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Alternans – an arrhythmic response of cardiac tissue to periodic pacing – often serves as a precursor to a
more dangerous, and potentially lethal, state of fibrillation. Suppression of alternans using feedback control
may be a plausible method to prevent fibrillation. Several approaches based on impulsive control have been
proposed previously, where feedback is applied for a brief instance of time during each pacing interval. This
paper presents a continuous-time approach, where feedback current is applied at all times, which is capable of
suppressing alternans in fibers of significantly greater length (up to at least 4 cm), compared with impulsive
control (less than 1 cm), and for a wide range of pacing cycle lengths.

Control of cardiac arrhythmias, from dangerous
(such as atrial tachycardia) to deadly (such as
ventricular fibrillation), is a problem of great
medical importance. While drug therapies and
tissue ablations are often successful in treat-
ing atrial arrhythmias1, implantable cardioverter-
defibrillators (ICDs) are usually required to ter-
minate the more deadly arrhythmias in the ven-
tricles. Currently ICDs employ up to three
leads for continuous monitoring and, if arrhyth-
mia is detected, for suppressing it using several
modes: pacing, fast pacing (anti-tachycardia pac-
ing), high energy shocks (cardioversion), or very
high energy shocks (defibrillation). However, de-
spite the many improvements in our fundamental
understanding of arrhythmic dynamics and mech-
anisms of defibrillation2–6, there is still a lot of
room for improving the control algorithms. In
particular, using model-based feedback control
would allow the ICDs to suppress arrhythmias
using much weaker electrical currents thus avoid-
ing pain and tissue damage. This paper explores
the limits of spatially localized feedback control
by focusing on one of the simplest active compo-
nents of the heart – the Purkinje fibers. These
are strands of tissue that transmit the excita-
tion waves from the atria to the ventricles, ini-
tiating their contraction. While Purkinje fibers
are effectively one-dimensional, as opposed to the
atrial and ventricular tissue, which are effectively
two- or three-dimensional, they exhibit the same
fundamental mode of period doubling instability
(known as alternans), thus allowing us to under-
stand in a simpler model the interplay between
the action of the feedback and the information
flow associated with the nonlinear waves prop-
agating through the tissue. Achieving full con-
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trol of a relatively simple system such as a Purk-
inje fiber is one of the first steps in developing
improved feedback control algorithms for other
types of cardiac tissue and, eventually the entire
organ.

I. INTRODUCTION

The contraction of the heart is controlled by an electro-
chemical excitation wave, with the sinoatrial node serving
as the pacemaker. Normal rhythm is characterized by a
wave propagating over the entire heart in a highly coor-
dinated way. Occasionally, the heart can transition to a
lethal arrhythmic behavior known as ventricular fibrilla-
tion (VF) characterized by turbulent dynamics5,7 lacking
spatial coordination which renders the heart incapable of
pumping blood. The first step in the transition from nor-
mal rhythm to VF is often associated with a periodic al-
ternation in the duration of the electrical excitation from
beat to beat, known as electrical alternans8,9. It makes
sense then to assume that suppression of alternans, which
leads to stabilization of normal rhythm, is a viable ap-
proach to preventing VF.

Being able to control the dynamics of the heart with
as few electrodes as possible is a matter of practical
interest. At present we don’t have reliable models of
the entire organ that can be used to test control al-
gorithms, so we have to resort to studies of different
types of cardiac tissue for which such models exist.
Ventricles, atria, and Purkinje fibers are examples of,
respectively, three-dimensional, quasi-two-dimensional,
and one-dimensional cardiac tissue. Hence, it is impor-
tant to understand the limits on the tissue size that can
be controlled using a single electrode, regardless of its
dimensionality.

Purkinje fibers, whose physiological function is to con-
duct electrical excitation from the atria, through the atri-
oventricular node, to the ventricles, have been studied
extensively as the simplest example of cardiac tissue10.
Despite their relative simplicity, they share many dynam-
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ical properties of the atrial and ventricular tissue, such as
the transition from normal rhythm11,12 to alternans asso-
ciated with increased pacing frequency. Different models
for cardiac cells have been developed over the years (see
Ref. 13 for review). The first model for Purkinje cells
was developed by Noble in 196214. Despite some limita-
tions (no calcium cycling dynamics, incorrect conduction
velocity), this model does include such important dynam-
ical features as transition to alternans. In contrast, the
updated version of this model due to DiFrancesco and
Noble15, which includes more detailed calcium dynamics,
fails to produce alternans. Even the most recent Purk-
inje models of Aslanidi et al.16 and Sampson et al.17 do
not show alternans. This paper uses a model recently
developed by one of us18 which correctly describes both
the APD restitution dynamics and the transition to al-
ternans.

Several methods have been used to prevent and control
fibrillation19–25. Echebarria and Karma26 were the first
to consider the feedback control of Purkinje fibers. They
showed that alternans can be suppressed in the Noble
model, using pacing interval adjustment (PIA) method
which varies the pacing interval by an amount propor-
tional to the difference between the action potential du-
ration (APD) on two previous intervals. Using numeri-
cal simulations they showed that alternans can be sup-
pressed for all pacing frequencies in fibers of length up
to 0.5 cm. Furthermore, using the amplitude equation
formalism they showed that PIA can only stabilize the
mode with the lowest spatial frequency. This leads to
the failure of control when a second unstable mode ap-
pears due to an increase in either the pacing frequency or
the fiber length. These theoretical predictions were ver-
ified experimentally by Christini et al. in dog Purkinje
fibers10.

In a previous paper27 we have proposed a more general
method for suppressing alternans based on model predic-
tive control (MPC). In this approach the pacing interval
is held fixed, while feedback current is applied during
a brief time interval between the pacing stimuli. This
approach was tested on the Noble model and numerical
simulations showed that fibers of up to 1.5 cm length
could be successfully controlled over the entire range of
pacing frequencies. Furthermore, our analysis confirmed,
without relying on the amplitude equation, that the fail-
ure of control for the PIA method is indeed due to the
loss of controllability for higher-frequency modes. In the
case of MPC, though, the failure was not caused by the
loss of controllability, but rather by transient amplifica-
tion of finite-amplitude disturbances in a linearly stable
system28–30.

The aim of this work is to explore the potential of
continuous-time feedback control for suppressing alter-
nans in considerably longer fibers. Continuous-time ap-
proach allows addressing the major weakness of impul-
sive control: transient amplification. Indeed, transient
amplification is an unavoidable feature of impulsive con-
trol, which uses feedback current that is applied during a

brief time interval, once per pacing period. Disturbances
can grow, uncontrolled, during the interval between one
feedback impulse and the next, i.e., essentially for the
entire duration of the pacing interval.

This paper is organized as follows. In Sect. II we in-
troduce a partial differential equation (PDE) model of
Purkinje fibers. Section III is devoted to the linear sta-
bility analysis of normal rhythm. The reduction of the
infinite-dimensional PDE model of the fiber is discussed
in Sect. IV. Impulsive and continuous-time feedback
control problems are formulated in Sects. V and VI. The
results are presented and discussed in Sect. VII and con-
clusions in Sect. VIII.

II. MODEL EQUATIONS

The electrical activity in a single cardiac cell can be
described by the following system of ordinary differential
equations

V̇ =
1

Cm
[Iion(V,y) + Iext(t)] , (1a)

ẏ = h(V,y), (1b)

where V is the transmembrane voltage, Cm is the cell
membrane capacitance per unit area, Iion is the ionic cur-
rent through the cell membrane, y is a vector of variables
associated with the ion channel conductance and ionic
concentrations (gating variables) and Iext is the current
applied by an external electrode which can be used for
pacing and/or control. The ionic models which define the
functional forms of Iion(V,y) and h(V,y) vary according
to the specific type of cardiac tissue under study.

To simulate Purkinje fibers we used an ionic model
with three gating variables, y = [y1, y2, y3], recently de-
veloped by one of us18 which accurately reproduces ex-
perimental measurements, as explained below. It is con-
venient to use a scaled voltage variable

u =
V − Voff

Vsc
, (2)

where Voff and Vsc are chosen so that u takes values
mostly in the interval [0, 1]. We used the following pa-
rameters: Cm = 12 µF/cm2, Vsc = 100 mV, Voff = −84
mV following Ref. 14

Equations (1a) and (1b) can be gathered into a single
equation

ż = F (z) + jext(t)û, (3)

where the state variable now is the column vector z =
[u,y], jext = Iext/(CmVsc) and û = [1, 0, 0, 0]. To de-
scribe the electrical activity on a fiber of length L, we
introduce an independent variable x indicating the posi-
tion along the fiber and generalize (3) to a PDE

∂tz = D∂2
xz + F (z) + jext(x, t)û, (4)
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where D = D11ûû† and the diffusion constant D11 de-
scribes electric conductivity between neighboring cells.
Vanishing-electric-current boundary conditions are im-
posed at both ends: ∂xu|x=0,L = 0.

The external current density jext(x, t) = jp(x, t) +
jc(x, t) accounts for both pacing and feedback control.
Pacing is applied by an electrode located at x = xp near
the left end (x = 0) of the fiber,

jp(x, t) = Ip(t)g(x− xp), (5)

where g(x) is a narrow spatial profile which represents
tissue polarization. The pacing current Ip(t) consists of
a periodic train of pulses of duration ∆T = 5 ms

Ip(t) = Qp

∞∑
n=0

H∆T (t− tn), (6)

where tn = nT with T the pacing period, Qp is the total
charge of each pacing stimulus, and we have defined

Hτ (t) =

{
τ−1, 0 ≤ t ≤ τ
0, otherwise.

(7)

The feedback current Ic(t) corresponds to one strand
of cardiac cells. Purkinje fibers contain a bundle of mul-
tiple strands. Each strand consists of cells that are about
30 µm × 10 µm × 200 µm in size31, so that the perimeter
is Pc ≈ 80 µm and the cross sectional area is Ac ≈ 300
µm2. The bundle has a radius that ranges from 66 µm
to 147 µm32,33 and hence contains about 100 strands.
Assuming the current injected by an electrode quickly
diffuses across all strands, the corresponding control cur-
rent applied to the entire fiber should be approximately
a hundred times larger than the values computed for a
single strand below.

Each pacing pulse produces an excitation wave that
travels down the fiber. The dynamics of cardiac tissue is
conveniently described in terms of the APD, defined, for
a particular location x, as the time interval during which
the voltage surpasses some threshold value, uth. The
APD is therefore a function of x and the pacing interval
n, denoted as APDn(x). Depending on the pacing pe-
riod T , Purkinje fibers present two asymptotic regimes:
when T is larger that some critical value Tc, the APD
is constant from beat to beat, APDn(x) = APDn+1(x)
for all x. This regime corresponds to normal rhythm;
when T < Tc the APD alternates between a longer and
a shorter value from beat to beat. This regime corre-
sponds to the state of alternans. Alternans could be
concordant, if the difference APDn+1(x)−APDn(x) has
the same sign along the entire fiber or discordant if it
does not. Hence, discordant alternans presents one or
more locations (nodes) xk,n, k = 1, 2, · · · , for which
APDn+1(xk,n) − APDn(xk,n) = 0. Furthermore, the
nodes can move along the fiber or slow down and stop,
producing either traveling or standing discordant alter-
nans.

Unlike previous models of Purkinje fibers, the ionic
model18 accurately reproduces the experimentally mea-
sured bifurcation diagram of asymptotic APD as a func-
tion of T , the shape of the action potential, and the ac-
tion potential restitution curve. Furthermore, the model
exhibits traveling discordant alternans in agreement with
experimental observations. The diffusion constant is the
only parameter with the units of length and hence de-
termines the length scale for the spatial variations of the
solution. We set D11 = 10−4 cm2/ms, so that, for pa-
rameters of the ionic model taken from Ref. 18, a 2 cm-
long fiber would fit traveling discordant alternans with
one node as observed in experiments10,34. We further as-
sume that the fiber is paced at the left end, xp = 0 and
choose

g(x) =
Ha(x)

PcCmVsc
, (8)

where the “width” of the electrode a = 0.07 cm is very
small compared to the fiber length L.

Feedback is applied by an electrode located at x = xc,

jc(x, t) = Ic(t)g(x− xc), (9)

which may or may not be collocated with the pacing elec-
trode. Our goal is to determine the location xc of the
control electrode and a control current, Ic(t) which can
suppress the state of alternans in favor of normal rhythm,
when the latter becomes unstable, for fiber lengths com-
parable to their physiological dimension (up to about 4
cm). The solution to this problem is presented below.

III. LINEAR STABILITY ANALYSIS

When T is decreased below Tc, the time-periodic solu-
tion describing normal rhythm does not disappear, but
becomes unstable and is replaced by the (stable) state of
alternans. To determine the stability of normal rhythm,
we apply Floquet analysis following an approach simi-
lar to that used in Ref. 27. The time-T periodic orbit
z0(x, t) is found by solving the equation

z0(x, 0) = G [z0(x, 0);T, 0] , (10)

where G[ · ;T, 0] is the time evolution operator which ad-
vances the solution of (4) from t = 0 to t = T . Eq.
(10) is solved using the Newton-Krylov method27,35. To
avoid the non-differentiability of the evolution operator,
the Heaviside step functions Θ(χ) used in the original
formulation of the ionic model18 were replaced by their
smoothed versions

Θν(χ) =
1

2

[
1 + tanh

(χ
ν

)]
(11)

with ν = 10−3. The operator G is implemented numer-
ically by advancing in time the solution of (4) using the
fourth order Runge-Kutta method with a time step of
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2.5 × 10−3 ms. A second order central finite difference
approximation is used for the diffusion term with a mesh
size ∆x = 0.01 cm.

To determine the stability of z0(x, t), we consider the
evolution of the deviation δz = z(x, t)−z0(x, t), given in
the linear approximation by

∂tδz = JN (t)δz− jcû, (12)

where JN (t) = ∂2
x + JF (t) and JF (t) = DF/Dz|z0(x,t)

is a time-periodic Jacobian operator. Let U(t, 0) denote
the time evolution operator that advances the solution of
(12) in time, in the absence of feedback (jc = 0),

δz(x, t) = U(t, 0)δz(x, 0). (13)

The stability of normal rhythm is determined by the
eigenvalues λi of the operator U(T, 0) (Floquet multipli-
ers). The eigenvalues and the corresponding right eigen-
functions ei(x, 0) satisfy

U(T, 0)ei(x, 0) = λiei(x, 0) (14)

and are calculated numerically using the Arnoldi
method36 implemented by the MATLAB (Mathworks,
Inc.) function eigs. Normal rhythm is unstable when
at least the leading eigenvalue lies outside the unit circle,
|λ1| > 1 (where the eigenvalues are sorted in order of
decreasing absolute value, |λ1| ≥ |λ2| ≥ |λ3| ≥ · · · ).

The number of unstable eigenvalues for different fiber
lengths L and pacing periods T is summarized in Fig.
1. Normal rhythm becomes unstable (and small pertur-
bations evolve toward the state of alternans) at a criti-
cal value Tc ≈ 205 ms for the range of lengths shown.
A region of stability is also found for some lengths for
152 ms < T < 162 ms. However, we found that in this
region normal rhythm is not the only attractor, as some
initial conditions evolve toward a state of sustained al-
ternans of large amplitude. For example, for L = 2 cm
and T = 158 ms, the APD alternates between, roughly,
90 ms and 140 ms.

For canine Purkinje fibers, the alternans branches
of the experimentally measured bifurcation diagram of
APD as a function of period meet at a sharp angle sug-
gesting a border-collision bifurcation. Onset of alternans
through border-collision bifurcations has been observed
in other types of cardiac tissue (See Ref. 37 and refer-
ences therein). Border-collision bifurcations occur when
the surface in the parameter space is crossed at which
the Jacobian experiences a discontinuity. The crossing of
this surface manifests as a sudden jump of the eigenval-
ues. The ionic model was tuned to reproduce the APD
bifurcation diagram typical of a border-collision bifurca-
tion. Since the discontinuities of the original ionic model
were replaced in this work with smooth, although rapidly
varying, functions, the leading eigenvalues (shown in Fig.
2) do not change discontinuously, but rather vary quickly
with T close to the onset of the instability.

T (ms)

L 
(c

m
)

1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 0 0 0

0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 0

1 0 0 0 0 0 0 0 0 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 0 0 0

1 0 0 0 0 0 0 1 1 3 3 3 3 3 3 4 4 4 4 4 4 4 4 3 3 3 3 1 0 0 0

1 0 0 0 0 0 0 1 1 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 3 3 1 0 0 0

1 0 0 0 0 0 0 1 1 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 4 4 3 1 0 0 0

1 0 0 0 0 0 0 1 3 3 3 3 5 5 5 5 6 6 6 6 6 6 5 5 5 5 3 3 0 0 0
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FIG. 1. Stability diagram showing the number of unstable
eigenvalues for normal rhythm. White indicates the region in
parameter space where normal rhythm is stable. Impulsive
control successfully suppresses alternans in the gray region.
Continuous-time control is successful in the gray and black
regions.
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FIG. 2. Absolute value of the leading eigenvalues for L = 2
cm. Real eigenvalues: |λ1| (filled circles), |λ2| (open squares),
|λ3| (upward filled triangles), |λ4| (upward open triangles),
|λ5| (filled squares); Complex conjugate eigenvalues: |λ1| =
|λ2| (open circles), |λ2| = |λ3| (downward open triangles)

IV. GALERKIN PROJECTION

In order to make the control problem tractable, a finite-
dimensional representation of the dynamics is obtained
by means of a Galerkin projection of the perturbation δz
onto a basis ẽi(x, t), i = 1, 2, · · · ,m, defined below,

δz(x, t) =

m∑
i=1

ξi(t)ẽi(x, t). (15)

This allows reduction of the infinite-dimensional dynam-
ics described by the PDE (4) to the dynamics of the
coefficients ξi(t), referred to henceforth as the modal
amplitudes. Retaining only the dominant modes with
|λi| > 0.1 in (15) ensures a representation sufficiently
accurate for the control problem (this corresponds to m
ranging from 7 for L = 1 cm to 25 for L = 4 cm).
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Let us define the left eigenfunctions fi(x, 0) which sat-
isfy

U†(T, 0)fi(x, 0) = λ∗i fi(x, 0). (16)

With the proper normalization, the left and right eigen-
functions satisfy the orthogonality condition

〈fi(x, 0), ek(x, 0)〉 = δik. (17)

Next we extend the definition of basis functions ei(x, 0)
and fi(x, 0) to times other than t = 0. Let’s define

ei(x, t) ≡ U(t, 0)ei(x, 0) (18)

and

fi(x, t) ≡ (λ∗i )
−1U†(T, t)fi(x, 0) (19)

In using the definition (19) for t > T recall that
U(tf , ti) = U−1(ti, tf ). (Incidentally we note that, as
shown in Ref. 27, ei(x, t) and fi(x, t) are respectively the
eigenfunctions of U(τ+T, τ) and U†(τ+T, τ), where τ = t
mod T ). Definitions (18) and (19) apply for all t > 0.
In particular, for t = τ + nT , 0 ≤ τ < T , n = 1, 2, ...,
they imply that

ei(x, τ + nT ) = λni ei(x, τ), (20)

and

fi(x, τ + nT ) = (λ∗i )
−n

fi(x, τ). (21)

While the eigenfunctions of the evolution operator,
thus defined, dramatically simplify the description of the
linearized dynamics by decoupling the mode amplitudes,
they are not time-periodic. It is more convenient to use
a basis which is both time-periodic and time-continuous.
Such a basis can be constructed by multiplying ei(x, t)
by an exponential factor:

ẽi(x, t) = e−ωitei(x, t) (22)

where ωi is the Floquet exponent

ωi =
lnλj
T

. (23)

The corresponding adjoint basis is defined by

f̃i(x, t) = eω
∗
i tfi(x, 0) (24)

Using (17) it is easy to verify that ẽi(x, t) and f̃i(x, t)
satisfy the orthogonality condition〈

f̃i(x, t), ẽk(x, t)
〉

= δik. (25)

Next we derive the evolution equation for the modal
amplitudes ξi(t). Substituting (15) into (12) and rear-
ranging terms we obtain

m∑
i=1

ξ̇iẽi =

m∑
i=1

ωiξiẽi + (26)

+

m∑
i=1

ξie
−ωit [JNei − ∂tei] + jcû.

Equation (18) implies

∂tei = JNei, (27)

therefore the expression in square brackets in (26) van-

ishes. Applying the operation
〈
f̃i(x, t), ·

〉
to the remain-

ing terms of (26) and using the orthogonality condition
(25) we obtain

ξ̇i = ωiξi +
〈
f̃i(x, t), jc(x, t)û

〉
(28)

Substitution of (9) into (28) yields

ξ̇i = ωiξi + b̃i(t)Ic(t) (29)

where

b̃i(t) =
〈
f̃i(x, t), g(x− xc)û

〉
(30)

is a periodic function, which incorporates the dependence
on the location of the control electrode.

For the purposes of impulsive control27 the dynamical
description can be simplified further by reducing the sys-
tem of ODEs (29) to a stroboscopic section ξni = ξi(tn)
of the flow, yielding a map:

ξn+1
i = λiξ

n
i + λi

∫ T

0

bi(s)I
n
c (s)ds (31)

where bi(s) = 〈 fi(x, s), g(x− xc)û 〉 and Inc (s) = Ic(s +
nT ), 0 ≤ s < T . In order to reduce transient ampli-
fication associated with the growth of unstable modes
between the instances at which impulsive feedback is ap-
plied, feedback needs to be adjusted at a higher rate than
once per pacing interval (e.g., N times per pacing inter-
val). In the limit N → ∞ one obtains continuous-time
feedback. We describe and compare these different ap-
proaches below.

V. IMPULSIVE FEEDBACK

Impulsive feedback relies on a sequence of brief square
pulses of control current

Inc (t) = InH∆t(t− τ) (32)

applied, one pulse per period, at times t′n = nT+τ , where
0 ≤ τ < T , with pulse duration equal to one time step ∆t.
Since ∆t is much shorter than any dynamical time scale,
the physical effect of each pulse is determined by the net
(dimensionless) charge qn = In∆t injected. Substituting
(32) into (31), we arrive at the linear time-invariant map

ξn+1 = Aξn +Bqn, (33)

where ξn = [ξn1 , ξ
n
2 , ..., ξ

n
m], A is an m×m diagonal matrix

with elements Aii = λi and B is a vector with elements
Bi = λibi(τ).
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FIG. 3. Adjoint eigenfunctions |fu
i (x, t)| for L = 2 cm and

T = 180 ms. From left to right, i = 1, 3, 4, 5. Modes 1 and 2
are complex conjugate.
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FIG. 4. Adjoint eigenfunctions |fu
i (x, t)| for L = 4 cm and

T = 180 ms. From left to right, i = 1, 3, 4, 6. Modes 1 and 2
are complex conjugate, as well as modes 4 and 5.

Given that g(x) has a narrow profile, Bi(τ) ≈
fui (xc, τ), where fui is the voltage component of fi, and

ξn+1
i ≈ λiξni + fui (xc, τ)qn, (34)

Therefore, as discussed in Ref. 27, the value of fui (xc, τ)
describes the effect of the stimulus qn on the dynamics of
mode i. In particular, when fui (xc, τ) = 0 for some unsta-
ble eigenvalue, the corresponding mode becomes uncon-
trollable. On the other hand, larger values of |fui (xc, τ)|
allow the use of smaller control stimuli. Hence it is con-
venient to chose the position of the control electrode xc
and the timing of the control stimulus which maximize
|fui (x, t)|.

Figs. 3 and 4 show the magnitude of the adjoint eigen-
functions for the leading modes of 2 cm- and 4-cm long
fibers paced with the period of 180 ms. All adjoint eigen-
functions have pronounced local maxima at the left end
(x = 0) of the fiber, for all L and T . Furthermore, the

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

t/T

|f iu (x
c,t)

|

 

 

i=1,2
i=3
i=4
i=5

FIG. 5. The magnitude of the the adjoint eigenfunctions for
xc = 0, L = 2 cm, and T = 180 ms.

temporal positions t0 of the corresponding local maxima
for different modes coincide (cf. Fig. 5) for all T and L.
This is a robust feature which is due to the local dynam-
ics of the gating variables. In the unstable range 150 ms
< T < 204 ms, t0/T is independent of L and is weakly
dependent on T , as Fig. 6 shows.

The global maxima of |fui (x, t)|, for all modes, are
reached along the straight line

tx = mod(t0 + x/cv, T ), (35)

where cv is the conduction velocity. However, the value
of fui (x, tx) oscillates with different wavelength for differ-
ent modes, vanishing for some values of x and reaching
a maximal value for others. In particular, the nodes of
fui (x, tx) correspond to the choices of xc and τ , which ren-
der mode i uncontrollable and should be avoided. More-
over, the maxima for different modes do not coincide, so
there is no unique best choice of xc. The only choice that
guarantees controllability of all modes for any L and T
is xc = 0 and τ ≈ t0. This is consistent with the re-
sults of the original study27 which found that, for the
Noble model, the choice xc = xp guaranteed controlla-
bility, motivating the use of the pacing electrode also to
apply the feedback. We make the same choice here, set-
ting xc = xp = 0 and τ = t0 −∆t.

The control objective can be achieved by using the
feedback law

In∆t = qn = Kξn, (36)

where ξni = ξi(tn) and

ξi(t) =
〈
f̃i(x, t), δz(x, t)

〉
. (37)

The gain matrix K is calculated using the linear
quadratic regulator (LQR) method38, which aims to min-
imize the quadratic form

V1 =

∞∑
n=1

[
(ξn)

†
Q ξn +Rq2

n

]
(38)
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FIG. 6. Temporal position t0 of the medial local maxima of
|fu

i (xc, t)| (see Fig. 5) for xc = 0 and L = 2 cm.

where Q is a positive-definite matrix and R is a posi-
tive constant. Our objective is to minimize the devia-
tion δz from the time-periodic solution describing nor-
mal rhythm. Restricted to the Galerkin projection onto
the m leading modes and the values at the stroboscopic
sections t = tn, it is equal to minimizing the projection

Pmδz(x, t) =

m∑
i=1

ξi(t)ẽi(x, t). (39)

which is achieved by setting Qik = 〈ei(x, 0), ek(x, 0)〉, so
that

(ξn)
†
Qξn = ‖Pmδz(x, tn)‖22 . (40)

We computed the feedback gain using the MATLAB
function dpre (available through the MATLAB exchange
website39), which solves the discrete Riccati equation ob-
tained by minimizing (38).

VI. PIECEWISE CONSTANT FEEDBACK

Instead of using impulsive control, one could apply the
feedback at all times. In practice the feedback cannot be
varied continuously, so we will treat the control current
as constant on sub-intervals of duration δT = T/N ,

Inc (t) = Ink, (k − 1)δT ≤ t < kδT, (41)

where k = 1, 2, ..., N . Substituting (41) into (31) we ar-
rive at the discrete map

ξn+1 = Aξn +BIn (42)

where B is an m×N matrix with elements

Bik = λi

∫ kδT

(k−1)δT

bi(s)ds (43)

and In = [In1, In2, ..., InN ]. The control current is again
given by the feedback law

In = Kξn, (44)

where K is an N ×m matrix obtained by minimizing the
quadratic form

V2 =

∞∑
n=0

[
(ξn)

†
Qξn +

R

N
‖In‖22

]
. (45)

While this method allows greater flexibility in optimizing
the control current, it has a limitation. The feedback is
computed based on the information about the system
state collected only at stroboscopic sections t = tn (i.e.,
once per pacing interval).

We can improve the feedback algorithm further by
computing the control current as a function of the lat-
est available system state, i.e., the state at the beginning
of each sub-interval

tn,k = tn + (k − 1)δT. (46)

To describe the discrete-time dynamics it is convenient
to relabel the times tn,k using a single index as

rl ≡ lδT = tn,k, l = 0, 1, 2, ... (47)

Whenever an equation contains mixed single and double
indexing it must be understood that the following rela-
tions between the indices [which are consequences of (47)
and(46)] hold

n = bl/Nc, (48)

k = (l mod N) + 1, (49)

with bxc denoting the integer part of x. Similarly, we
label with a single index the control current on a sub-
interval as

Il = Ink. (50)

The flow of (29) from rl to rl+1 is given by

ξl+1
i = eωiδT ξli + Ile

ωikδT

∫ kδT

(k−1)δT

bi(s)ds. (51)

where ξli = ξi(rl). Gathering the maps (51) for the m
leading modes we obtain

ξl+1 = A′ξl +BlIl, (52)

where ξl = [ξl1, ξ
l
2, ...], A

′ is an m × m diagonal matrix

with elements A′ii = eωiδT = A
1/N
ii and Bl is a vector

with elements

Bli = eωikδT

∫ kδT

(k−1)δT

bi(s)ds. (53)
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The vector Bl is time-periodic: Bl+N = Bl. The control
current is again given by the feedback law

Il = Klξ
l, (54)

where the vector ξl is defined by (37) evaluated at t = rl.
The gain Kl is also time-periodic: Kl+N = Kl and is
computed by minimizing the quadratic form

V3 =

∞∑
l=1

[(
ξl
)†
Qlξl +

R

N
I2
l

]
, (55)

where Ql is an m × m time-periodic matrix with ele-
ments Qlik = 〈ẽi(x, rl), ẽk(x, rl)〉. Minimization of (55)
leads to a discrete time-periodic Riccati equation, which
was solved using the cyclic QZ factorization approach of
Hench and Laub40 implemented by the function dpre.

We will refer to the feedback (44) and (54), respec-
tively, as asynchronous and synchronous continuous-time
control. This notation reflects the fact that in the latter
case the control current is computed based on the sys-
tem state at the current time, while in the former case a
time-delayed system state is used.

It should be pointed out that the elements of matri-
ces A, A′, B, and Bl are in general complex, and so are
the modal amplitudes ξni . These complex elements do,
however, come in complex conjugate pairs, so that the
functions V1, V2, and V3 are real and so should be the
solutions for the control current. We found that the gain
matrices calculated by dpre indeed produced a real con-
trol current (up to a negligible imaginary part, arising
due to finite precision of numerical calculations, which
was discarded). The matrices can be made real by an
appropriate coordinate transformation. The control cur-
rents obtained using dpre in the new coordinates, how-
ever, were the same as those calculated for the original
complex maps. For the time invariant maps we also used
the function dlqr from MATLAB’s control system tool-
box, which does not accept complex matrices as input
arguments. Again, the control currents were identical
to those obtained with dpre to within the precision of
numerical calculations.

VII. RESULTS

Impulsive control (IC), asynchronous continuous-time
control (ACT), and synchronous continuous-time control
(SCT) were tested by using, respectively, the control cur-
rents (32), (41), and (50) in the original PDE model (4).
To simulate a gradual reduction of the pacing interval,
for each T , we evolved initial conditions corresponding
to the solution for normal rhythm with period T + 2 ms
and checked whether feedback was successful in suppress-
ing the instability caused by the 2 ms reduction in the
pacing interval.

The regions in the (L, T ) parameter space where differ-
ent control methods succeed (or fail) are shown in Fig. 1.
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‖

FIG. 7. Disturbance magnitude ‖ξ(t)‖ for IC (solid line),
ACT (dashed line), and SCT (dot-dashed line). L = 1 cm,
T = 188 ms, R = 105, and N = 20.
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FIG. 8. Disturbance magnitude ‖ξ(t)‖ for impulsive control;
L = 1.5 cm and T = 202 ms.

We find that continuous-time control (both synchronous
and asynchronous) succeeds in the entire investigated
range of L and T where normal rhythm is unstable, which
includes fibers up to 4 cm long. Impulsive control, on the
other hand, is only effective for fibers with length of 1
cm and below. Just as in the case of the Noble model27,
here IC fails due to transient amplification of initial dis-
turbances.

Figure 7 shows the norm of the deviation ‖ξ(t)‖ from
normal rhythm for a 1 cm-long fiber. For such a short
fiber IC, ACT, and SCT all succeed. Of the three con-
trol methods, IC is the only one that exhibits transient
amplification. As Fig. 8 illustrates, for longer fibers tran-
sient amplification drives the dynamics into the nonlin-
ear regime where (12) is no longer a valid approximation,
leading to the failure of impulsive control.

For even longer fibers (L = 4 cm) transient ampli-
fication manifests itself even for ACT, as Fig. 9 illus-
trates, with ‖ξ(t)‖ slightly exceeding ‖ξ(0)‖ for a brief
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FIG. 9. Disturbance magnitude ‖ξ(t)‖ for ACT (dashed line)
and SCT (solid line). L = 4 cm, T = 168 ms, R = 105 and
N = 50.

interval of time. SCT is again found to be superior to
ACT for long fibers: it suppresses the disturbance faster
and without transient amplification. However, even for
ACT, the amount of amplification is nowhere near large
enough to bootstrap the nonlinear instability, which ex-
plains why continuous-time control is successful where
impulsive control fails.

Even for short fibers where IC succeeds, ACT still re-
mains superior, decreasing the disturbance ‖ξ(t)‖ at a
much higher rate (cf. Fig. 7). SCT suppresses the ini-
tial disturbance even faster than ACT, illustrating the
clear advantage of using the most up-to-date information
about the state of the system.

Figure 10 shows the effect of increasing the number of
sub-intervals on ACT control. We find that while the
increase in the temporal resolution has a large impact
on the initial decay rate, the asymptotic decay rate is
found to be independent of N . This is understandable:
the asymptotic decay rate is controlled by the slowest
(least stable) mode of the closed-loop system. While the
fine structure (high-frequency components) of the control
current resolved at large N strongly affect the dynamics
of fast (strongly stable) modes, it has virtually no effect
on the dynamics of slow (weakly stable) modes.

The decrease in ‖ξ(t)‖ with N is also easy to under-
stand. The control current Inc (t) on a given pacing in-
terval is a function from within a vector space SN of
dimension N . Furthermore, SN is a subset of SkN for
any integer k > 1. In the particular example shown in
Fig. 10, N = 4 and k = 5 (or N = 20 and k = 5). The
minimal value of V2 over SkN is less than or equal to
the minimum over SN , leading to a more optimal control
(and lower values of ‖ξ(t)‖). For N = 20 the feedback is
only slightly sub-optimal, since increasing the number of
intervals to N = 100 changes ‖ξ(t)‖ very little. This is
further confirmed by Fig. 11, which compares the con-
trol current Ic(t) for different numbers of subintervals. As
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FIG. 10. Disturbance magnitude ‖ξ(t)‖ for ACT. Number
of sub-intervals: N = 4 (dashed line), N = 20 (solid line),
N = 100 (dot-dashed line); L = 1 cm, T = 188 ms, R = 104.
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FIG. 11. Control current Ic(t) for ACT. Number of sub-
intervals: N = 4 (dashed line), N = 20 (dot-dashed line),
N = 100 (solid line); L = 1 cm, T = 188 ms, R = 104.

N increases, the piecewise constant control current ap-
proaches a limit which corresponds to the optimal time-
continuous feedback. At N = 100 the piecewise con-
stant approximation is virtually indistinguishable from
the smooth limiting shape.

The effect of increasing the number of sub-intervals is
largely the same for SCT. Figure 12 shows the evolution
of the disturbance magnitude ‖ξ‖ for N = 4, 20 and 100.
As expected, feedback computed for higher N suppresses
disturbances more rapidly. The difference is especially
noticeable at early times when a large number of modes,
both slow and fast, are excited. The feedback is com-
puted using a truncation which ignores the fast (strongly
stable) modes. The initial disturbance is a superposition
of both slow and fast modes and while ACT recomputes
the modal amplitudes once per period, SCT recomputes
the modal amplitudes much more frequently, leading to a
substantially more accurate estimate of the system state
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FIG. 12. Disturbance magnitude ‖ξ(t)‖ for SCT. Number of
sub-intervals: N = 4 (dashed line), N = 20 (dot-dashed line),
N = 100 (solid line); L = 1 cm, T = 188 ms, R = 105.

and, hence, substantially more efficient feedback.

At longer times, when the fast modes have already
been suppressed, the disturbance primarily contains the
slow (weakly stable) modes and the advantage of SCT
over ACT in terms of accurately resolving the system
state disappears. Hence the asymptotic rate at which
the disturbance decays is the same for ACT and SCT, as
Fig. 7 illustrates. The rate also becomes essentially inde-
pendent of N , as Fig. 12 shows, with the N -dependence
of ‖ξ‖ due primarily to the differences in the closed-loop
dynamics at early times.

Figure 13 shows how the control current for SCT de-
pends on the number of sub-intervals. Similarly to ACT
(cf. Fig. 11), Ic(t) approaches a limiting shape as N
increases. For both SCT and ACT, this limiting shape
is smooth, with the exception of a couple of jumps per
period. A quick comparison with Fig. 14 shows that the
locations of these jumps correspond to the time instances
when the adjoint eigenfunctions fui (xc, t) of the leading
modes change discontinuously. Similarly, the maxima of
|Ic(t)| correspond to the maxima of |fui (xc, t)|. This re-
sult is quite intuitive: the magnitude of fui (xc, t) deter-
mines how strongly the control current affects the dy-
namics of the leading (unstable) modes. Hence, optimal
feedback is the strongest (weakest) where |fui (xc, t)| is
the largest (smallest).

VIII. CONCLUSIONS

Destabilization of normal rhythm was investigated in
a quantitatively accurate model of Purkinje fibers. It
was shown that the instability can be suppressed, in the
entire range of pacing frequencies where it arises, by ap-
plication of feedback control applied through the pacing
electrode. The feedback current computed using three
different methods was compared. We found that impul-
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FIG. 13. Control current Ic(t) for SCT. Number of sub-
intervals: N = 4 (dashed line), N = 20 (dot-dashed line),
N = 100 (solid line); L = 1 cm, T = 188 ms, R = 105.
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FIG. 14. The magnitude of the the adjoint eigenfunctions for
xc = 0, L = 1 cm, and T = 188 ms.

sive control which uses electric current applied during a
brief interval between pacing stimuli is successful only for
short fibers (about 1 cm long). Transient amplification
of disturbance was confirmed as the reason for failure of
impulsive control.

By using some form of continuous-time control, how-
ever, transient amplification can be (essentially) elimi-
nated and normal rhythm can be stabilized for fibers at
least as long as 4 cm. Continuous-time feedback was com-
puted as a piece-wise constant signal, with the number
of sub-intervals ranging from 4 to 100 per pacing inter-
val. Increasing the number of intervals improved the rate
at which the disturbances about normal rhythm are sup-
pressed, with the feedback current computed using the
largest number of sub-intervals almost indistinguishable
from a smooth optimal shape with the profile very similar
to the shape of the adjoint eigenfunctions of the linearized
evolution operator corresponding to the unstable modes.

The success of feedback control in suppressing the in-
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stability of normal rhythm for all pacing rates and for
Purkinje fibers of physiological dimensions (for human
hearts) has important practical implications. The ability
to control large tissue sizes with a single electrode has
significant advantages in clinical applications where im-
planting a large number of electrodes increases the com-
plexity of the procedure and the likelihood of complica-
tions. The next step in exploring the limits of feedback
control is to test the proposed approach for models of
two- and three-dimensional cardiac tissue.
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