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ABSTRACT

Liquid microdroplets represent a convenient sys-
tem for studies of mixing by chaotic advection in
discrete microscopic volumes. The mixing proper-
ties of the flows in microdroplets are governed by
their symmetries, which give rise to invariant sur-
faces serving as barriers to transport. Complete
three-dimensional mixing by chaotic advection re-
quires destruction of all flow invariants. To illustrate
this idea, we demonstrate that complete mixing can
be obtained in a time-dependent flow produced by
motion of a microdroplet along a two-dimensional
path. The theoretical predictions are confirmed by
experiments that optically manipulate and mix mi-
crodroplets.

INTRODUCTION

Most microfluidic systems, which are being de-
veloped into “labs-on-a-chip” that promise revolu-
tionary applications in biotechnology, chemistry and
medicine,1–4 require efficient mixing of initially dis-
tinct fluid volumes. Liquids, however, do not mix
easily at the scale of typical microfluidic devices.
Physically, microscale flows are characterized by a
low Reynolds number Re ≡ V a/ν < 1, where V
and a are, respectively, a characteristic flow speed
and length, and ν is the liquids’ kinematic viscosity.
In this regime, flows are laminar, and turbulence,
which governs mixing rates in macroscopic systems,
cannot arise. Yet the size of typical microfluidic
devices is too large for molecular diffusion, which
usually governs mixing at smaller scales, to become
effective. Thus, efficient mixing of liquids at the
microscale requires a stirring mechanism, such as
chaotic advection,5,6 that stretches and folds fluid
elements throughout the entire volume of the flow.
The folding leads to a decrease in the average dis-
tance between unmixed volumes of liquid with differ-
ent composition, while stretching sharpens the con-
centration gradients enhancing diffusion, which acts
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more rapidly to smooth out remaining nonuniformi-
ties. For devices based on continuous flow through
microchannels, strategies for inducing chaotic mix-
ing by altering device geometries have been proposed
and verified experimentally.7,8

Our focus here will be on discrete volume sys-
tems4,9–11 which allow miniaturization of many
standard laboratory protocols that are difficult to re-
alize with continuous flow. We will concentrate pri-
marily on spherical volumes, such as microdroplets
of one liquid suspended in another liquid, both be-
cause such configurations are easy to implement and
study experimentally and because the flows inside
spherical volumes can be computed analytically due
to the high symmetry of the problem. This high
symmetry, coupled with the time-reversal invariance
of the Stokes (low-Re) flow, proves to be a mixed
blessing as it also makes designing a chaotic mi-
croflow with good mixing properties a lot more chal-
lenging than in the case of unbounded geometries.
Below we discuss the existing theoretical and exper-
imental results on mixing in microdroplets prior to
describing our own research.

Theoretical Results

The three most common flows that arise in spher-
ical microdroplets are the Hill’s spherical vortex
(or “dipole”) flow, the axisymmetric extensional (or
“quadrupole”) flow, and the Taylor (or “rolling”)
flow. The dipole flow was originally computed
by Hadamard and describes the flow inside a vis-
cous droplet undergoing translational motion due to
buoyancy,12 thermocapillary effect13 or nonuniform
electric field.14 The corresponding velocity field is
given (in the frame of the drop) by

vd = Vda
−2[(e · r)r− (2r2 − a2)e], (1)

where a is the droplet diameter, e is a unit vector in
the direction of motion and Vd is the characteristic
velocity (Fig. 1). The quadrupole flow (Fig. 2)

vq = Vqa
−3[(r2 + 2(e · r)2 − a2)r
−(5r2 − 3a2)(e · r)e], (2)
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Figure 1: Dipole flow at the mid-plane of the droplet.
Vector e is in the horizontal direction.

with characteristic velocity Vq, can be induced by
placing the droplet in an axisymmetric extensional
flow15 v̂∞ ∝ r− 3(e · r)e, or subjecting it to a uni-
form electric field.16 (v̂∞ denotes the flow far from
the droplet.) Finally, the velocity field obtained by
placing the droplet in a shear flow v̂∞ ∝ (e1 · r)e2,
with e1 and e2 two orthogonal unit vectors, has been
computed by Taylor15 and takes the form

vt = Vta
−3[(5r2 − 3a2){(e1 · r)e2 + (e2 · r)e1}

−4(e1 · r)(e2 · r)r + 2a2(1 + λ)(e1 × e2)× r], (3)

where λ = µ/µ̂ is the ratio of inside to outside fluid
dynamic viscosities and Vt is again the characteristic
velocity of the flow (Fig. 3). In the limit λ →∞ this
flow reduces to a rigid body rotation of the droplet
around the axis e1 × e2.

If one neglects diffusion, the advection becomes
the only transport mechanism, so the trajectories of
infinitesimal fluid volumes with different composi-
tion are described by the flow

ṙ = v(r). (4)

The mixing properties of the flow can therefore be
defined by the geometrical properties of the invari-
ant sets of the dynamical system (4). The high
degree of symmetry of many typical flows leads to
the existence of invariants,17 which are functions of
coordinates that are constant along streamlines of
the flow. Each invariant defines, inside the volume
of droplet, surfaces on which the flow is effectively
two-dimensional. Additional invariants further re-
duce the flow dimensionality; e.g., flow with two in-
variants is effectively one-dimensional. For instance,
the symmetry of the flows (1)-(3) is so high that
each possesses two invariants. As a result all tra-
jectories are periodic and the flows have very poor
mixing properties. According to a well known result
of dynamical systems theory, chaotic trajectories re-
quired for thorough mixing can only be obtained if

Figure 2: Quadrupole flow at the mid-plane of the
droplet. Vector e is in the horizontal direction.

the effective dimensionality of the flow is at least
three.

In recognition of this fact, most theoretical inves-
tigations have concentrated on either analytical18–21

or numerical22–25 studies of combinations of the
above flows and introduction of time-dependence,
with both approaches targeted at increasing the ef-
fective dimensionality of the flow. Most of the the-
oretical progress in understanding chaotic mixing in
bounded flows has been achieved via perturbative
studies of steady axisymmetric flows (1) and (2),
which can be easily written in Hamiltonian form by
using their invariants. Both flows are structurally
unstable: arbitrarily small perturbations can lead
to chaos. The effect of small perturbations can be
included by using a standard perturbation analysis
based on averaging their contribution over one pe-
riod of the unperturbed trajectories.17,20,21

However, small perturbations typically only lead
to weak nonintegrability, i.e., at onset the mixing
occurs inside very thin shells surrounding the un-
perturbed trajectories and as such is quite ineffec-
tive.20 Even in the exceptional cases (such as the
quadrupole flow combined with slow rotation) when
the integrability is destroyed completely, it takes
an extremely long time for the chaotic streamline
to “diffuse” throughout the droplet.19 Quick and
thorough mixing inside the droplet is expected to
require nonperturbative corrections (i.e., superposi-
tion of two or more flows with different symmetries
and similar strength). To date, theoretical studies
of nonperturbative effects have been limited only to
numerical simulations.

Experimental Demonstrations

With a single exception provided by the recent ex-
perimental investigation by Ward and Homsy,26 the-
oretical and experimental research in this area have
by and large been completely disconnected. Few of
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Figure 3: Taylor flow at the mid-plane of the droplet.
Vectors e1 and e2 are in the horizontal and vertical di-
rection, respectively. In this example λ = 1.

the theoretical investigations mentioned above are of
practical significance, as most of the studied combi-
nations of flows are nearly impossible to realize ex-
perimentally. Respectively, the experimental studies
of mixing in microdroplets27–32 have in no way relied
on the existing theoretical results.

Although chaos can, in principle, arise in steady
three-dimensional flows,19,20,24 all experiments,
without exception, relied on time-dependent flows
to generate chaotic advection. In one group of ex-
periments28–31 deformed microdroplets confined be-
tween two flat surfaces were used. Two droplets (one
dyed and one un-dyed) were merged and moved by
using electrowetting. Regular colored30,31 and fluo-
rescent28,29 dyes were used to visualize the mixing
process. Although detailed studies of the distribu-
tion of mixed volumes inside the droplet have not
been conducted (the depth-averaged signal has been
recorded) it was determined that one-dimensional
“shaking” of the droplet does not lead to mixing due
to the time-reversibility of the Stokes flow – moving
the droplet to the original position restores the ini-
tial (unmixed) state.28 However, moving the droplet
in two dimensions, e.g., around the perimeter of a
rectangle,29,30 appears to mix the dye better. Simi-
larly, the studies of liquid droplets (or “plugs”) con-
fined by microchannels also found that bending the
microchannels in two dimensions improves mixing.32

A crude two-dimensional model was proposed by
Fowler et al.30 to explain mixing in droplets moved
along square paths (the corresponding experiments
were performed with droplets distorted so strongly,
they were effectively two-dimensional). Without
explicitly referencing the chaotic advection mecha-
nism, the authors suggested that motion in a straight
line leads to stretching of the fluid volumes, while
switching the direction of motion leads to folding.
This stretching and folding repeated multiple times

describes a classical chaotic mixing mechanism lead-
ing to fractal structure of chaotic invariant sets.

Stretching and folding of fluid elements in spheri-
cal droplets has also been demonstrated experimen-
tally,26 supporting the results of the theoretical anal-
ysis25 conducted earlier. The primary (dipole) flow
in the droplet was generated due to its motion as
the droplet sank to the bottom of the container. An
additional time-dependent quadrupole flow with the
same axis was superimposed by applying alternating
vertical electric field. However, the limitations of the
experimental setup prevented the thorough mixing
of the injected fluorescent dye inside the droplet. As
we will show below, this is due to the remaining ax-
ial symmetry of the flow which only possesses two-
dimensional chaotic invariant sets.

FLOW MANIPULATION

As we have seen so far, chaotic advection re-
quires a flow with rather special properties to be
induced inside the microdroplet. The list of “build-
ing blocks” for such a flow, however, is not large, re-
gardless of what mechanism is actually used to drive
the flow. Detailed experimental studies of different
combinations of basic flows, therefore, require con-
siderable flexibility in the experimental setup. Elec-
trical or thermal fields provide arguably the easiest
and most flexible way for controlling the flow. Sev-
eral approaches based on applying the electric field
were discussed in the previous section.

Experimental Setup

Here we describe an alternative approach to driv-
ing microflows based on the temperature dependence
of surface tension (the Marangoni or thermocapil-
lary effect). Manipulating surface tension provides a
natural approach to regulating flows at small scales
because surface forces, like surface tension, domi-
nate when the surface-to-volume ratio is large. The
surface tension at the interface between immisci-
ble fluids can be conveniently altered by changing
the temperature; for pure fluids, the surface ten-
sion decreases as the temperature increases. The flu-
ids move when gradients in temperature induce sur-
face tension differences. At small scale, even small
thermal gradients can cause substantial fluid move-
ment. As a consequence, the thermocapillary effect
has been utilized successfully in prototype devices
for manipulating tiny quantities of fluid.3,4, 33 In
these devices, temperature variations have been gen-
erated with heating/cooling devices (e.g., resistive
heaters) placed in physical contact with the fluids.
We have recently demonstrated that surface-tension
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Figure 4: Experimental setup.

gradients can be controlled optically.34 Radiative
heating of the interface using an intensity-modulated
light beam provides a flexible, rapidly-reconfigurable
method of driving microflows on substrates with no
moving parts and no need to construct on-chip de-
vices (e.g., microscale pipes, valves, etc.) for fluid
handling. In particular, microflows can be driven on
smooth, featureless solid or liquid substrates.

We use this thermo-optical approach for manipu-
lating the flow inside and outside of microdroplets
suspended on an immiscible liquid substrate. Aque-
ous droplets (60% glycerol - 40% water with ν = 0.12
cm2/s and density ρ = 1.1 g/cm3) of radius a
(30 µm < a < 3 mm) are immersed in a perflu-
orocarbon fluid (Fluorinert FC-70 with ν = 0.14
cm2/s and ρ = 1.9 g/cm3) substrate of constant
thickness h = 4 mm (see Fig. 4). Typically,
droplets float near the substrate-air interface be-
cause the substrate is more dense than pure wa-
ter. The droplets are driven along the substrate
surface by temperature-induced surface tension gra-
dients produced by illuminating the substrate with
a beam from a tunable infrared CO2 laser (Syn-
rad Model 48G-2-28W with a wavelength range of
9.2 - 10.7 µm). The laser’s operating wavelength
is selected so that the beam is strongly absorbed
by the substrate, thereby impressing temperature
variations along the free surface; these temperature
fields are measured using a liquid-nitrogen-cooled
InSb infrared imager (Amber/Raytheon Model 4-
128). The temperature differences, which are sig-
nificant only within the vicinity of the beam, in-
duce surface tension gradients via thermocapillar-
ity. A computer-controlled scanning system (LSDI
Turbotrak/Pangolin QM2000 controller with GSI-
Lumonics G120D galvo-mirrors) permits reposition-
ing of the laser beam at up to 30,000 independent
locations per second (with 3 µm resolution). Thus,
by rapid scanning of the laser beam, surface-tension
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Figure 5: Microdroplet in a liquid substrate. For conve-
nience we will choose the z-axis in the vertical direction
and place the origin in the center of the droplet.

gradients may be imposed at will at any location
on the substrate; these surface forces drive well-
controlled, localized flows both within and around
the droplets. In this way, time-dependent switching
of the microdroplet’s motion can be implemented.
The visualization is performed by illuminating the
fluorescent dye inside the droplet with either an ex-
tended beam or a thin light sheet from an argon
ion laser. A simple illuminator that produces light
sheets of ∼100 µm thickness35 has been adapted to
a microscope and used in some experiments to de-
termine the uniformity of mixing inside the droplet.

Theoretical Model

In describing the flow inside the droplet subjected
to a nonuniform temperature field we will make
a number of simplifying assumptions to obtain a
tractable analytical model. First of all, we will as-
sume that the droplet is neutrally buoyant and floats
a distance d > a below the substrate/air interface
(see Fig. 5) and consider the substrate to be semi-
infinite (in other words, h À a). We will assume
the droplet to be spherical, which is a good approx-
imation for sufficiently small droplets and the sub-
strate/air interface to be perfectly flat. Next, we
will assume that the thermal properties of the liq-
uid inside and outside the droplet are the same (this
assumption is non-essential and very easy to lift).
We will also assume that the convective heat flux
is negligible, so the temperature and velocity fields
can be computed independently. Finally, the flow is
assumed to be in the Stokes regime.

Neglecting the proximity of the substrate/air in-
terface, the velocity inside and outside the droplet
can be found by solving the Stokes equation

∇p = µ∇2v, ∇p̂ = µ̂∇2v̂ (5)
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in an infinite domain subject to the incompressibility
∇ · v = ∇ · v̂ = 0 and boundary conditions

t · v = t · v̂, n · v = n · v̂ = 0
n · (σ − σ̂) · t = τs(t · ∇T ) (6)

on the surface of the droplet r = a. In the
above expressions p, σ, T and τs = ∂γs/∂T de-
note the pressure, stress tensor, temperature and
temperature coefficient of the surface tension, re-
spectively, the hat denotes the quantities pertain-
ing to the outside liquid, the index s denotes the
(spherical) surface of the droplet, and n and t
are unit vectors normal and tangential to the sur-
face. The velocity field can be found by substituting
Lamb’s general solution36 into (6).

As the droplet is constrained to move in the hor-
izontal plane we will only consider the motion aris-
ing due to the horizontal component of the tem-
perature gradient produced by the absorption of
the laser radiation in the substrate. Assuming
the gradient to be uniform in the vicinity of the
droplet, T = κ0(e · r), the flow inside the droplet
can be easily found and is given13 by (1) with Vd =
−κ0aτs/[µ(2λ + 3)]. The nonuniformity of the tem-
perature gradient will produce a correction to this
basic dipole flow. In particular, for a temperature
profile quadratic in the distance from the droplet
center, T = κ1(e·r)2, we find the correction given by
a quadrupole flow (2) with Vq = κ1a

2τs/[5µ(1 + λ)].
The proximity of the substrate/air interface will

produce additional corrections. First of all, due to
the thermocapillary effect at that interface induced
by the temperature gradient a shear flow will be es-
tablished in the liquid substrate. The uniform tem-
perature gradient T = κ0(e · r) will induce a uniform
(far from the droplet) shear which can be found from
the boundary conditions at the substrate/air inter-
face

n · v̂ = 0, n · σ̂ · t = τp(t · ∇T ), (7)

where the index p denotes the (plane) interface. This
results in the velocity profile

v̂∞ = −κ0τp

µ̂
(ez · r)e + v̂0e. (8)

This shear flow leads to a Taylor flow correction (3)
with Vt = κ0τpa/[4µ(1 + λ)] and e1 = ez, e2 = e.
A quick comparison of the characteristic velocities
Vd and Vt shows that the shear-induced flow inside
the droplet is of roughly the same magnitude as the
dipole flow. The superposition of these flows is not
chaotic when the vorticity of the shear flow far from
the droplet is orthogonal to the axis of the dipole

flow, as numerical calculations of Bryden and Bren-
ner24 show. This is exactly the case here, as the
vorticity of the flow (8) is ω = ∇×v̂∞ ∝ ez×e ⊥ e.

The last term in (8) describes the mean flow
in the substrate. For a liquid substrate of thick-
ness h the mean flow leads to the overall migra-
tion of the droplet in the direction away from the
hot spot produced by the laser beam with velocity
v̂0 = −(κ0τp/µ̂)(h − d), which can be easily found
using the no-slip boundary condition at the bottom
of the substrate layer. For droplets floating near
the top interface, d ¿ h, this motion is dominant
compared with the thermocapillary migration13 with
speed (2/3)Vd in the opposite direction. The laser
beam will, therefore, repel the droplet.

The proximity of the substrate/air interface will
also generate perturbative corrections to the flow in-
side and outside the droplet. Consider, for instance,
the flow outside the droplet due to the applied uni-
form temperature gradient T = κ0(e · r). The ve-
locity field in the unbounded substrate again follows
from the Lamb’s general solution. In the stationary
reference frame one obtains

v̂d = −Vd
a3

3r5
[3(e · r)r− r2e]. (9)

The solution satisfying the homogeneous version of
the boundary conditions (7) at the substrate/air in-
terface can be found using the method of reflections,
which generates a series expansion for the velocity
field in powers of δ = a/d by subsequent reflections
of the velocity field v̂ about the plane and spher-
ical interface.37 The advantage of this technique
compared with, say, solution in bi-spherical coordi-
nates38 is that each term in the series preserves the
symmetry of the flow. The procedure is straightfor-
ward although algebraically intensive, so we will just
quote a few of the corrections we have computed.

The leading order correction to the dipole flow (1)
corresponds to a rigid translation of the droplet with
speed

v(1)
d = δ3 Vd

24
e. (10)

The next leading order correction for the flow inside
the droplet (in the co-moving reference frame) is

v(2)
d =

δ4Vd

32(1 + λ)a3
[−4(ez · r)(e · r)r

+(5r2 − 3a2)((ez · r)e + (e · r)ez)]. (11)

The corrections to the quadrupole and Taylor flows
can be computed in the same manner. For instance,
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we again find the leading order correction to the Tay-
lor flow to be cubic in δ

v(1)
t =

δ3(2 + 5λ)
16(1 + λ)

vt. (12)

Higher order corrections are too lengthy to be quoted
here. None of the corrections we have computed,
however, change the symmetry of the basic flows (1)-
(3) with respect to the mid-planes of the droplet
perpendicular to the directions e, ez and e× ez.

RESULTS AND DISCUSSION

Now having understood the effect of optical heat-
ing on the motion and flows inside the droplet, we
move on to the mixing problem. The mixing prop-
erties of the flows in the microdroplet are governed
by their symmetries, which give rise to invariant sur-
faces serving as barriers to transport. Since the flow
cannot cross invariant surfaces, the existence of in-
variants is highly undesirable in the mixing prob-
lem as their presence inhibits complete stirring of
the full microdroplet volume by chaotic advection.
Thus, the key to achieving effective chaotic mixing
in a microdroplet (indeed, in any laminar microflow)
is to ensure that all flow invariants are destroyed.

Theory

We will next explore the mixing properties of the
flow inside the microdroplet arising due to its mo-
tion in the experimental setup described above. To
begin with, consider the motion caused by a uni-
form horizontal temperature gradient (we will take
it to be in the x-direction). Assuming the substrate
to be unbounded, the temperature gradient will in-
duce a dipole flow (1) inside the droplet with the
axis e = ex. The poor mixing properties of this
flow can be demonstrated by following the motion
of a small dyed fluid element inside the microdroplet
(Fig. 6a-c). To determine the evolution of the dyed
element, the flow (1) is integrated forward in time
starting from an initial condition (Fig. 6a). The
dye is quickly stretched along the axis of the flow
and along the surface of the droplet within a single
characteristic turnover time for the flow (Fig. 6b),
but never spreads throughout the droplet, even after
repeated stretching (Fig. 6c). Poor mixing can be
expected in this case because the steady dipole flow
is effectively one-dimensional (and, therefore, cannot
be chaotic) because it possesses two invariants17

φd =
z

y
,

ψd = z2(a2 − r2), (13)

a d

b e

c f

Figure 6: Advection of dye by the dipole flow. The blue
line represents the mid-plane cross section (z = 0) of
the dyed fluid element. The x axis is horizontal and the
y axis is vertical. The initial state (a) and stretching in
steady dipole flow at t = 6 (b) and t = 24 (c). Stretching
and folding in a time-periodic flow obtained by rotating
its direction by 90◦ in the horizontal plane every 6 time
units: the dyed element is shown at t = 12 (d), t = 18
(e) and t = 24 (f). Time is measured in units of a/V .

related to the orientation of a plane containing the
streamline and the stream function of the flow in
that plane.

This result can be immediately generalized to
droplets confined by straight microchannels. Even
though the droplet in this case is not spherical,
the flow is topologically identical to the dipole flow
shown in Fig. 1. As a result no chaotic advection
will result from recirculation of the liquid caused by
translation of the droplet, despite claims of apparent
good mixing.27

It is easy to see that the symmetry of our prob-
lem about the y = 0 mid-plane of the droplet will
prevent mixing between the left (y > 0) and right
(y < 0) hemispheres of the droplet, even if the cor-
rections to the dipole flow, such as the quadrupole
flow (2) or Taylor flow (3) are included. Indeed, none
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of the streamlines can cross the symmetry plane of
the flow, which serves as a barrier to transport in
this case. This conclusion clearly also applies to
one-dimensional motion of deformed (non-spherical)
droplets confined by channels27 and flat surfaces.30

The apparently uniform mixing observed in those
cases is due to depth averaging and hence is mis-
leading. The only way to induce true chaotic mixing
in the volume of the droplet is, therefore, by switch-
ing the direction of the flow, as was discovered by
trial-and-error in earlier electrowetting mixing stud-
ies.29,30 The pressure-driven flow in liquid droplets
moving through bent channels32 also undergoes di-
rection switching.

Each flow invariant defines an infinite set of in-
variant surfaces, much like the y = 0 symmetry
plane. To realize complete mixing, all invariants of
the flow must be destroyed. The time-dependence of
the flow introduced by switching the direction of the
thermal gradient in the horizontal plane plays two
different positive roles. First of all, it destroys the
invariant φd of the dipole flow. Second, it increases
the effective dimensionality of the flow by one. The
resulting flow, therefore, becomes effectively three-
dimensional (two space variables plus time) and so
chaotic dynamics becomes possible. For instance,
repeated stretching and folding of the fluid elements
by a time-periodic flow produces efficient stirring
in the z = 0 mid-plane of the droplet, as the re-
sults of numerical integration shown in Figs. 6a,d-f
demonstrate. This periodic flow can be thought of as
a three-dimensional version of the two-dimensional
Aref’s blinking vortex.5

It is important to note that the presence of chaotic
advection does not guarantee good mixing. In-
deed, the invariant ψd is not destroyed by direction
switching, so that chaotic flow is confined to two-
dimensional surfaces of revolution defined by

x2 + y2 = a2 − z2 − ψd

z2
, (14)

as the Poincaré section of the flow (Fig. 7a) in-
dicates. Under the action of chaotic advection the
dyed fluid element will only spread over thin shells
defined by equation (14), where ψd varies over the
values corresponding to the initially dyed region of
the fluid. Clearly, the same conclusions apply if the
axis of the flow is rotated in a plane by arbitrary
angles at arbitrary times (or if the axis oscillates pe-
riodically as proposed by Angilella and Brancher21).
This result indicates that the symmetry of the pure
dipole flow is so high that mixing will be incomplete
even with the addition of time-dependence.

Next we need to incorporate the effects of the

a c

b d

Figure 7: Poincaré sections of dye particles crossing the
x = 0 mid-plane of a droplet. The z axis is vertical.
Dye particles that are initially in the top hemisphere
(z > 0) are shown in blue while dye particles that are
initially in the bottom hemisphere (z < 0) are shown
in red. The flow is made time dependent by switch-
ing its direction by 54◦ every 6 time units. (a) Dipole
flow. (b) Superposition of dipole and quadrupole flow.
(c) Superposition of dipole, quadrupole and Taylor flow.
(d) Superposition of dipole and Taylor flow. Parameters
are chosen such that λ = Vd = 1, Vt = 0.6, Vq = 0.4.

nonuniformity of the temperature gradient and of
the proximity of the droplet to the substrate/air in-
terface. For instance, a quadratic nonuniformity in
the direction of the primary gradient, T = κ0x +
κ1x

2, leads to a quadrupole correction (2) to the
dipole flow with the same axis e = ex. In this case
the resulting steady flow is still axisymmetric and so
again possesses two invariants. The stream function
of the combined flow allows us to easily find them:

φ =
z

y
,

ψ = (Vda + 2Vqx)z2(a2 − r2). (15)

The addition of time-periodicity induced by switch-
ing the direction of the temperature gradient in the
horizontal plane destroys both invariants (15) for al-
most all values of φ and ψ. As a result, the stream-
lines are no longer constrained to two-dimensional
surfaces and thoroughly sample the droplet volume
as the Poincaré section presented in Fig. 7b shows.
However, a surface defined by φ = ψ = 0, namel, the
mid-plane z = 0, remains invariant with respect to
rotations in the horizontal plane and prevents mix-
ing between the top and bottom hemisphere of the
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microdroplet: the streamlines of the flow and hence
the trajectories of the dye particles never cross the
z = 0 mid-plane. (ψ also vanishes at the micro-
droplet’s surface r = a, thereby representing a bar-
rier to transport into and out of the droplet.)

This final barrier is destroyed by the correc-
tion to the dipole/quadrupole flow induced by the
shear in the substrate fluid. Unlike the dipole and
quadrupole flows whose streamlines do not cross the
mid-plane z = 0 (see Figs. 1 and 2), the stream-
lines of the Taylor flow do cross that plane (see
Fig. 3). As a result, the streamlines of the com-
bined dipole/quadrupole/Taylor flow can also cross
the mid-plane, enabling mixing between the top and
bottom hemisphere as the respective Poincaré sec-
tion illustrates (see Fig. 7c).

It is important to note that the quadrupole flow
contribution is essential for introducing chaotic ad-
vection in three dimensions. This can be seen by
considering the combination of the dipole and Taylor
flow alone. Since Taylor flow has the same symme-
try with respect to the plane x = 0 as the dipole flow
(compare Figs. 1 and 3) and both flows are time-
reversible (as is every Stokes flow), all trajectories
of the Taylor flow are closed. This, in turn, means
that Taylor flow also possesses two invariants. These
invariants, however, are not easy to find as Taylor
flow is not axially symmetric and hence one cannot
use the stream function of the flow. The invariants
can nevertheless be found directly from their defi-
nition, vt · ∇ψt = 0. Solving the resulting partial
differential equation one finds

φt = y3(a2 − r2),
ψt = (λ + 1 + 2z2 − r2)3(a2 − r2)2. (16)

Again one observes that while the first flow invariant
is destroyed by rotations in the horizontal plane, the
second invariant is preserved. This is a consequence
of a general statement which can be easily proven:
any time-reversible flow v such that

vx(−x, y, z) = vx(x, y, z),
vy(−x, y, z) = −vy(x, y, z),
vz(−x, y, z) = −vz(x, y, z) (17)

possesses at least one invariant which is preserved
under rotations in the xy plane. This statement fol-
lows directly from the symmetry of the closed orbits
of such flows. In particular, the combination of the
dipole and Taylor flow has an invariant which is pre-
served under rotations. In the limit λ →∞ it takes
a simple form:

ψ = (Vt − Vdz)2(a2 − r2). (18)

The corresponding time-periodic flow whose direc-
tion is switched in the horizontal plane generates
a chaotic invariant set which again lies on a two-
dimensional surface of revolution defined by the re-
maining invariant. The cross section of such a sur-
face is shown in Fig. 7d. This result proves the
numerical conclusion of Bryden and Brenner24 that
the superposition of the dipole and Taylor flow is
non-chaotic when the vorticity vector of the shear
flow is orthogonal to the axis of the dipole flow.

To summarize, for the case of a thermocapillary-
driven microdroplet floating in an immiscible liquid,
complete three-dimensional mixing can be obtained
by including three ingredients to destroy all invari-
ants: (a) flow time-dependence (e.g., via direction
switching in a plane), (b) nonuniformity in the tem-
perature gradient, and (c) circulation due to external
shear flow (with vorticity perpendicular to the di-
rection of the temperature gradient). If any of these
ingredients is missing, mixing is incomplete. For in-
stance, inclusion of (c) alone leads to non-chaotic
flow preserving two invariants while the addition of
(a) destroys one of the invariants, leading to chaotic
mixing on two-dimensional surfaces. We have seen
above that inclusion of (a) and (b) alone is insuffi-
cient to produce full three-dimensional mixing. As
another illustration, if the time-dependence is due
to a periodic modulation of the strength of nonuni-
formity25 one again obtains chaotic mixing in two
dimensions as the invariant φ in (15) is preserved.
Finally, inclusion of (b) and (c) alone also preserves
one invariant leading to a quasi-periodic flow whose
streamlines lie on two-dimensional surfaces. The
structure of the flow field in the latter case is qualita-
tively similar to that of the steady dipole flow shown
in Fig. 6a-c: the flow originating near the surface
forms a narrow “tube” joining the poles and returns
along the surface of the droplet.

The proximity of the microdroplet to the substrate
interface can lead to additional corrections to the
flow inside the droplet. However, according to our
analytical and numerical calculations these correc-
tions do not change the symmetry of the flow and
hence the number of invariants, so the essential re-
sults of the model described above should still apply.

Experiments

To test the theory, we conduct experiments using
the setup described previously. The mixing exper-
iments begin by merging a nanoliter-scale droplet
dyed with 0.5 µm diameter fluorescent microspheres
with a microliter-scale undyed droplet. Without fur-
ther manipulation, diffusion would govern mixing.
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Figure 8: Video images under monochromatic illumina-
tion at 488 nm illustrating optically controlled driving of
an aqueous microdroplet in a single direction. (a) A 30
nanoliter droplet dyed with fluorescent microspheres is
merged with a 3.7 microliter (0.96 mm diameter) undyed
droplet. The combined droplet is subsequently driven in
one direction and imaged after traveling a distance of (b)
1.0 cm, (c) 2.0 cm and (d) 3.5 cm.

With a diffusion coefficient for the microspheres of
D = 7×10−10 cm2/s as determined from the Stokes-
Einstein equation, the timescale required for diffu-
sive mixing is ∼ 100 days. After merger, the com-
bined droplet is driven with an average characteristic
speed of V ∼ 0.1 cm/s. (Higher droplet speeds of a
few cm/s are possible with this system.). As a result,
the droplet flow is characterized by low Reynolds
number ∼ 0.1 and high Péclet number ∼ 107, plac-
ing the system in a laminar flow regime where mixing
is expected to be particularly difficult.

Time series of images of driven droplets demon-
strate directional changes in the droplet motion
strongly enhance mixing. After merger, the fluores-
cent microspheres are localized in a small region near
the surface of the combined droplet (Figs. 8a and
9a). If the droplet is subsequently driven in a single
direction, the dye is stretched along a “tube” join-
ing the poles and then around the perimeter of the
droplet, but does not penetrate the droplet interior
(Fig 8b-d). This is consistent with the theoretical
analysis of the superposition of dipole, quadrupole,
and Taylor flows. In contrast, by periodically chang-
ing directions using the same protocol employed in
the model, the dye is quickly advected through-

Figure 9: Video images illustrating optically con-
trolled driving of an aqueous microdroplet along a path
that periodically changes direction. (a) A 10 nanoliter
droplet dyed with fluorescent microspheres is merged
with a 4.5 microliter (1.02 mm diameter) undyed droplet.
The combined droplet is subsequently driven repeatedly
along a square path with side length 3.5 mm and imaged
after changing directions (b) 4 times (c) 12 times and (d)
20 times (for a total path length of 7 cm).

out the entire droplet volume (Fig. 9b-d). For a
sufficient number of direction changes, the droplet
is fully mixed, as verified by illuminating different
planes within the droplet with a 100 µm-thick laser
sheet (not shown).

CONCLUSIONS

The analysis presented above should have broad
applicability. On the most general level, one con-
cludes that the existence and number of invariants
play a crucial role in determining the mixing proper-
ties of the flow. In particular, in order to achieve full
three-dimensional mixing the flow within the droplet
should be designed to destroy all invariant surfaces
in the interior of the droplet. As the example with
the dipole/Taylor flow combination shows, destroy-
ing the simple geometrical symmetries of the flow
might not be sufficient for complete mixing. In this
sense the flow invariants provide a more useful way
of characterizing the mixing properties of the flow
than its symmetries.

More specifically, the types of flows that we have
considered (dipole, quadrupole, and Taylor flow)
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are the most common types of interior flows aris-
ing inside spherical liquid microdroplets, regardless
of the nature of driving forces, so many details of our
analysis should be directly applicable to situations
when microflows are driven by, e.g., external shear,
buoyancy, or electrical fields. Furthermore, many of
the results we have obtained for spherical droplets
should naturally generalize to deformed shapes such
as plugs in microchannels with cylindrical or rect-
angular cross-section27,32 or droplets squashed be-
tween two parallel planes.29–31 The flows inside
these shapes are topologically similar to flows in
spherical microdroplets and therefore should have
similar mixing properties, at least in steady state.

Finally, our results suggest that optically con-
trolled thermocapillary actuation can be used as a
general approach to performing many basic microflu-
idic operations such as moving, merging and mixing
liquid microdroplets. Today’s mainstream approach
to microfluidics uses lithography-based methods (in-
spired by microelectronics manufacture) to build
networks of microchannels, micropumps, and mi-
crovalves. The opto-microfluidic approach employed
in this study should permit complex fluidic opera-
tions to be performed with no moving parts and no
need to construct on-chip devices, sidestepping un-
solved problems of the conventional approach (e.g.,
clogging of microchannels). Opto-microfluidics can
also enable, in principle, a single device to be “re-
programmed” to perform different fluidic operations
in different possible sequences – yielding, in effect,
a microfluidic processing unit (µPU). Widespread
implementation of this alternative approach to mi-
crofluidics has the potential for radically transform-
ing current thinking about how practical devices
might be built.

Support for this work by the National Science
Foundation and the Research Corporation is grate-
fully acknowledged.
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