
Exact coherent structures and chaotic dynamics in a model of cardiac tissue
Greg Byrne, Christopher D. Marcotte, and Roman O. Grigoriev 
 
Citation: Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 033108 (2015); doi: 10.1063/1.4915143 
View online: http://dx.doi.org/10.1063/1.4915143 
View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/25/3?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Coexisting chaotic and multi-periodic dynamics in a model of cardiac alternans 
Chaos 24, 043126 (2014); 10.1063/1.4901728 
 
Chaotic dynamics in cardiac aggregates induced by potassium channel block 
Chaos 22, 033140 (2012); 10.1063/1.4748854 
 
Reentrant excitation in an analog-digital hybrid circuit model of cardiac tissue 
Chaos 21, 023121 (2011); 10.1063/1.3597645 
 
The role of cardiac tissue structure in defibrillation 
Chaos 8, 221 (1998); 10.1063/1.166299 
 
Models of defibrillation of cardiac tissue 
Chaos 8, 188 (1998); 10.1063/1.166297 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

107.201.116.182 On: Fri, 20 Mar 2015 17:06:50

http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1267973844/x01/AIP-PT/CiSE_BMF_ArticleDL_2015/Awareness_LibraryF.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Greg+Byrne&option1=author
http://scitation.aip.org/search?value1=Christopher+D.+Marcotte&option1=author
http://scitation.aip.org/search?value1=Roman+O.+Grigoriev&option1=author
http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://dx.doi.org/10.1063/1.4915143
http://scitation.aip.org/content/aip/journal/chaos/25/3?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/24/4/10.1063/1.4901728?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/22/3/10.1063/1.4748854?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/21/2/10.1063/1.3597645?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/8/1/10.1063/1.166299?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/8/1/10.1063/1.166297?ver=pdfcov


Exact coherent structures and chaotic dynamics in a model of cardiac tissue

Greg Byrne, Christopher D. Marcotte, and Roman O. Grigorieva)

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

(Received 3 October 2014; accepted 6 March 2015; published online 20 March 2015)

Unstable nonchaotic solutions embedded in the chaotic attractor can provide significant new

insight into chaotic dynamics of both low- and high-dimensional systems. In particular, in turbulent

fluid flows, such unstable solutions are referred to as exact coherent structures (ECS) and play an

important role in both initiating and sustaining turbulence. The nature of ECS and their role in

organizing spatiotemporally chaotic dynamics, however, is reasonably well understood only for

systems on relatively small spatial domains lacking continuous Euclidean symmetries.

Construction of ECS on large domains and in the presence of continuous translational and/or rota-

tional symmetries remains a challenge. This is especially true for models of excitable media which

display spiral turbulence and for which the standard approach to computing ECS completely breaks

down. This paper uses the Karma model of cardiac tissue to illustrate a potential approach that

could allow computing a new class of ECS on large domains of arbitrary shape by decomposing

them into a patchwork of solutions on smaller domains, or tiles, which retain Euclidean symmetries

locally. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4915143]

Spiral turbulence in excitable systems, which features

multiple interacting spiral waves that repeatedly break

up and merge, is of substantial practical interest because

of its relation to life-threatening cardiac arrhythmias

such as ventricular fibrillation. While mathematical mod-

els of cardiac tissue vary in complexity, even the simplest,

such as the Karma system, are too high-dimensional to

yield much insight, limiting our understanding of the

dynamical mechanisms that sustain spiral turbulence. A

growing body of recent work in fluid turbulence supports

the conjecture that high-dimensional, spatiotemporal

chaos can be understood as a series of transitions between

unstable recurrent patterns, also known as exact coher-

ent structures, embedded in the chaotic set on which

these dynamics take place. If successful, a similar

approach could allow construction of a dynamical

description of spiral turbulence in cardiac tissue in terms

of models with dramatically reduced dimensionality.

Such a reduced-order description may significantly

advance our understanding of spiral turbulence and pave

the way towards more effective defibrillation techniques.

However, the local Euclidean symmetries, inherited by

spiral waves from the respective global symmetries of the

underlying evolution equations, significantly complicate

the job of finding any exact coherent structures. The

objective of this paper is to develop a formalism for local

symmetry reduction that would enable efficient computa-

tion of these structures.

I. INTRODUCTION

Cardiac arrhythmias, such as atrial and ventricular fibril-

lation, are characterized by spatially complex, high-

dimensional dynamics that are generated as multiple

excitation waves propagate through cardiac tissue, merging

and breaking up. Despite substantial advances in computing

power and the development of detailed ionic models of car-

diac cells, quantitatively accurate direct numerical simula-

tion (DNS) of cardiac tissue remains computationally

expensive and provides limited dynamical insight into mech-

anisms that initiate and sustain the spatiotemporal chaos that

underpins these arrhythmias.

Substantial progress in understanding some types of spa-

tiotemporal chaos has been made over the past two decades

using an idea that is now over a century old. In developing

celestial mechanics, Poincar�e1 realized that unstable equili-

bria and periodic orbits provide a skeletal structure which

organizes chaotic dynamics. His idea was later developed in

the context of quantum chaos by Gutzwiller2 and subse-

quently applied to high-dimensional chaos generated by non-

linear partial differential equations (PDEs) such as the

Kuramoto-Sivashinski equation3,4 and Ginzburg-Landau

equation.5

Although in one spatial dimension unstable periodic sol-

utions could be computed using brute-force Newton itera-

tion, this numerical approach becomes intractable for two-

and three-dimensional PDEs whose discretizations routinely

involve millions of degrees of freedom. In this case both

nonchaotic solutions and their spectra can be computed effi-

ciently6 using a combination of Newton descent, Krylov sub-

space/GMRES solution of the Newton equations, and “trust-

region” heuristic for the magnitude of the Newton steps.

Newton-Krylov methods facilitated recent studies of various

fluid flows at intermediate Reynolds numbers,7–10 which pro-

duced valuable new insight into the mechanisms that gener-

ate and sustain fluid turbulence—arguably the most

challenging unsolved problems of classical physics.

Although periodic orbit theory has never been used to ana-

lyze spatiotemporally chaotic dynamics in excitable systems,

its success in uncovering the mysteries of fluid turbulencea)Electronic mail: roman.grigoriev@physics.gatech.edu
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gives us hope that it can also generate new insights into the

problem of fibrillation and thereby help develop new and

improved methods of defibrillation.11–13

Despite the progress that has already been made in using

unstable nonchaotic solutions to understand chaotic dynam-

ics, many open problems remain. In particular, it is not

always clear what types of unstable nonchaotic solutions

play a dominant role in spatiotemporal chaos. For spatially

extended systems, nonchaotic solutions are characterized not

only by their temporal properties (e.g., equilibria, periodic

orbits), but also by their spatial structure. In fact, the spatial

structure received far more attention in the studies of fluid

flows, which provided the motivation for the recent develop-

ment of periodic orbit theory. As a result, nonchaotic solu-

tions of nonlinear PDEs embedded in the chaotic set on

which the dynamics take place have become known as exact

coherent structures (ECS), reflecting their connection with

the empirically observed coherent structures in fluid flows.

Spatially extended systems often respect continuous

Euclidean symmetries, which complicate the dynamical

description based on periodic orbit theory. In particular, con-

tinuous symmetries give rise to several other dynamically rel-

evant classes of nonchaotic unstable solutions, such as relative

equilibria and relative periodic orbits, which reduce to equili-

bria and time-periodic orbits in a co-moving reference frame.

Notably, the numerical methods for computing such solutions

in co-moving frames were developed in the context of

excitable/oscillatory systems such as the Barkley model,14,15

FitzHugh-Nagumo, k� x, and complex Ginzburg-Landau

model.16 In two (or three) dimensions, however, rotational

symmetry requires that the computation be performed on a

circular (or cylindrical) domain, using a polar grid, which

severely limits the usefulness of this approach. We recently

showed17 that, for systems with local Euclidean symmetries,

relative equilibria and relative periodic orbits could be com-

puted on domains of arbitrary shape, using arbitrary grids,

with the help of a weighted Newton-Krylov method.

In this work, we use a prototypical model of cardiac tis-

sue to determine which types of nonchaotic solutions form a

skeleton for the chaotic set on which spatiotemporally cha-

otic dynamics that underlie fibrillation take place. Although

numerous nonchaotic solutions involving few unstable spi-

rals with well-separated cores were computed using the

weighted Newton-Krylov method, these solutions were

found to be located away from the chaotic set. Attempts to

find unstable solutions embedded in the chaotic set, which

feature multiple spirals with closely-spaced cores, were

unsuccessful. The analysis of converged few-spiral solutions

suggests that this failure is due to the local Euclidean sym-

metries which cause slow relative drift and/or rotation of the

spiral cores. If this is indeed the case more generally, it may

be possible to decompose multi-spiral solutions into

tiles,18,19 each of which contains a single spiral described by

either a periodic or a relative periodic solution. The ability to

reduce local symmetries via such a decomposition will pro-

vide an important first step towards constructing a reduced-

order dynamical description of spiral turbulence.

This paper is organized as follows. In Sec. II, we

describe the modified Karma model of cardiac tissue used in

this study. In Sec. III, we discuss the relationship between

Euclidean symmetries and different classes of nonchaotic

solutions. Section IV describes our failed attempts to find

dynamically relevant nonchaotic solutions embedded in the

chaotic set. In Sec. V, we explore the effects of local symme-

tries using artificially constructed unstable nonchaotic solu-

tions with multiple spirals. The construction of tiles and their

use for symmetry reduction are discussed in Sec. VI. Our

conclusions and directions of further research are presented

in Sec. VII.

II. THE KARMA MODEL

Mathematical models of cardiac tissue vary greatly in

complexity. The most detailed models of cellular kinetics

include tens of ordinary differential equations describing the

evolution of intracellular concentrations of various ions and

the state of ionic channels as well as the transmembrane

potential (i.e., the difference between the intra- and the

extracellular electric potential). Monodomain tissue models

also include the electrical coupling between the cells.

Bidomain models go one step further, accounting for the spa-

tial and temporal variation of both the intracellular and the

extracellular potential.

The simplest monodomain models can have as few as

two local variables that describe the transmembrane potential

and the internal state of a cardiac cell (cardiomyocyte).

Despite this simplification, they can produce dynamics that

are as rich and complicated as those of the bidomain models

including a detailed description of the cellular kinetics. Most

monodomain models are in the class of reaction-diffusion

systems described by coupled nonlinear PDEs of the form

@tw ¼ Dr2wþ s�1
u f ðwÞ; (1)

where the vector field w ¼ ðu; vÞ incorporates the trans-

membrane voltage u and gating variable(s) v, D is a diagonal

matrix of diffusion coefficients, su is the characteristic time

scale, and the nonlinear function f ðwÞ describes the cellular

kinetics.

Although detailed multi-variable models may provide

an accurate description of single cell dynamics, they often

fail to accurately describe the dynamics of cardiac tissue. In

addition, they require substantial computational resources to

obtain numerical solutions with appropriate spatial and tem-

poral resolution. Furthermore, when compared to some alge-

braically simpler, lower-dimensional models, the added

complexity provides little additional insight into the dynami-
cal mechanisms responsible for generating and maintaining

complex arrhythmic behaviors such as fibrillation.

In contrast, the two-variable Karma model20 provides a

greatly simplified description of cardiomyocyte excitation

dynamics while still reproducing an essential alternans insta-

bility. This instability is believed to be responsible for the

breakup of a single-spiral solution associated with the

arrhythmic state of tachycardia and, ultimately, the transition

to fibrillation in two or three dimensions, as illustrated in

Fig. 1.
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We use a slightly modified form of the Karma model for

the cellular kinetics

f ðwÞ ¼
ðu� � v4Þ½1� tanhðu� 3Þ�u2=2� u

�½bHsðu� 1Þ þHsðv� 1Þðv� 1Þ � v�

 !
; (2)

where HsðuÞ ¼ ½1þ tanhðsuÞ�=2. The parameter � describes

the ratio of excitation and relaxation time scales, u� is a

phenomenologically chosen voltage scale, and b ¼ 1=ð1
�expð�RÞÞ controls the restitution and susceptibility of travel-

ing excitation waves to alternans. Following the original

study,20 we choose the parameters su¼2:5ms, u� ¼1:5415;
�¼0:01;Du¼0:11mm2/ms, and R¼1.273 such that spiral

wave solutions break up as a result of the alternans instability.

The modifications (the addition of weak diffusion in the

gating variable, replacing the Heaviside step function HðuÞ
with its smoothed version HsðuÞ, and the additional term

Hsðv� 1Þðv� 1Þ) serve to smooth the unphysical disconti-

nuities and singularities of the original model without notice-

ably changing its dynamics. The stiffness parameter s (in this

study we set s¼ 32) controls the switching of the gating vari-

able as well as the shortest length and time scales of the spi-

ral wave solutions.17 Existing models of cardiac tissue,

including the original Karma model, ignore diffusion in

describing the dynamics of the gating variable(s). However,

it is well-established, although perhaps not well-known, that

all relevant ions and small secondary messenger molecules

pass through the gap junctions between cardiac cells.21,22

Hence, weak diffusion (we set Dv ¼ 5:5� 10�3 mm2/ms) of

the gating variable is physiologically justified.

Our focus here is on spiral turbulence in two dimen-

sions, which can be thought of as a model of atrial fibrilla-

tion. Without loss of generality, we can assume that the

computational domain X is rectangular. The PDEs (1) are

therefore discretized on a rectangular uniform two-

dimensional grid, with N grid points in the x-direction and M
grid points in the y-direction. The use of a rectangular grid is

consistent with the structure of cardiac tissue, whose proper-

ties are generally anisotropic (i.e., different in the direction

along, and transverse to, the muscle fibers). We use a grid

spacing Dx ¼ Dy ¼ 262 lm which corresponds to the typical

size of cardiomyocytes and use the physiologically relevant

no-flux boundary conditions n � rw ¼ 0, unless otherwise

specified.

The equations are solved using a fourth-order Runge-

Kutta time integrator and a nine-point finite difference

approximation for the Laplacian that minimizes the effect of

discretization on the rotational symmetry of the evolution

equations.17 The time step used in the simulations was Dt
¼ 0:01 ms, except for the states shown in Fig. 4 where Dt
¼ 0:1 ms.

III. UNSTABLE NONCHAOTIC SOLUTIONS AND
EUCLIDEAN SYMMETRIES

On an unbounded two-dimensional domain X ¼ R2,

reaction-diffusion equations are equivariant under the set

of transformations, or actions, g that form a group

G ¼ G � Eþð1Þ. In particular, spatial transformations from

the Euclidean subgroup G ¼ Eð2Þ include continuous trans-

lations, continuous rotations and discrete reflections. The

subgroup Eþð1Þ reflects the fact that the dynamics are invari-

ant under temporal translations, but are not time-reversible.

Spatially uniform solutions w such that f ðwÞ ¼ 0 (e.g.,

the stable resting state w � ð0; 0Þ), invariant with respect to

the entire group G, are examples of the simplest type of non-

chaotic solutions–equilibria. However, typical nonchaotic

solutions respect only some of the transformations in G, low-

ering effective symmetry to a subgroup of G. In particular, a

plane wave solution traveling with velocity c is a relative

equilibrium generated by a continuous translational symme-

try which satisfies @tw� c � rw ¼ 0. In this case @t is the

generator of translations in time and r is the generator of

translations in space. Another relative equilibrium generated

by continuous rotational symmetry, which satisfies

@tw� x@hw ¼ 0, corresponds to a spiral wave. Here h is the

polar angle in the (x, y) plane, x is the rotational frequency,

and @h is the generator of rotations. These relative equilibria

reduce to (nonuniform) equilibria in a reference frame trans-

lating with velocity c or rotating with angular velocity x,

respectively. For these special solutions, evolution (i.e., time

translation) is equivalent to a spatial translation or rotation.

The introduction of physical boundaries has a markedly

different effect on these solutions. For no-flux boundary con-

ditions, the effect of the boundaries is determined primarily

by the shape (and size) of the domain X on which the evolu-

tion equations are defined. Some nonchaotic solutions, such

as the uniform equilibria or spiral waves, survive unchanged

(or almost unchanged) when computed on domains of very

FIG. 1. An unstable spiral wave shown in (a) undergoes an alternans insta-

bility (b) and breaks up into multiple spiral segments (c), eventually evolv-

ing into spiral turbulence (d), in a caricature of the transition from atrial

tachycardia to atrial fibrillation on a square domain (L¼ 50.3 mm) with no-

flux boundary conditions. The same color bar is used for the voltage u in this

and all subsequent figures.
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different shapes and sizes, while others, such as plane waves,

cease to exist except as a transient. The effect of the bounda-

ries on spiral waves is of the most interest to us, since spiral

waves play an important role in sustaining spatiotemporally

chaotic dynamics underlying complex cardiac arrhythmias.

Although it is easier to compute single-spiral waves

described by relative equilibria on circular domains, result-

ing solutions are not representative of any cardiac rhythms.

For instance, a spiral wave describing tachycardia would not

correspond to a relative equilibrium because atria are not cir-

cular. Similarly, the atria cannot be tiled with circles, so

multi-spiral patterns arising during atrial fibrillation cannot

be decomposed into relative equilibria, even on arbitrarily

short time scales. Hence, it is crucial to understand the prop-

erties of spiral wave solutions on domains of arbitrary shape.

Rectangular domains are more relevant, since they break all

global Euclidean symmetries and, at the same time, can be

used to tile a surface. Fig. 1(a) shows a sample unstable peri-

odic solution computed on a square domain of side

L¼ 50.3 mm with no-flux boundary conditions using the

weighted Newton-Krylov solver.17 It describes a pinned spi-

ral wave with a period of T¼ 125.98 ms and wavelength k
¼ 19:4 mm (for reference, the left human atrium has a typi-

cal diameter of 30–40 mm).

Since this is not a relative equilibrium, the actions of

time translation and rotation become distinct, @tw 6¼ x@hw,

where x ¼ 2p=T. However, the effect of the boundaries on

the spatial structure of the spiral wave as well as its temporal

properties (e.g., its period T) becomes exponentially weak

for sufficiently large L. The solutions computed on domains

of different size become indistinguishable to numerical pre-

cision in the overlap region, with the difference becoming

significant only near the boundary.17 In particular, the peri-

odic solution shown in Fig. 1(a) is almost identical to a rela-

tive equilibrium in the interior of the domain. Hence,

although the boundary conditions break the global rotational

symmetry of the spiral wave, local rotational symmetry is

preserved away from the boundaries, where @tw � x@hw to

numerical accuracy.

For the parameters chosen in this study, single-spiral sol-

utions are unstable with respect to the alternans instability. If

allowed to evolve for a sufficiently long time, an initial condi-

tion that is arbitrarily close to the spiral wave shown in

Fig. 1(a) will deviate from that unstable solution exponentially

fast, developing modulation in the width of the excitation

wave (alternation of the action potential duration), as illus-

trated in Fig. 1(b). When the amplitude of the modulation

becomes sufficiently large, the tissue fails to recover between

two successive wave fronts, leading to conduction block and a

breakup of the spiral wave (cf. Fig. 1(c)). After a sequence of

breakups, a state of spiral turbulence featuring multiple inter-

acting spiral waves is established (cf. Fig. 1(d)).

In the process of computing a solution, the Newton-

Krylov solver also generates its stability spectrum. The lead-

ing Floquet modes (or simply eigenmodes) of the single-

spiral solution depicted in Fig. 1(a) are shown in Fig. 2. The

pair of unstable eigenmodes on the left, corresponding to a

complex conjugate pair of Floquet multipliers (or eigenval-

ues) outside the unit circle, are associated with the variation

in the width of the excitation wave (i.e., alternans instabil-

ity). A single unstable eigenmode on the right looks like a

frustrated Goldstone mode @yw; it is associated with a

weakly broken translational symmetry and corresponds to an

almost rigid vertical shift of the entire spiral wave. The

Goldstone mode @tw has a unit eigenvalue K¼ 1 and is asso-

ciated with a continuous symmetry (time-translation).

For a spiral wave solution of the PDEs (1) on an

unbounded domain, we should expect to find three

Goldstone modes corresponding to each of the three continu-

ous symmetries of E(2): rotation and translations in the x and

y directions. The continuous time-translation symmetry does

not produce an additional Goldstone mode because for spiral

waves described by relative equilibria @tw ¼ x@hw. On fi-

nite, but sufficiently large, domains the three continuous spa-

tial symmetries become local, rather than global, but should

still generate three unit eigenvalues, even after (1) is discre-

tized, provided the grid is sufficiently fine. Indeed, this was

found to be the case17 for small values of the stiffness param-

eter (s � 3). As is typical of solutions in the presence of con-

tinuous translational symmetries, in this limit the spiral

waves drift, and hence are described by relative periodic sol-

utions (they become periodic in a reference frame moving

with the drift velocity).

However, for the values of parameters considered here,

there is also a local source of continuous symmetry breaking –

the discreteness associated with the computational grid (or the

cellular structure of the tissue). The modified Karma model

possesses an internal length scale ‘v ¼ 2
ffiffiffiffiffiffiffiffiffiffi
Dusu

p
=ðbsÞ. For

s¼ 32, this gives ‘v 	 24 lm, i.e., much smaller than the grid

spacing Dx ¼ 262 lm. Hence the computational grid is too

coarse to completely resolve the spatial structure of the spiral

wave, effectively reducing the continuous translational sym-

metries to discrete translations, x! xþ Dx and y! yþ Dy,

such that @xw and @yw no longer correspond to eigenmodes.17

Our numerical results are consistent with this conclu-

sion. On square domains of sufficiently large size, for s � 3,

there is a large, but finite, number of unstable spiral waves

described by periodic solutions with essentially identical

periods and stability spectra and differing by a discrete shift

in the x and/or y direction. Fig. 1(a) shows just one of those

solutions. Each one of these spiral waves possesses a

Goldstone mode @tw which coincides with @hw (to numerical

FIG. 2. The spectrum of the single-spiral solution shown in Fig. 1(a). The

unstable eigenmodes are associated with the alternans instability. The

Goldstone mode with K¼ 1 is associated with an infinitesimal time

translation.
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precision) away from the boundaries, i.e., continuous rota-

tional symmetry is preserved locally.

IV. EXACT COHERENT STRUCTURES

Stable and unstable uniform states, plane and spiral ex-

citation waves discussed previously illustrate the types of

solutions (equilibria, periodic orbits, relative equilibria, and

relative periodic orbits) relevant to cardiac tissue dynamics,

including fibrillation. However, none of these solutions are

embedded in the chaotic set on which arrhythmic dynamics

underlying fibrillation take place, i.e., they do not correspond

to ECS. For instance, while locally the excitation waves

almost always take the shape of small spirals during fibrilla-

tion, they never organize globally into a single large spiral

wave.

In order to find ECS, i.e., global unstable nonchaotic sol-

utions embedded in the chaotic set, we used the method of

close returns23 which has been used successfully in the con-

text of fluid turbulence.24 The procedure involves finding

near-recurrences in the chaotic solutions, which become ini-

tial conditions that are subsequently refined into exact non-
chaotic solutions using the Newton-Krylov solver.17 In the

presence of global symmetry, initial guesses for relative

equilibria, periodic orbits, as well as relative periodic orbits

can be found as the minima of the recurrence function

Eðt; sÞ 
 min
g2G
jjgwðtÞ � wðt� sÞjj2; (3)

where jj � jj2 denotes the 2-norm in R2NM and the group G
describes the symmetries in the presence of boundaries.

However, we found that the minima of (3) are always

achieved for g � 1, even for periodic boundary conditions,

and in practice we can set G ¼ f1g.
It should be noted that setting G ¼ f1g in (3) does not

constrain the exact solutions to absolute equilibria and abso-

lute periodic orbits. For instance, a slowly drifting or rotating

solution described by a relative periodic orbit or relative

equilibrium, such that gwðtÞ ¼ wðt� TÞ with g � 1, will

generate a minimum of (3) with s � T when G ¼ f1g.
Solutions that are characterized by fast global rotation or

translation (e.g., spiral or plane waves), and for which g is

significantly different from 1, are characterized by a high

degree of spatial coherence. The lack of global spatial coher-

ence is a distinguishing feature of fibrillation, and therefore

we should not expect to find any solutions that exhibit fast

global rotation or drift.

A fragment of the recurrence plot for a chaotic solution

computed on a square domain X with side L¼ 50.3 mm and

periodic boundary conditions is shown in Fig. 3. The peri-

odic boundary conditions lead to chaotic dynamics that are

qualitatively identical to those in the presence of no-flux

boundary conditions even on relatively long time scales.

However, for periodic boundary conditions fibrillation per-

sists indefinitely (at least, it does not disappear after 4.5 min

�2000T), while for no-flux boundary conditions it can termi-

nate spontaneously due to the spiral cores colliding with the

boundaries and disappearing. Once a sufficiently low mini-

mum (circled) of the recurrence function Eðt; sÞ is identified,

the corresponding state wðt� sÞ is used as the initial guess

for a solution with period close to s.

Rather surprisingly, none of the initial guesses we tried

converged to either relative equilibria, periodic orbits, or to

relative periodic orbits. (We did not search for equilibria,

since jj@twjj never becomes small for chaotic solutions.)

Figs. 4(a) and 4(b) show the voltage component u for two

typical examples of the numerous multi-spiral states identi-

fied using the recurrence analysis. They nearly recur after

s ¼ 251:94 ms and s ¼ 251:83 ms, respectively. These val-

ues of s correspond to approximately double the temporal

period of a single spiral shown in Fig. 1(a), 2T ¼ 251:96 ms.

Newton iterations stagnate at the values of relative residual

jjwðsÞ � wð0Þjj2=jjwð0Þjj2 equal to 9� 10�3 for the state

shown in Fig. 4(a) and 10�2 for the state shown in Fig. 4(b),

compared to Oð10�13Þ for the converged single-spiral state

shown in Fig. 1(a). The voltage components uðtÞ �uðt� sÞ
of the corresponding residual are shown in Figs. 4(c) and

4(d). They are spatially localized in the regions where

jruðtÞj has the largest magnitude (cf. Figs. 4(e)–4(f)), or

near the front and back of the excitation wave. In order to

interpret these findings, next we consider multi-spiral solu-

tions that are constructed artificially and do not lie on the

chaotic set on which fibrillation takes place.

V. MULTI-SPIRAL SOLUTIONS WITH LOCAL
SYMMETRY

The weak effect of the boundaries on the essential dy-

namics of the spiral wave suggests that the local translational

and rotational symmetries of single-spiral solutions should

be inherited by multi-spiral solutions, provided the spacing

between the spiral cores is sufficiently large. To verify this

and to gain insight into the properties of multi-spiral states

on finite domains, we explore the simplest artificially gener-

ated solutions, which are constructed by assembling pairs of

converged single-spiral solutions.

A. Local rotational symmetries

We first explore local rotational symmetry by construct-

ing a set of initial states containing two spirals that are phase

shifted with respect to each other. These initial states are pre-

pared by placing a copy of a single, isolated spiral solution

such as the one shown in Fig. 1(a) next to a second identical

copy that has been integrated forward in time by a fraction

of its temporal period. Both co-rotating and counter-rotating

FIG. 3. A fragment of the normalized recurrence function Eðt; sÞ, where t and

s are in units of ms. The black circle identifies a minimum associated with a

close return of a chaotic solution. Minima such as this one are used to identify

initial conditions for refinement into ECS using the Newton-Krylov solver.
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spiral states are prepared to account for possible effects of

chirality. These initial states are then refined into exact solu-

tions using the Newton-Krylov solver. Converged solutions

for four phase shifts dh ¼ f0; p=2; p; 3p=2g are shown in

Fig. 5 (counter-rotating) and Fig. 6 (co-rotating).

The leading eigenvalues for the co-rotating spirals with

ðdh ¼ pÞ shown in Fig. 6(c) are plotted in Fig. 7. This spec-

trum is representative of the spectra found for the other

phase-shifted two-spiral solutions (both co- and counter-

rotating) in the sense that all leading eigenmodes could be

spatially localized to the region occupied by one or the other

spiral. Each pair of localized eigenmodes corresponds to one

of the eigenmodes shown in Fig. 2 for the single-spiral solu-

tion. The corresponding eigenvalues are degenerate (to nu-

merical precision Oð10�6Þ), indicating that the dynamics of

the two spirals are independent. The pair of Goldstone modes

associated with the two unit eigenvalues (K¼ 1) reflects the

freedom of either spiral to undergo small phase shifts relative

to the other without destroying the time-periodic nature of

the solution globally. Just like for single spirals, in the inte-

rior of the domain the phase shifts are indistinguishable from

rotation of one spiral relative to the other: rotation by angle

dh corresponds to a temporal shift dt ¼ ðdh=2pÞT.

B. Local translational symmetries

We explore local translational symmetries, which

become discrete on our computational grid, by using two dis-

tinct sets of solutions. The first set is constructed by taking

two single, isolated spiral solutions (in phase) and applying

discrete shifts in the horizontal or vertical direction to one of

the spirals by an integer multiple of the grid spacing before

recombining them. Figure 8 shows a set of converged two-

spiral solutions in which the core of the spiral on the right

side of the domain has been shifted with respect to the spiral

core on the left side of the domain. The shift for the spiral in

Fig. 8(a) is by 30 grid points along the negative y direction

FIG. 5. Snapshots of the voltage u for counter-rotating two-spiral solutions

on a rectangular domain of size 50.3 mm� 100.6 mm. The phase shifts dh
¼ 2pðdt=TÞ between neighboring spirals are: (a) 0, (b) p=2, (c) p, (d) 3p=2.

FIG. 6. Snapshots of the voltage u for co-rotating two-spiral solutions on a

rectangular domain of size 50.3 mm� 100.6 mm. The phase shifts dh
¼ 2pðdt=TÞ between neighboring spirals are: (a) 0, (b) p=2, (c) p, (d) 3p=2.

FIG. 4. (a and b) Snapshots of the voltage u(t) for two initial guesses which

correspond to minima of Eðt; sÞ. (c and d) The relative residual ½uðtÞ
�uðt� sÞ�=jjuðtÞjj1. (e and f) The normalized magnitude of the voltage gra-

dient jruðtÞj. (g-h) The cycle area I1 (to be defined in Sec. VI). Level sets of

v are shown as thin white (gray) lines, the shocks correspond to the black

(red), and the cores to the light gray (green). The domain is a square of side

L¼ 50.3 mm with periodic boundary conditions.
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(downward), while the shift for the spiral in Fig. 8(b) is 30

grid points in the negative x direction (leftward). While the

convergence of these two solutions confirms that multi-spiral

solutions respect locally discrete translational symmetries,

the Goldstone modes associated with continuous transla-

tional symmetry remain absent in the spectrum for both solu-

tions. Solutions with smaller shifts (for example, 5 grid

points instead of 30) also converge and have similar spectral

properties.

The second type of solutions used to explore local trans-

lational symmetry is shown in Fig. 9(a). It involves a three-

spiral configuration in which a small spiral wave is formed

between two larger spiral waves. Under time evolution, the

small spiral undergoes a drift in the mostly vertical direction.

This drift is caused by interaction with the neighboring spi-

rals, as we explain below. Drifting spirals in bounded geo-

metries are associated with relative periodic solutions which

respect (local) continuous translational symmetries.17 The

two big spirals do not drift, so the Newton-Krylov solver

fails to converge onto a time-periodic (or relative periodic)

solution, with the smallest relative residual magnitude equal

to 4� 10�3. Figure 9(d) shows that the voltage component

of the residual (with s ¼ 125:98 ms) is concentrated in the

vicinity of the drifting spiral and (just like for the multi-

spiral states shown in Fig. 4) is localized near the front and

back of the excitation wave (cf. Fig. 9(b)), which is consist-

ent both with the slow drift and the slow rotation of the small

spiral.

This simple three-spiral solution is important since it is

qualitatively representative of spiral interactions that take

place during more complex chaotic behavior. It provides val-

uable insight into the dynamics and local symmetries of

multi-spiral solutions such as those shown in Figs. 4(a) and

4(b). While each of the three individual spirals can be repre-

sented by either periodic or relative periodic solutions in the

vicinity of its core, the solution on the entire domain is nei-

ther a periodic nor a relative periodic orbit. Similarly, one

may expect multi-spiral ECS to be described by periodic

and/or relative periodic solutions locally, but not globally.

VI. STRATEGY FOR LOCAL SYMMETRY REDUCTION

A new class (or classes) of nonchaotic solutions are

required to define a skeleton for the chaotic set associated

with spiral turbulence. These nonchaotic solutions are asso-

ciated with near-recurrences such as those shown in Figs.

4(a) and 4(b) that are found frequently, and hence play an

important dynamical role, in spiral turbulence. In this sec-

tion, we discuss how such nonchaotic solutions can be con-

structed starting with nearly-recurrent solutions that can be

identified directly by exploring the natural measure on the

chaotic set. As we have shown previously, spatial coherence

in spiral turbulence is limited to areas (or tiles) associated

with one spiral. Hence, we start by describing the process of

decomposing the computational domain into individual tiles,

each of which contains a single-spiral solution. We then dis-

cuss which boundary conditions these local single-spiral sol-

utions should satisfy and how they can be assembled into a

global nonchaotic solution.

A. Tiling the domain

The concept of domain tiling was introduced by Bohr

et al.18,19 to describe frozen spiral waves, sometimes referred

to as vortex glasses, in the complex Ginzburg-Landau equa-

tion (CGLE)

@tA ¼ Aþ ð1þ iaÞr2A� ð1þ ibÞjAj2A; (4)

FIG. 7. The spectrum of the two-spiral solution shown in Fig. 6(c).

FIG. 8. Snapshots of the voltage u for two-spiral solutions on a rectangular

domain with size 50.3 mm� 100.6 mm. The spiral on the right side of the

domain is shifted (a) vertically by 30 grid points (i.e., dy ¼ �7:86 mm) or

(b) horizontally by 30 grid points (i.e., dx ¼ �7:86 mm) relative to the spiral

on the left side of the domain.

FIG. 9. (a) Snapshot of the voltage u for a three-spiral transient solution on a

rectangular domain of size 50.3 mm� 100.6 mm. (b) The normalized magni-

tude of the voltage gradient jruj. The color correspondence is the same as

in Fig. 4(f). (c) The cycle area I1. The analytical solutions (see Sec. VI A)

for the tile boundaries are shown as dashed white (yellow) lines and the level

sets of v as thin white (gray) lines. The shocks of the solution correspond to

the black (red) and the cores to the light gray (green). (d) The relative resid-

ual ½uðtÞ � uðt� sÞ�=jjuðtÞjj1.
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where A is a complex field and a and b are control parame-

ters. Each tile contains exactly one spiral core and the dy-

namics on each tile is controlled almost entirely by that core.

The boundaries of individual tiles were identified with the

ridges (or shocks) of the field jAj which describes the ampli-

tude of local oscillation. Fig. 10(a) shows the real part of a

representative solution A ¼ qei/ which can be used to iden-

tify individual spirals. In most of the domain, the phase / of

the oscillation varies slowly in space, so according to the am-

plitude equation25

@tq ¼ ½r2 � ðr/Þ2�q� að2r/ � rqþ qr2/Þ þ ð1� q2Þq;
(5)

the amplitude of oscillation is essentially constant, q � 1,

which corresponds to the middle cycle in the complex-A
plane shown in Fig. 10(b). The spiral cores are associated

with phase singularities and are characterized by small val-

ues of the amplitude (q� 1, small cycle). Similarly, the

phase changes quickly at the boundaries of the tiles, where

the amplitude increases (q � 1, large cycle). Hence, the

maxima and minima of jAj shown in Fig. 10(c) can be used

to identify, respectively, the spatial locations of the tile

boundaries and spiral cores.

For excitable media characterized by strongly nonlinear

oscillations, a different representation has to be used, since

the phase and amplitude of the oscillations can be difficult to

define, let alone compute. In this case the local amplitude of

oscillation can be characterized instead by the area I(x, y) of

the cycle C that is traced out by the solution in an appropriate

state space. For CGLE the area in the complex-A plane is

given by

I x; yð Þ ¼
þ

C

q2

2
d/ ¼

ðT

0

q2

2
_/ dt; (6)

with the result shown in Fig. 10(d). For frozen spirals
_/ ¼ 2p=T, so that Iðx; yÞ ¼ pjAðx; y; tÞj2 and the cycle area

representation is equivalent to the amplitude representation.

A similar approach can be used to identify the tile boun-

daries for the modified Karma model. The easiest way to

characterize the amplitude of the strongly nonlinear oscilla-

tions is by computing the area I1 of the cycle C in the (u, v)

plane,

I1ðx; yÞ ¼
����
þ

C

v du

���� ¼
����
ðT

0

v _u dt

����: (7)

Several representative cycles C computed for the co-rotating

two-spiral solution depicted in Fig. 6(c) are shown in Figure

11(a) and the corresponding spatial distribution I1ðx; yÞ is

shown in Figure 11(b). The two spirals are separated by a

shock which corresponds to the local maximum of I1ðx; yÞ.
In addition, we also find shocks that form along the outer

boundary, where no-flux boundary condition is imposed.

Taken together, the shocks form a closed boundary for each

FIG. 10. A spiral wave solution of the complex Ginzburg-Landau equation

with a¼ 0 and b ¼ 1:2. (a) Snapshot of Re(A). (b) The cycles in the complex

plane for three representative spatial locations: spiral core (light gray/green),

interior of a tile (gray/white), and a shock separating two tiles (black/red).

The amplitude of the gray cycle is slightly less than unity because the tiles

are small (the size is comparable to the wavelength k). (c) The normalized

amplitude jAj. (d) The normalized cycle area I.

FIG. 11. The cycles in the (a) (u, v) plane, (c) ðu; _uÞ plane, and (e) ðu; usÞ
plane. The corresponding cycle areas I1 (b), I2 (d), and I3 (f) for the two-

spiral solution shown in Fig. 6(c). The color correspondence is the same as

in Fig. 10.
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of the spiral domains, defining the tiles on which the dynam-

ics is controlled by one or the other core.

While computing cycle areas in the (u, v) plane is con-

venient in the models where all variables are accessible, in

experiment this is rarely the case. Most typically only one

variable is easily accessible experimentally (e.g., voltage or

calcium, if voltage- or calcium-sensitive dye is used). In this

case, cycle areas can also be computed using alternative pla-

nar representations of the cellular dynamics based solely on

one variable, e.g., the voltage u. One possibility is to use a

ðu; _uÞ plane, with the cycle area defined as

I2ðx; yÞ ¼
þ

C

_u du ¼
ðT

0

_u2 dt: (8)

Some representative cycles and the cycle area distribution

are shown in Figs. 11(c) and 11(d), respectively.

The expression for I2, however, involves a derivative of

u. Since experimental measurements are typically noisy,

derivatives obtained using finite-differencing of a time series

can be very inaccurate. To reduce the influence of noise, a

time-delay embedding can be used instead, with the cycles

defined in the plane spanned by u evaluated at times t and

t� s (the latter will be denoted us for brevity). The corre-

sponding cycle area

I3ðx; yÞ ¼
þ

C

us du

����
���� (9)

can be computed without evaluating derivatives of any field.

The choice of the time delay s is not unique. We chose the

value s ¼ 13:5 ms which corresponds to the first minimum

of the mutual information function.26 The corresponding rep-

resentative cycles in the ðu; usÞ plane and the cycle area dis-

tribution are shown in Figs. 11(e) and 11(f), respectively.

Comparison of Figs. 11(b), 11(d), and 11(f) shows that all

three cycle area representations are consistent and accurately

capture the shock line separating the two spirals, as well as

the shock lines along the domain boundaries.

In the rest of this study, we use the cycle areas I1 com-

puted in the (u, v) plane to identify tiles in the computational

domain. In particular, Figs. 4(g) and 4(h) show the shocks

that separate the tiles that form for the nearly-recurrent

multi-spiral solutions, while Fig. 9(b) shows the shocks that

separate the tiles in the three-spiral solution. For time-

periodic solutions (e.g., single- or two-spiral solutions of the

Karma model) the period T is well-defined and the cycles

close perfectly. For non-periodic solutions such as those

shown in Figs. 4 and 9, the integration is instead performed

between crossings of a convenient Poincar�e section (we used

u¼ 1.5).

If the phase of the spiral solution is well-described by

the Archimedian approximation, the tile boundaries can also

be constructed analytically. Generally, the Archimedian

approximation, and hence the analytic solutions for the tile

boundaries, is only valid when the distance from each spiral

core to the tile boundary is sufficiently large. Bohr et al.18,19

showed that for CGLE the tile boundaries are segments of

hyperbolas with the two nearest spiral cores serving as foci

and that the approximation is valid even when the separation

between the cores is as small as one wavelength k. The

hyperbolic solution, however, only applies to spirals of oppo-

site chirality (i.e., counter-rotating spiral waves).

A more general equation for the tile boundary between

spirals of any chirality was derived by Zhan et al.27 Let the

origins of the two spirals be x and x0, their chiralities r,

r0 ¼ 61; R ¼ x0 � x, and let xþ r define a point on the

boundary. Then the boundary is given by the solution to the

differential equation

dr

du
¼ �rr02 � r0r R cos u� rð Þ þ 2pmr0r sin u

r0R2 sin uþ m r02 � r0 r � R cos uð Þ
� � ; (10)

where m ¼ R=k; r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r2 � 2rR cos u

p
, and u is the

angle between r and R. This equation can be solved numeri-

cally given an initial condition that lies on the line connecting

the origins of the two spirals. Equation (10) was shown to

accurately capture the tile boundaries not only for weakly

nonlinear oscillations found in CGLE, but also for the Barkley

model28 which, like the Karma model, describes an excitable

medium supporting strongly nonlinear oscillations.29

We checked the validity of this equation for the modi-

fied Karma model by comparing the analytic solutions to

those computed using the cycle area method for the co- and

counter-rotating phase-shifted solutions from Figs. 6 and 7,

for which m¼ 3.18. Excellent agreement was found in all

cases. Four examples with the analytic solutions superim-

posed on the cycle area plots are shown in Fig. 12.

Numerical and analytical solutions also agree well for the

three-spiral solution, as Fig. 9(c) illustrates.

It should be noted that both methods of computing the

tile boundaries have advantages and drawbacks. Numerical

solutions based on cycle areas do not require any assump-

tions (e.g., the Archimedean approximation for the phase)

and can be computed in real time. On the other hand, they

are only updated once per period (i.e., upon crossing of the

Poincar�e section), which may not be adequate for quickly

drifting spirals. Furthermore, the shocks often do not entirely

enclose each spiral (cf. Figs. 4(g)–4(h)); an additional con-

struction is needed to form a closed boundary or determine

the precise position of the boundary based on the transverse

profile of the shock. Analytical solutions form closed boun-

daries, but require identification of the position of the cores

and the initial condition (e.g., the point where the boundary

crosses the straight line connecting the two cores).

Analytical construction also requires an algorithm for deter-

mining the endpoints of each smooth segment of the bound-

ary where three (or more) different tiles meet.

B. Assembling a global solution

For computational domains with no-flux boundary con-

ditions, shocks form naturally along the boundaries.

Additionally, empirical observations for states with tile

boundaries evolving slowly compared with the spiral rotation

demonstrate that the level sets of both v (cf. Figs. 4(g)–4(h),

9(c), and 12) and u (not shown) are orthogonal to the shocks.

Hence, the single-spiral solution on each of the tiles satisfies
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the no-flux boundary conditions on its entire boundary,

whether it is external or internal with respect to the computa-

tional domain. We can therefore reduce the interaction

between different spirals to the effect of boundary condi-

tions, which only affects the solution in the interior of the

tile through its shape (and the dynamics of the tile bounda-

ries, if any). The effect of the boundaries on the enclosed spi-

ral wave should be qualitatively the same regardless of the

tile geometry. In particular, the temporal period of each spi-

ral wave should depend on the size of the tile. For example,

the period of unstable single-spiral wave solutions decreases

from the asymptotic value T0 as the domain size L decreases

for the Karma model on square domains.17 For domains of

size comparable to the smallest tiles in Figs. 4(g)–4(h), the

period is estimated to decrease by Oð10�2T0Þ. Such differen-

ces in the periods of different spirals would lead to a relative

residual of Oð10�1Þ, which is consistent with the residuals

reported in Figs. 4(c) and 4(d).

It is well known30,31 that if the frequencies x1 and x2 of

two neighboring spirals differ, the boundary between them

moves with velocity

c ¼ x1 � x2ð Þ
k1 � k2

jk1 � k2j2
; (11)

where k1 and k2 are the wave vectors the two spirals would

have on an unbounded domain at the location of the tile

boundary. This is a consequence of the phase continuity at

the tile boundaries: the frequencies of the two spirals become

equal in a reference frame moving with velocity c. In partic-

ular, small differences in the frequencies (equivalently, peri-

ods) of two neighboring spirals lead to a slow motion of the

boundary.

As we have shown elsewhere,17 in the Karma model the

spiral cores are repelled from no-flux boundaries at distances

of Oð2‘c), where ‘c is the size of the spiral core. This appears

to be a general result, as repulsive interaction was also found

in other excitable systems.32,33 Hence, when the distance

between a spiral core and the nearest tile boundary decreases

to about Oð2‘cÞ, the spiral core starts to drift away from the

boundary. This is the mechanism that forces the core inside

the small tile in Fig. 9 to drift relative to the cores in big tiles.

Such core drift is also unavoidable for multi-spiral solutions

with tiles of different sizes and will lead to the growth of big

spirals at the expense of small ones, which can be considered

as one of the mechanisms contributing to maintenance of spi-

ral turbulence.

The tile-based decomposition suggests a natural approach

to constructing global multi-spiral solutions from single-spiral

segments satisfying local Euclidean symmetries. The results

obtained for single-spiral solutions17 suggest that the solution

on each tile would be defined either by a periodic solution or a

relative periodic solution. If the tile boundaries do not move

significantly during a typical period T0, we can compute the

solutions locally on each tile using the weighted Newton-

Krylov method.17 The algorithm, however, will need to be

generalized in such a way that updates of the initial condition

at each step of Newton iteration preserve the continuity of

both u and v fields (or equivalently the phase and amplitude)

on the tile boundaries. This constraint, however, is not

expected to present any conceptual difficulties.

VII. CONCLUSIONS

To summarize, we have applied numerical methods

originally developed for fluid turbulence to search for the

exact coherent structures that may form a skeleton for the

spatiotemporally chaotic dynamics produced by a prototypi-

cal monodomain model of cardiac tissue. We showed that

these methods, designed to identify recurrent solutions in the

presence of global symmetries, fail rather spectacularly for

an excitable reaction-diffusion system whose dynamics is

characterized by local, rather than global Euclidean symme-

tries. The origin of the failure was traced to the weak correla-

tion between the dynamics of individual spirals which

underpin spiral turbulence. As a result of this weak correla-

tion, typical multi-spiral states display recurrent dynamics

locally, but not globally. Locally the dynamics can be repre-

sented, to numerical accuracy, by periodic or relative peri-

odic solutions, but globally neither periodic nor relative

FIG. 12. The cycle areas I1 for select

unstable two-spiral states. Also shown

are the analytic solutions for the (inter-

nal) tile boundaries as dashed white

(yellow) and level sets of v as thin

white (gray) lines. The states corre-

spond to: (a) the co-rotating spirals

shown in Fig. 6(c), (b) the co-rotating

spirals shown in Fig. 6(d), (c) the

counter-rotating spirals shown in Fig.

7(c), and (d) the counter-rotating spi-

rals shown in Fig. 7(d). The color bar

from Fig. 11(b) is used in all panels.

033108-10 Byrne, Marcotte, and Grigoriev Chaos 25, 033108 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

107.201.116.182 On: Fri, 20 Mar 2015 17:06:50



periodic solutions play a dynamically important role.

Nonchaotic unstable solutions embedded in the chaotic set

would have a more complicated nature and require develop-

ment of novel computational approaches.

We propose one such approach based on the decomposi-

tion of the computational domain into sub-domains, or tiles,

that each supports one spiral wave. Over short time scales

(before individual spiral waves are destroyed by local insta-

bilities), the dynamics for each near-recurrent multi-spiral

state can be decomposed into the dynamics of the tiles (rela-

tive motion of tiles and changes in their shape associated

with the differences in the spiral frequencies) and the dynam-

ics of individual spiral waves on the tiles subject to no-flux

boundary conditions at the tile boundaries. In particular, the

dynamics of spiral waves on the tiles would be described by

periodic or relative periodic solutions which correspond,

respectively, to pinned and drifting cores.

It should be emphasized that the formalism based on

decomposition into tiles is only expected to describe spiral tur-

bulence during relatively quiescent intervals when no break-

ups or mergers of different spiral waves occur. Breakups and

mergers are driven, respectively, by the alternans and mean-

dering instabilities of individuals spirals17,20 and involve birth

or annihilation of pairs of spiral cores with opposite chirality

and the associated changes in the number of tiles. During such

events, the cores move on the time scale comparable to the

rotation period (or even faster) and it may not be possible to

even define the tiles on the entire domain. These relatively

active intervals should not be described using the proposed

formalism and likely correspond to heteroclinic connections

between different exact coherent structures. This can be

rephrased in terms of the of skew-decomposition of the dy-

namics34–37 in the vicinity of relative solutions induced by

local symmetries: the quiescent intervals correspond to the

evolution mainly along the group manifold, while active inter-

vals correspond to motion mainly transverse to the group

manifold.

Future work will focus on a numerical implementation

of the procedure we have described for constructing global

solutions composed of locally symmetry-reduced solutions.

Specifically, the method for computing single-spiral wave

solutions on square domains should be validated for tiles

with an arbitrary shape. Furthermore, it remains to be deter-

mined how individual solutions should be recombined such

that the phases and amplitudes of neighboring spirals match.

If successful, this framework may provide valuable new

insight not only into spatiotemporally chaotic dynamics of

cardiac tissue, but also other systems that exhibit local

symmetries.

The definition of locality is, of course, relative. In the

model considered here, local symmetries survive on

domains, or tiles, whose dimensions significantly exceed the

characteristic correlation length ‘c defined by the spatial

extent of the adjoint eigenmodes for spiral wave solu-

tions.38,39 For excitable systems, such as the FitzHugh-

Nagumo, Barkley, and Karma models, these eigenmodes

decay exponentially, reflecting the lack of any long-range

correlations. Short-range correlations, however, may not

describe all cardiac tissue models. For instance, bidomain

models40 also include an additional Poisson equation for the

extracellular potential, generating long-range correlations.

Similarly, long-range correlations can arise as a result of

stretch-activated feedback.41 Investigation of the relation

between symmetries and the structure of exact coherent

structures in bidomain models is of particular interest both

because they provide a more realistic description of cardiac

tissue, compared with the monodomain models, and because

of the analogy with fluid dynamics where long-range cou-

pling is due to the pressure field, which also satisfies a

Poisson equation.
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