

1

2

x (mm) 

δ
T

i 
(K

) 

               0 (no air )      1 %                    4 % 
 

               8 %                         16 %                  96 % 

FIGURE 4. Interfacial temperature profile for different average con-
centrations of air and ∆T = 10 K. To amplify the variation of Ti in the
central region of the cell we plotted the variation δTi = Ti−〈Ti〉x about
the average and truncated the y-axis.

0 10 20 30 40

-400

-200

0

200

400

x (mm) 

δ
p

v(
P

a
) 

               0.1%      1 %                    4 % 
 

               8 %                         16 %                  96 % 

FIGURE 5. The spatial profile of the partial pressure of vapor for
different average concentrations and ∆T = 10 K. To amplify the vari-
ation of pv in the central region of the cell we plotted the variation
δ pv = pv−〈pv〉x about the average and truncated the y-axis.

buoyancy (uB) is uT/uB = 12Lτ/∆T Bo−1
D . In the experiments

of Li et al. [1] BoD ≈ 0.7, so thermocapillarity is expected to
dominate the flow when τ > 0.06∆T/L. As Figure 4 illustrates,
this conditions is clearly satisfied along the entire free surface
for c̄a & 0.04. This can be seen more clearly in Figure 6 which
shows the flow velocity ui at the interface for different average
concentrations of air.

The flow is predicted to be the fastest at ambient conditions
because (average) τ is the largest, and hence the thermocapillary
stresses are the strongest, at c̄a = 0.96, according to Figure 4.
Periodic oscillations in Ti are reflected in the periodic variation
in the temperature gradient τ , and hence the flow velocity ui in
the core region. As c̄a decreases, the interfacial velocity is pre-
dicted to decreases as well, however, the flow in the core region
at both c̄a = 0.16 and c̄a = 0.08 is found to be only slightly slower
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FIGURE 6. Interfacial velocity for different average concentrations
of air and ∆T = 10 K.

than that at ambient conditions. This is in qualitative agreement
with experiments [1], which find that the interfacial velocity at
c̄a = 0.11 is almost the same as that at c̄a = 0.96. The slight in-
crease in the flow velocity observed in experiments is likely due
to the dependence of the temperature coefficient of surface ten-
sion γ on the composition of the gas phase, which has not been
characterized for the silicone oil considered here.

Also similar to the experiments [1], we find that the inter-
facial flow is most sensitive to the concentration of noncondens-
ables near the hot end wall, with the flow velocity decreasing
noticeably as c̄a is reduced from 96% to 8%. A further decrease
in c̄a should, based on these simulations, lead to a rather sub-
stantial drop in the flow velocity in the core region (where ther-
mocapillarity dominates). In contrast, the flow near the hot wall
(where buoyancy dominates) becomes essentially independent of
c̄a in the vapor-dominated limit. The flow near the cold end wall
(where buoyancy is weaker than near the hot wall) is found to de-
pend on c̄a even at rather low concentrations, similar to the flow
in the core region.

In the absence of air, the velocity profile has two local max-
ima: one near the hot end wall, and one near the cold end wall.
These correspond to the two large convection rolls seen in Figure
2. Since both the interfacial temperature gradient and thermocap-
illary stresses are negligible in this limit, the flow is driven en-
tirely by buoyancy which is most significant near the end walls.
The flow velocity becomes very small in the region where the
two convection rolls meet (28 mm . x . 40 mm). Given that
buoyancy should be independent of c̄a, any increase in the inter-
facial velocity beyond that at c̄a = 0 must be due to thermocap-
illarity. Surprisingly, these results show that small changes in c̄a
(between 0% and 4%) result in major and fundamental changes
in the nature of thermocapillary-buoyancy convection. Specifi-
cally, the flow rapidly changes from one dominated by buoyancy
in the absence of air to one dominated by thermocapillarity at
c̄a = 0.04.
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q/q0 = 0.011(𝒄 𝒂 + 0.056)-1.55 

FIGURE 7. Effective heat flux, q normalized by its maximum value
q0 at c̄a = 0, as a function of the average concentration of air at ∆T = 10
K. The dependence can be fitted with high accuracy (R2 = 0.9988) by a
simple power law.

In terms of applications, it is useful to consider how the
noncondensables affect the phase change and the associated heat
flux. Assuming that the major limit on thermal performance for
evaporative cooling devices is the rate at which heat is rejected
by (vs. the transport of heat within) the device, the heat flux due
to condensation can be estimated from the net mass flux over a
thin layer next to the cold wall. For an arbitrarily defined region
0 < y < 2dl , the latent heat flux due to condensation is given by

q = LW
∫ 2dl

0
J
√

1+(dz/dx)2 dx. (28)

Figure 7 shows how q, which is typically the most significant
term in the overall heat flux of two-phase thermal management
devices, changes as a function of c̄a. We find that a very small
amount of noncondensables can make a large difference in heat
flux. Introducing just 1% of noncondensables into the cell leads
to a reduction of more than 20% in the heat flux, while 5% of
noncondensables reduces the heat flux by more than 50%, com-
pared with the maximum value q0 at c̄a = 0.

CONCLUSIONS
We have developed, implemented, and validated a compre-

hensive numerical model of two-phase flows of confined volatile
fluids, which accounts for momentum, mass, and heat transport
in both phases and phase change at the interface. This model
was used to investigate how the presence of noncondensable
gases such as air affects buoyancy-thermocapillary convection in
a layer of volatile liquid confined inside a sealed cavity subject
to a horizontal temperature gradient.

The presence of air was found, as expected, to have a pro-
found effect on the heat and mass transfer. The numerical results
show that the flow in the liquid layer changes significantly as
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the concentration of air in the gas layer is varied. Surprisingly,
the average flow speed is found to be effectively independent of
the average concentration of air over most of the free surface,
from ambient conditions down to about 8%. The concentration
of noncondensables does affect the flow under the free surface,
however. Convection rolls that are present near the hot wall at
ambient conditions weaken and disappear completely when the
concentration of air is decreased to 16%.

The interfacial temperature profile is found to be determined
by the concentration profile in the gas phase and both profiles are
found to remain linear down to average concentrations of air as
low as 2%, which explains why the flow profile and interfacial
velocity remain uniform in the core region over a large range of
parameters and conditions. The gradients in the interfacial tem-
perature, and hence the thermocapillary stresses that typically
dominate the flow, only disappear when the average concentra-
tion of noncondensables becomes extremely small (well below
1%).

ACKNOWLEDGMENT
This work has been supported by ONR under Grant No.

N00014-09-1-0298. We are grateful to Zeljko Tukovic and
Hrvoje Jasak for help with numerical implementation using
OpenFOAM.

Nomenclature
α Thermal Diffusivity
β Coefficient of Thermal Expansion
γ Temperature Coefficient of Surface Tension
µ Dynamic Viscosity
ρ Density
κ Interfacial Curvature
σ Surface Tension
λ Accommodation Coefficient
τ Interfacial Temperature Gradient
Σ Stress Tensor
BoD Dynamic Bond Number
c Mole Fraction
c̄ Average Mole Fraction
cp Heat Capacity
D Binary Mass Diffusion Coefficient
dl Liquid Layer Thickness
m Mass
M Molar Mass
Ma Marangoni Number
p Pressure
p0 Pressure Offset
Pr Prandtl Number
R Universal Gas Constant
R̄ Specific Gas Constant

Ra Rayleigh Number
t Time
T Temperature
T0 Ambient Temperature
∆T Applied Temperature Difference
u Velocity
V Volume
x,y,z Coordinate Axes
g Gravitational Acceleration
hw Wall Thickness
J Mass Flux Across the Liquid-Gas Interface
k Thermal Conductivity
L Latent Heat of Vaporization
L,W,H Test Cell Dimensions

Superscript
∗ Reference Value

Subscript
l Liquid Phase
g Gas Phase
v Vapor Component
a Air Component
i Liquid-Gas Interface
s Saturation
c Cold End
h Hot End
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