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Recent experimental and numerical studies of convection in confined layers of volatile binary
liquids with a free surface subjected to a horizontal temperature gradient have observed a reversal
in the direction of interfacial flow as the concentration of air in the vapor space above the liquid is
decreased. These observations suggests that transport in the gas phase has a significant effect on
the balance between thermocapillary and solutocapillary stresses, the competition of between which
determines the flow direction. In order to develop a quantitative description of the flow reversal,
we use the two-sided (liquid/gas) transport model introduced previously to obtain approximate
analytical solutions for the interfacial temperature and composition of the liquid, which control
the thermocapillary and solutocapillary stresses. Despite the complex nature of this problem, our
theoretical predictions agree well with the results of numerical simulations, which indicates that our
analysis captures the essential physics of the problem.

I. INTRODUCTION

It is well-known that surface tension effects play a
dominant role in microscale fluid flows in terrestrial con-
ditions and even at macroscopic scales in microgravity.
In particular, thermocapillary stresses which arise at the
free surface of nonisothermal fluids case the flow in the di-
rection opposite to the thermal gradient. In some practi-
cal applications, such as in thermal management devices
that rely on phase change, thermocapillarity plays an ad-
verse role, leading to dry-out of the hot regions meant to
be cooled by the evaporating liquid. The direction of the
flow can be reversed by using volatile binary liquids, such
as water-alcohol mixtures, where the more volatile com-
ponent has a lower surface tension [1]. The flow reversal
in such binary liquids is due to the solutocapillary effect,
which is caused by interfacial concentration gradients and
can oppose thermocapillarity.

While thermocapillary stresses arise for any fluids,
simple or binary, volatile or nonvolatile, solutocapil-
lary stresses of comparable magnitude can only arise in
volatile binary liquids. The strength of solutocapillary
stresses depends on both the mean composition of the
liquid and the composition of surrounding gas or, more
specifically, the presence of noncondensables, such as
air. The latter are well-known to suppress phase change,
which plays a crucial role in generating a concentration
gradient at the free surface. Recent experimental [2] and
numerical [3] studies have investigated the dependence
of the flow in a layer of methanol-water mixture on the
composition of the two phases characterized by the mean
concentration of methanol Ȳm in the liquid and the mean
concentration of air X̄a in the gas. It was determined
that the flow is most sensitive to the composition of the
gas phase: flow reversal requires X̄a to be very low (a
few percent or less). The dependence on the composition
of the liquid phase was found to be much weaker, with
the solutocapillary effect being somewhat stronger at low
values of Ȳm.

The resolution of those two studies, however, was too
low to determine the optimal values of X̄a and Ȳm which

would generate the strongest flow in the direction of
the applied temperature gradient. More importantly,
our fundamental understanding of the interplay between
phase change at the liquid-vapor interface and the trans-
port of heat and mass and the flow in the two layers
remains limited. While there is abundant literature on
Marangoni-driven flows in nonvolatile fluids (the read-
ers are referred to Ref. [3] which presents a detailed
overview) none of it is directly relevant here.

The objective of this paper is to obtain approxi-
mate analytical solutions of the comprehensive two-sided
transport model introduced in Ref. [3], which will quan-
tify the Marangoni stresses driving the flow and their
dependence on the composition of the liquid and gas
phase. The outline of the present study is as follows.
We describe the system being investigated in Section II.
The analysis of the transport model is presented in Sec-
tion III, with the analytical predictions compared with
the numerical results. The summary and conclusions are
presented in Section IV.

II. PROBLEM STATEMENT

We will consider a flow in a layer of volatile binary
liquid (water-methanol mixture) with a free surface con-
fined along with its vapor and air in a rectangular test
cell (cf. Fig. 1). The flow is driven by a horizontal tem-
perature gradient in the extended (x) direction created
by imposing a temperature difference ∆T = Th − Tc be-
tween the outer surfaces of the two end walls. Previous
studies of this problem [2, 3] showed that the liquid-vapor
interface has a low curvature and the flow is nearly two-
dimensional, so we will simplify the problem by consider-
ing the liquid layer to have a uniform thickness and the
flow to be strictly two-dimensional.

The flow in both phases is assumed incompressible

∇ · u = 0, (1)

and the momentum transport in the bulk is described by
the Navier-Stokes equation with the Boussinesq approx-
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FIG. 1. The test cell containing the liquid and air/vapor
mixture. Gravity is pointing in the negative z direction. The
shape of the contact line reflects the curvature of the free
surface for a liquid wetting the walls. The inner dimensions
are H = W = 10 mm, L = 48.5 mm, the walls are 1.25 mm
thick, and the liquid (gas) layer has a thickness dl = 2.5 mm
(dg = 7.5 mm).

imation

ρ (∂tu + u · ∇u) = −∇p+ µ∇2u + ρg, (2)

where u is the velocity, p is the pressure, ρ and µ are
the density and dynamic viscosity of the fluid, respec-
tively, and g = −gẑ is the gravitational acceleration.
Heat transport in the bulk is described by the advection-
diffusion equation

∂tT + u · ∇T = α∇2T, (3)

where T is the temperature and α = k/ρCp is the thermal
diffusivity of the fluid. Mass transport in the binary liq-
uid mixture is described by the advection-diffusion equa-
tion for the concentration Yb (b = m for methanol and
b = w for water)

∂tYb + u · ∇Yb = ∇ · (Dl∇Yb), (4)

where Dl is the binary mass diffusivity. In the ternary
gas phase, mass transport is described using a similar
equation

∂tXb + u · ∇Xb = ∇ · (Db∇Xb), (5)

where Xb is the concentration of component b in the gas
phase and Db is the effective mass diffusivity [4].

The evolution equations (1)-(5) are solved subject to
the appropriate boundary conditions at the liquid-gas in-
terface and the inner surfaces of the cavity walls. At the
interface, standard boundary conditions account for the
balance of momentum, heat, and mass fluxes across the
interface. In particular, the stress balance

(Σl −Σg) · n̂ = x̂∂xσ, (6)

where

Σ = µ
[
∇u + (∇u)

T
]
− pI (7)

is the stress tensor, couples the fluid flow to the temper-
ature and concentration fields due to the dependence of

the surface tension σ on their interfacial profiles, result-
ing in Marangoni (thermo- and solutocapillary) stresses.

Local phase equilibrium is described with Raoult’s law

pg,b = pgXb = γbps,bYb, (8)

where γb is the activity coefficient of component b, which
accounts for deviations from an ideal liquid mixture, pg,b
and pg are the partial and total pressure in the gas phase.
The saturation vapor pressure ps,b of a pure component
b can be related to the interfacial temperature Ti via the
Antoine equation

ln ps,b = Ab −
Bb

Cb + Ti
, (9)

where Ab, Bb, and Cb are empirical coefficients. By defin-
ing the latent heat Lb

Lb = TbRb, (10)

where Rb = R/Mb is the specific gas constant, Mb is the
molar mass, and temperature scales

Tb =
BbT

2
0

(Cb + T0)2
, (11)

the Antoine equation can be rewritten in the form of the
more popular Clausius-Clapeyron relation

ln
ps,b
p0s,b

= −Tb
(

1

Ts
− 1

T0

)
, (12)

where p0s,b is the reference value of the saturation vapor
pressure for pure component b at the reference temper-
ature T0. Finally, the number density flux describing
phase change at the interface is given by [3]

jb,i =
2χb

2− χb
ngXbut

Tb
Ti

Ti − Ts,b
Ts,b

, (13)

where ng is the number density of the gas, χb = O(1) is
the accommodation coefficient, and

ut =

√
RbTi
2π

(14)

it the characteristic thermal velocity. Additional details
of the mathematical model and its numerical implemen-
tation are discussed in Ref. [3].

Before delving into the analysis of the model, which
has been found to give a fairly accurate description of
the experiment, let us sketch the plan of attack. A quick
look at the transport equations for the momentum, heat,
and mass shows that the flow, temperature, and concen-
tration fields are all coupled via advection, buoyancy, or
various boundary conditions, and hence have to be solved
for simultaneously, making this problem extremely com-
plicated. Our previous investigation of a similar prob-
lem involving a volatile simple liquid confined in a mod-
erate aspect-ratio cavity [5] came to an interesting and
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unexpected conclusion, however. Numerical simulations
showed that, despite this coupling, mass transport in the
gas phase appears to be effectively one-dimensional and
independent of the flow field even for relatively high mass
Péclet numbers. This result allows dramatic simplifica-
tion, since the concentration profile in the gas phase de-
termines the interfacial temperature via (9) and hence
the thermocapillary stresses. This allows one to find the
flow in the liquid layer, then the flow in the gas layer and,
finally, the temperature field in both phases.

As our numerical simulations [3] and the analysis pre-
sented in the next section confirm, for a volatile binary
liquid, mass transport in the gas phase is also essen-
tially one-dimensional. Hence, once the concentration
fields Xm and Xw in the gas phase are found, we can
determine both the interfacial temperature Ti and the
interfacial composition Ym via (8) and (9). These inter-
facial profiles determine the thermo- and solutocapillary
stresses and hence the flow in the liquid layer. In par-
ticular, the direction of the flow along the interface can
be determined by comparing the strength of the ther-
mocapillary stresses and the (opposing) solutocapillary
stresses. (While buoyancy is nonnegligible for a few-mm-
thick layer of liquid considered in Refs. [2, 3], it mainly
affects the stability of the flow [6].) Once the flow in the
liquid layer is found, the remaining undetermined fields
can be computed from the corresponding transport equa-
tions similarly to the simple liquid problem.

III. RESULTS

The previous numerical simulations [3] were performed
for the temperature differential ∆T = 6 K used in the
experiments of Li and Yoda [2]. At this relatively high
∆T , in both studies the flow was found to be unsteady
for intermediate values of the mean air concentration X̄a.
The present study uses numerical simulations at a lower
∆T = 2 K and Ȳm = 0.6 (i.e., 60% methanol 40% water)
for which the flow is steady over the entire range of X̄a

as a reference to compare with the model predictions.

A. Mass transport in the gas phase

Our previous investigation [5] has shown that mass
transport in the binary (vapor/air) gas mixture in local
equilibrium with a layer of volatile simple liquid confined
inside a moderate aspect-ratio cavity is well-described by
the one-dimensional theory of filmwise condensation on
a vertical cold surface [7] even when there is significant
flow in the gas phase and when condensation takes place
near, but not actually on, the cold wall. A similar result
also holds for the case of binary liquids investigated here,
where the gas is a ternary mixture.

Let us introduce the rescaled coordinates χ = x/dg
and ζ = z/dg, such that the gas phase corresponds to
0 < ζ < 1 and 0 < x < Γg, where Γg = L/dg is the aspect

ratio of the gas layer. Since the flow field is constrained
to the χ−ζ plane and is incompressible, it can be written
in terms of the stream function ψ(χ, ζ),

ug = x̂∂ζψ − ẑ∂χψ. (15)

Assuming phase change in the central region of the cavity
is negligible and the aspect ratio Γg is relatively large (in
this study Γg ≈ 6.5), the gas flow can be considered
essentially horizontal there

ug = uxx̂ + uz ẑ ≈ uxx̂, (16)

where uz/ux = O(Γ−1g ). Numerical simulations (cf.
Fig. 2) illustrate that this is an accurate assumption over
the entire range of X̄a. Therefore, the mass transport
equation (5) in steady state reduces to

dgux∂χXb = Db(∂
2
χXb + ∂2ζXb), (17)

where the vertical component uz of the velocity yields
a higher order correction and can be neglected. On the
other hand, the horizontal component

ux = ū+ ũx(χ, ζ) (18)

could be decomposed into the mean flow ū and zero-mean
recirculation flow ũx,∫ 1

0

ũxdζ = 0. (19)

Respectively, the stream function can decomposed as

ψ = ūζ + ψ̃, (20)

where ∂ζψ̃ = ũx, such that∫ 1

0

∂ζψ̃dζ = ψ̃|ζ=1 − ψ̃|ζ=0 = 0. (21)

Since phase change at the liquid-gas interface is as-
sumed negligible in the central region of the cavity, no-
flux boundary condition ∂ζXb = 0 for the concentration
of both vapors can be used at the interface ζ = 0 and the
top wall ζ = 1. Setting ux = ū (i.e., ũx = 0) and solving
(17) subject to these boundary conditions reproduces the
solution previously obtained in Ref. [5]

Xb = C0 + C1e
−Pemχ, (22)

where

Pem =
|ū|dg
Db

(23)

is the mass Péclet number corresponding to the mean
flow and the constants C0 > 0 and C1 < 0 can be deter-
mined by the boundary conditions at χ = 0 and χ = Γg.
In the general case (i.e., ũx 6= 0) the solution to (17) is

Xb = C0 + C1e
−Pemχ[1 + g(ζ)], (24)



4

(a)

(b)

(c)

FIG. 2. Fluid flow in both phases at ∆T = 2 K, Ȳm = 0.6
with (a) X̄a = 0.7, (b) X̄a = 0.1, (c) X̄a = 0.015. The cold
end wall is on the left. Solid lines represent the streamlines
of the flow; color corresponds to the values of ψ.

where

g′′(ζ) =
ūũx(ζ)d2g

D2
b

[1 + g(ζ)]. (25)

The right-hand-side of (25), and hence g(ζ) itself, is of
order ε = PemPer, where

Per = max
ζ

|ũx|dg
Db

(26)

is the Péclet number describing the strength of the recir-
culation flow ũ. Specifically,

g(ζ) =
ūd2g
D2
b

∫
ψ̃(ζ)dζ +O(ε2). (27)

Now, finally, the reason for separating ux into the two
components ū and ũx becomes clear: the no-flux bound-
ary condition for Xb requires g′(0) = g′(1) = 0 which is
only consistent with (27) when (21) is satisfied. Here the
recirculation flow ũ can be thought of as a perturbation
of the mean flow ū, an interpretation which will become
useful in the next Section.

The crucial observation is that ε remains small regard-
less of the mean concentration X̄a of air: Per becomes
small in the limit X̄a → 0 (due to an increase in the ef-
fective mass diffusivities with decreasing pressure), while
Pem becomes small in the limit X̄a → 1 (due to the
decrease in ū). For small ε, the z-dependence of the
concentration field is weak, hence the solution (22) re-
mains a good approximation even when Per is not small.
Indeed, this is consistent with the results of numerical
simulations. As Fig. 3 shows, in the central region of the
cavity, the variation of the concentration in the vertical

(a)

(b)

(c)

FIG. 3. Concentration of methanol in the liquid and in the
gas at ∆T = 2 K and Ȳm = 0.6 for different X̄a. (a) X̄a = 0.7,
Ym = 0.6 ± 2.88 × 10−4, Xm = 0.26 ± 0.023, (b) X̄a = 0.1,
Ym = 0.6 ± 9.31 × 10−4, Xm = 0.43 ± 0.037, (c) X̄a = 0.015,
Ym = 0.6 ± 6.95 × 10−3, Xm = 0.78 ± 0.039. Solid lines
represent equispaced level sets of the concentration fields (15
in the liquid and 20 in the gas). In both phases, the lighter
(darker) color indicates lower (higher) concentration.

direction is negligible compared with that in the horizon-
tal direction.

We can compare the analytical and numerical results
quantitatively. The mean flow velocity in the gas can be
written as

ū = − j̄m + j̄w
ng

, (28)

where j̄b is the mean (depth-averaged) value of the num-
ber flux of the vapor of component b. Since phase change
occurs over the entire liquid-vapor interface, the mean
flux

j̄b(x) =
1

dg

∫ L

x

jb,i(x
′) dx′ (29)

is a function of the horizontal position. However, evap-
oration (condensation) takes place mainly near the hot
(cold) wall, so that function becomes essentially constant
j̄b(x) ≈ j̄cb in the central region of the cavity (cf. Fig. 4),
where

j̄cb = max
x

j̄b(x). (30)

We will therefore use the values given by (30) in (28) and
drop the superscript c in the subsequent discussion where
this does not cause confusion.

Let us consider the dependence of the mean fluxes j̄b
on the concentration of air next. The description of mass
transport based on effective diffusivity allows us to de-
couple the equations for the concentrations of the three
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FIG. 4. Mean number flux j̄b (29) across the vertical cross-
section of the cavity for (a) methanol and (b) water, at ∆T =
2 K and Ȳm = 0.6 with different mean concentrations of air
X̄a: X̄a = 0.015 (solid line), X̄a = 0.1 (dashed line) and
X̄a = 0.7 (dotted line).

components (water and methonol vapor and air). The re-
sulting equations are formally identical to the transport
equation for a single vapor in a binary mixture with air.
Therefore, we can treat the heat and mass transport as-
sociated with each vapor component independently. As-
suming that the layer of liquid at the bottom of the cavity
has a negligible contribution to the overall heat trans-
port dominated by the latent heat associated with phase
change, we can use a generalization of the corresponding
result for the binary gas mixture to write the condensa-
tion flux for component b

j̄b =
∆T

LbMbZb
, (31)

in terms of the net thermal resistance

Zb = Zo + Zd,b, (32)

where Zo is the thermal resistance due to conduction in
the liquid and the walls and the interfacial resistance, and
Zd,b is the diffusive resistance of the gas layer. While Zo
can be considered independent of the air concentration,
Zd,b is an increasing function of X̄a.

To compute the diffusive resistance, we note that, since
mass transport is essentially one-dimensional in the cen-
tral portion of the cavity, in steady state the horizontal
components of the flux of each component vapor satisfy

j̄m = ngDm∂xXm − ngūXm,

j̄w = ngDw∂xXw − ngūXw. (33)

Solving this system of equations together with (28) yields

j̄m =
ng
Xa

[Dm(1−Xw)∂xXm + DwXm∂xXw] ,

j̄w =
ng
Xa

[Dw(1−Xm)∂xXw + DmXw∂xXm] . (34)

The concentration gradient ∂xXb can be related to the
gradient of partial pressure pg,b and the saturation pres-
sure of the pure component ps,b through Raoult’s law (8)

∂xXb =
1

pg
∂xpg,b =

γbȲb
pg

∂xps,b, (35)

where we assume the total pressure pg to be constant
and the variation of liquid concentration about the mean
value Ȳb to be negligible. The saturation pressure gradi-
ent ∂xps,b can be found from the Antoine equation (12)
yielding

∂xXb = Xb
Tb
T 2
0

τ, (36)

where τ is the interfacial temperature gradient. Substi-
tution of the mean values for all the concentrations yields

j̄m =
ngτ

X̄aT 2
0

[
Dm(1− X̄w)X̄mTm + DwX̄mX̄wTw

]
,

j̄w =
ngτ

X̄aT 2
0

[
Dw(1− X̄m)X̄wTw + DmX̄wX̄mTm

]
.

(37)

The walls of the test cell are good thermal conductors
compared with both the liquid and the gas. Hence, in
the limit ∆T → 0 and X̄a → 1, the temperature gradient
τ → ∆T/L and Zd,b � Zo, such that (31) and (37) yield

Zd,m =
X̄aT

3
0L

pgTm

[
Dm(1− X̄w)X̄mTm + DwX̄mX̄wTw

]−1
,

Zd,w =
X̄aT

3
0L

pgTw

[
Dw(1− X̄m)X̄wTw + DmX̄wX̄mTm

]−1
.

(38)

Note that, in the limit X̄w → 0 (X̄m → 0), the dif-
fusive resistance Zd,m (Zd,w) reduces to the expression
Zd = L/kc, where kc is the effective condensation ther-
mal conductivity derived for a binary (vapor/air) mixture
by Peterson et al. [8].

Finally, Zo can be found from (31), since in the limit
X̄a → 0 we have Zd,b → 0, which allows our analytical
predictions to be compared directly with the correspond-
ing numerical results [3]. Fig. 5 shows that the analytical
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FIG. 5. Characteristic molar flux j̄m for methanol as a func-
tion of X̄a at ∆T = 2 K and Ȳm = 0.6. Solid line represents
the analytical estimate based on (31), symbols – numerical
results obtained using (30).

and numerical results are in reasonable agreement, sug-
gesting that the one-dimensional description of transport
in the gas phase is reasonably accurate. An increase in
X̄a leads to an increase in the diffusive resistance for both
component vapors and, correspondingly, a decrease in
both fluxes. The minor discrepancy between the numeri-
cal and analytical results is likely due to the contribution
of advection in the liquid layer that has been ignored in
our analysis.

Once the mean vapor fluxes and the mean flow ve-
locity have been determined from (28) and (31), we can
finally compare the analytical prediction (22) for the con-
centration profiles with the numerical results. As Fig. 6
shows, we find good agreement (minor deviations will be
discussed in the next Section). In general, the concentra-
tions of all components in the ternary gas mixture vary
exponentially with x, which is consistent with the find-
ings for simple fluids with binary (vapor/air) gas mix-
tures [5]. The exponential concentration profiles become
approximately linear when Pem � Γ−1g . This limit cor-
responds to low values of the mean flow velocity ū and
hence low values of ∆T and/or high values of X̄a. In
particular, at ∆T = 2 K, the concentration profiles are
nearly linear for all X̄a.

B. Interfacial temperature and concentration
profiles

The concentration fields in the gas phase determine
the temperature and liquid concentration at the interface.
First of all, note that equation (13) implies that the inter-
facial temperature is essentially equal to the saturation
temperature, Ti ≈ Ts,m ≈ Ts,w, due to the large values of
the ratio Tb/Ti (for water and methanol, Tw = 4.9× 103

K and Tm = 2.8 × 103 K) and low values of ug/ut [9].
Raoult’s law (8), which is the statement of local phase
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FIG. 6. Normalized concentration profiles in the gas phase at
∆T = 2 K for methanol (a), water (b), and air (c) with Ȳm =
0.6 and different X̄a. Numerical and analytical results are
represented by gray and black lines, respectively. Numerical
results correspond to the middle of the gas layer.

equilibrium, requires

ps,b
p0s,b

=
Xb

Yb

Y 0
b

X0
b

, (39)

where the superscript 0 denotes the reference values cor-
responding to the global thermodynamic equilibrium at
T = T0. Choosing T0 as the mean temperature, we can
replace the reference values of all the concentrations with
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the mean values, Y 0
b = Ȳb and X0

b = X̄b. One the other
hand, Antoine equation (12) requires

ps,b
p0s,b

= eTb/θ, (40)

where we have defined a new variable θ according to

1

θ
=

1

T0
− 1

Ti
. (41)

Equating the right-hand-sides of (39) and (40), we find

Yb =
XbȲb
X̄b

e−Tb/θ. (42)

Since the liquid is a binary mixture,

XmȲm
X̄m

e−Tm/θ +
XwȲw
X̄w

e−Tw/θ = 1. (43)

This transcendental equation for θ can be solved approxi-
mately for small deviations of the interfacial temperature
from T0, i.e., for |θ| � min(Tm, Tw) by Taylor-expanding
both exponential terms.

In this study, |θ| ≥ O(T 2
0 /∆T ) = O(104 K) for ∆T

as large as 10 K. The actual temperature variation along
the interface is typically a fraction of ∆T , leading to an
even higher |θ| (e.g., |θ| ∼ O(105 K) at ∆T = 2 K),
so that reasonably accurate results can be obtained in
analytic form by truncating the Taylor series at linear
terms, which yields

1

θ
= −a0

a1
, (44)

where

a0 = 1− XmȲm
X̄m

− XwȲw
X̄w

,

a1 = Tm
XmȲm
X̄m

+ Tw
XwȲw
X̄w

. (45)

The corresponding interfacial temperature can now be
found from (41) and the interfacial concentrations of wa-
ter and methanol in the liquid phase from (42).

The analytical predictions for the interfacial tempera-
ture are in reasonable agreement with the numerical re-
sults (cf. Fig. 7). As (36) suggests, the temperature gra-
dient is related to the gas concentration gradient, so the
nearly linear concentration profiles at ∆T = 2 K implies
nearly linear interfacial temperature profiles for all X̄a.
The predicted interfacial concentration profiles, however,
deviate noticeably from those found in the numerical sim-
ulations, as Fig. 8 illustrates. The is due to the insuf-
ficient accuracy in our description of the concentration
fields in the gas phase. Even though the analytical and
numerical results appear to agree quite well (cf. Fig. 6),
even relatively small discrepancies are greatly amplified
because of the exponential dependence of Yb on the ratio
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FIG. 7. Interfacial temperature for different X̄a at Ȳm = 0.6
and ∆T = 2 K. The variation δTi = Ti − T0 about the mean
is plotted. Numerical and analytical results are represented
by gray and black lines, respectively.
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FIG. 8. The interfacial concentration of methanol in the liq-
uid for different X̄a at Ȳm = 0.6 and ∆T = 2 K. The vertical
axis shows the variation δYm = Ym − Ȳm about the mean.
Black lines represent the analytical estimate (42) based on
the analytical solution for Xm and Ti, dark gray lines – the
numerical results, and light gray lines – the analytical esti-
mate (42) based on the numerical results for Xm and Ti.

Tb/θ in (42). To illustrate this, we computed the inter-
facial profile of the methanol concentration in the liquid
by substituting numerical, rather than analytical, results
for the concentration fields Xm and Xw into equation
(42). As Fig. 8 shows, the resulting estimate accurately
reproduces even the fine details of the numerical solution
for Ym in the central region of the cavity, confirming that
it is indeed the accuracy of the estimate (22) that is the
culprit. (The remaining discrepancy near the end walls
is mainly due to the difference between Ti and Ts,b.)

The origin of the small deviation of the analytical solu-
tion (22) from the numerical one can be easily identified
by inspecting the flow field, methanol concentration in
the liquid, and the phase change flux at the interface.
The particular flow shown in Fig. 9 features several con-
vection rolls in the liquid layer. The composition of the
liquid layer is controlled by advection, which dominates
over diffusion due to a very low value of Dl (and a corre-
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FIG. 9. Numerical solutions for X̄a = 0.1, Ȳm = 0.6 and
∆T = 2 K. The panels shows (from top to bottom) the
flow field, the normalized molar mass flux associated with
the condensation/evaporation of methanol, the concentration
of methanol in both phgases, and the variation δYm of the
methanol concentration in the liquid about the mean.

spondingly large mass Péclet number). Convection rolls
effectively convert the horizontal gradient of Ym driving
the mean flow into the vertical gradient.

The analysis presented in Section III A completely ig-
nored phase change in the central region of the cavity.
However, even though it is far less intense than near the
end walls, phase change also occurs in that central region.
The vertical mass flux in the liquid layer causes evapora-
tion at the left edge of each counter-rotating convection
roll and condensation at the right edge, as demonstrated
by the phase change flux jm,i. This phase change acts as a
perturbation on the flow field in the gas layer (the clearly
visible modulation of the stream lines in the top panel of
Fig. 9). As the relation (27) illustrates, a perturbation
in the flow field generates a corresponding perturbation
in the concentration fields Xb described by (25) and it is
this perturbation that is responsible for the deviation of
the predicted composition of the liquid at the interface
from the actual composition that is observed (bottom
panel of Fig. 9).

The spatial variation in the temperature and compo-
sition of the liquid at the interface generates thermocap-
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FIG. 10. Surface tension σ for the methanol-water mixture as
a function of the methanol concentration Ȳm computed using
(46).

illary and solutocapillary stresses, respectively. These
stresses will be discussed in more detail next, but we
conclude this Section by noting that our analysis points
to the perturbation in Ym, shown in the bottom panel
of Fig. 9, causing both the phase change in the central
region of the cavity and the modulation of solutocapil-
lary stresses that give rise to the convection rolls. The
detailed stability analysis of this problem that couples
the perturbations in the flow and composition of both
layers is outside the scope of this paper, although the
mechanism of the instability appears to be clear.

C. The Marangoni stresses and the flow

With the solutions for the interfacial temperature and
concentration profiles in hand, we can immediately de-
termine the thermocapillary and solutocapillary stresses.
The surface tension of the methanol-water liquid mixture
is not a simple linear combination of the surface tensions
of the two pure substances. Instead, it is predicted using
an empirical expression [10] based on the fits to experi-
mental data

σ = f(Ym)σm + [1− f(Ym)]σw, (46)

where

f(Ym) = Ym
1 + c1(1− Ym)

1− c2(1− Ym)
, (47)

with empirical parameters c1 and c2. The result is shown
in Fig. 10. The surface tension of each component is
assumed to be a linear function of temperature

σb = σ0
b − σ′b(Ti − T0), (48)

where σ0
b is the surface tension of the pure substance at

the reference temperature T0 and σ′b = −∂σb/∂Ti is the
temperature coefficient of surface tension for component
b.
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FIG. 11. The ratio of solutocapillary and thermocapillary
stresses for different X̄a at Ȳm = 0.6 and ∆T = 2 K eval-
uated using (54) with mean values of ∂xXm and ∂xTi. The
dashed line represents the exact balance between the mean
solutocapillary and thermocapillary stresses, r̄ = 1.

The net surface stress ∂xσ = ΣS + ΣT is the sum of
the solutocapillary stress

ΣS = FS∂xYm (49)

and thermocapillary stress

ΣT = FT∂xTi, (50)

where we have defined

FS = f ′(Ym)(σm − σw) < 0, (51)

and

FT = −f(Ym)σ′m − (1− f(Ym))σ′w < 0. (52)

Taking the derivative of (42) we obtain

∂xYb ≈
Ȳb
X̄b

[
∂xXb −

XbTb
T 2
i

∂xTi

]
e−

Tb
θ , (53)

which yields the following estimate for the ratio of solu-
tocapillary and thermocapillary stresses

r ≡ −ΣS
ΣT
≈ FS
FT

Ȳm
X̄m

[
XmTm
T 2
i

− ∂xXm

∂xTi

]
e−

Tm
θ , (54)

where the minus sign reflects their (typically) opposite di-
rection. When both concentration and temperature pro-
files are nearly linear, the derivatives ∂xXm and ∂xTi are
nearly constant, so r does not vary significantly along the
interface. At lower air concentrations, however, ∂xYm can
vary considerably and can even change sign, as shown in
Fig. 9. Hence it will be convenient to quantify the rel-
ative strength of the two stresses using the ratio of the
mean values, r̄, shown in Fig. 11, which corresponds to
the mean values of ∂xXm and ∂xTi in (54).

In the limit X̄a → 1 (e.g., at ambient conditions),
the differential phase change responsible for generating
solutocapillary stresses is greatly suppressed, such that
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FIG. 12. Interfacial velocity at ∆T = 2 K, Ȳm = 0.6 with
different X̄a.

Ym → Ȳm and consequently ΣS → 0, which means that
the flow is controlled entirely by thermocapillary stresses.
The numerical results (cf. Fig. 12) show that the flow at
the interface is indeed towards the cold end (ui < 0)
along the entire interface, with a nearly constant veloc-
ity in the central region of the cavity, which is consistent
with a nearly constant temperature gradient.

As X̄a decreases, the ratio r̄ increases, reflecting the
increase of solutocapillarity stresses associated with in-
creased differential phase change. The mean soluto-
and thermocapillary stresses become comparable, r̄ = 1,
around X̄a = 0.1, at which point we find the flow revers-
ing its direction at multiple locations along the interface
(cf. Fig. 12), depending on whether the local value of r is
above or below unity. This is consistent with the pattern
of convection rolls shown in Fig. 9. As the concentration
of air is reduced even further, r̄ increases above unity
(e.g., r̄ ≈ 4 at X̄a = 0.015), reflecting the dominant role
of solutocapillary stresses. Correspondingly, the flow is
found towards the hot wall along almost the entire inter-
face.

The limit X̄a → 0 is the most interesting from the
perspective of evaporative cooling, where solutocapillar-
ity can ameliorate the adverse effect of thermocapillary
stresses leading to dry-out. In this limit Xm + Xw = 1,
so that

∂xXm = −∂xXw, (55)

and

e−Tb/θ ≈ 1, (56)

which allows us to make further progress. Combining the
relation (53) for both water and methanol with (55) and
(56), we find

r =
FS
FT

X̄mTm + X̄wTw
T 2
0

(
X̄m

Ȳm
− X̄w

Ȳw

)−1
. (57)

This result predicts that the ratio of solutocapillary and
thermocapillary stresses becomes constant in the limit
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FIG. 13. The ratio of the coefficient FS/FT (solid line) and
the gradients ∂xYm/∂xTi (dashed line) at X̄a = 0.

X̄a → 0, so the flow should become strictly unidirec-
tional, just like in the opposite limit X̄a → 1, but with
the opposite direction.

As Fig. 13 illustrates, for water-methanol mixture, the
ratio Fs/FT is a monotonically decreasing function of
Ȳm, while the ratio of the concentration and temperature
gradients |∂xȲm/∂xT̄i| is a monotonically increasing func-
tion, so predicting the trend for r is not straightforward.
Evaluating the product of these two ratios shows that r
has a peak value around 10 at Ȳm ≈ 0.05 (cf. Fig. 14),
which represents the optimal composition of the liquid
which maximizes the favorable solutocapillary stresses.

As discussed in Section III B, although the analytical
solution for the interfacial concentration profile that ig-
nores phase change in the central region of the cavity does
not give an accurate local prediction for solutocapillary
stresses, the mean ratio r̄ correctly predicts the dominant
contribution to the Marangoni stress and hence the direc-
tion of the flow along the interface for different X̄a. The
variation of r about the mean value r̄ is due to convection
in the liquid layer, which should be suppressed for thin
liquid films, since the Marangoni number scales with the
square of the layer thickness dl and the Rayleigh number
scales as d4l [11]. Hence, for sufficiently thin films, we
should expect r ≈ r̄ and the interfacial flow velocity to
be nearly uniform for all X̄a.

IV. CONCLUSIONS

By analyzing the comprehensive two-sided transport
model for a volatile binary liquid driven by an externally
applied temperature gradient [3] and its numerical solu-
tions we demonstrated that, despite its complexity, the
problem can be described analytically in certain useful
limits. The analytical description best approximates the
numerical results when the flow is relatively simple, with
no spatially or temporally complicated convection pat-
tern. In the presence of convection rolls, our analysis can
predict with reasonable accuracy the mean flow and the
mean gradients of various quantities, but not the spa-
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FIG. 14. The ratio of the solutocapillary and thermocapillary
stresses for different Ȳm at X̄a = 0.

tial/temporal modulation describing the convective pat-
tern.

In modeling two-phase flows, it is a common practice
to either ignore transport in the gas phase or describe it
through effective boundary conditions at the free surface.
For volatile binary liquids, this approach fails in a rather
spectacular manner. Our analysis shows that, for fluid
layers with sufficiently high aspect ratio, the transport
equations for mass, heat, and momentum can be solved
sequentially, starting with the bulk concentration fields
in the gas phase. These concentration fields determine
the temperature and composition of the liquid layer at
the interface and, consequently, the Marangoni (thermo-
capillary and solutocapillary) stresses. The Marangoni
stresses, in turn, control the flow in the liquid layer,
which eventually determines the bulk temperature and
concentration field in the liquid and the flow in the gas
layer, yielding a complete solution of the problem. This
result generalizes a similar conclusion for two-phase flows
of volatile simple fluids [5].

We derived explicit analytical expressions for the mean
solutocapillary and thermocapillary stresses correctly
which correctly predict when the direction of the interfa-
cial flow reverses. In particular, solutocapillary stresses
were found to vanish when the gas is predominantly
air (X̄a → 1), such as under ambient conditions, since
phase change is greatly suppressed. In this limit ther-
mocapillary stresses drive the interfacial flow in the di-
rection opposite the temperature gradient. In the op-
posite limit, when the air is removed almost completely
(X̄a → 0), phase change is enhanced and solutocapil-
lary stresses dominate, driving the flow in the direction
of the temperature gradient. Interestingly, the thermo-
capillary stresses do not vanish in this limit for volatile
binary liquids, unlike volatile simple liquids for which
thermocapillary stresses completely disappear [5, 9]. For
X̄a . 0.3, the ratio r̄ of mean solutocapillary and thermo-
capillary stresses monotonically increases with decreasing
X̄a and approaches a constant that is greater than unity
for water-methanol mixture.

Our results provide useful guidelines for choosing the
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composition of binary coolants and the optimal operating
conditions for thermal management applications. In par-
ticular, the concentration of air in a sealed cavity needs
to be below 10% or so for the solutocapillarity to bal-
ance the adverse effect of thermocapillary stresses. Solu-
tocapillary effect plays a beneficial role in general, help-
ing drive the liquid coolant towards the hot spots. Due
to the monotonic dependence of r on X̄a, it is benefi-
cial to reduce the air concentration as much as possible.
The optimal composition of the binary coolant, on the
other hand, corresponds to a small, but finite value of
the concentration of the more volatile component, e.g.,

Ȳm ≈ 0.05 for a water-methanol mixture.
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[9] T. Qin, Z̆. Tuković, R. O. Grigoriev, Buoyancy-
thermocapillary Convection of Volatile Fluids under their
vapors, Int. J Heat Mass Transf. 80 (2015) 38–49.

[10] G. Vazquez, E. Alvarez, J. M. Navaza, Surface tension of
alcohol water+ water from 20 to 50. degree. C, Journal
of chemical and engineering data 40 (1995) 611–614.
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