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A particularly simple model belonging to a wide class of coupled maps which obey a local
conservation law is studied. The phase structure of the system and the types of the phase transitions
are determined. It is argued that the structure of the phase diagram is robust with respect to mild
violations of the conservation law. Critical exponents possibly determining a new universality class
are calculated for a set of independent order parameters. Numerical evidence is produced suggesting
that the singularity in the density of Lyapunov exponenta &t0 is a reflection of the singularity

in the density of Fourier modda “Van Hove” singularity) and disappears if the conservation law

is broken. Applicability of the Lyapunov dimension to the description of spatiotemporal chaos in a
system with a conservation law is discussed. 1@97 American Institute of Physics.
[S1054-15007)00102-X

The essential features of an extended non-equilibrium behavior of spatially extended non-linear systems, especially
system can be effectively modeled using a coupled map in the strongly chaotic regime, where the analytical methods
lattice. Such a model includes particular couplings be- designed for weak nonlinearities become ineffective.
tween lattice sites, and can provide a straightforward For coupled map systems with an additive conserved
method for simulating extended systems with highly non- quantity several major points are still awaiting clarification.
linear local interactions. The question addressed in the First of all, what is the effect of the conservation law on the
current study concerns how the behavior of systems sub- structure of the phase diagram and the character of the phase
ject to certain conservation laws (conserving systemp  transitions? What is the connection between the conservation
may differ from non-conserving systems, unconstrained law and singularities observed in the density of Lyapunov
by such laws. The consequence of violating a conserva- exponents®*® and what is the origin and significance of
tion law is also considered. To this end we have con- these singularities? Another important issue is to determine
ducted a detailed study of a simple model for both con- Which parameters best describe the dynamics of an extended
serving and non-conserving non-equilibrium systems. system and what their limitations are. In particular, it is un-
The observed differences could help in the identification ~clear whether the Lyapunov spectrum provides any exclusive
of hidden conservation laws, and mechanisms for their information about the chaotic dynamics that cannot be ob-
violation, for real physical, chemical and biological sys- tained by other methods. And finally, we would like to know
tems. whether the reduction of the system dynamics to symbolic
form preserves the main characteristics of the chaotic dy-
namics and can provide us with the complete description of
I. INTRODUCTION the latter.
The model chosen should be relatively simple yet repre-
Coupled map lattice€CML) with an additive conserved sent most of the typical features under consideration. Most
quantity became a subject of intensive research rectmly. important, it should have a non-trivial phase diagram. With
On the one hand such CML's are often obtained as phenonthis in mind we pick the one-dimensional collection Iof
enological models representing the dynamics of a large nundiffusively coupled chaotic maps:
ber of interacting macroscopic structures. On the other hand
they are a natural result of finite-difference approximations Ul " *=ul'+(f(ul_,)—2f(u")+f(u',,)), 1)
of continuous nonlinear partial differential equations such as o N )
the Kuramoto—Sivashinky equatiéror a phenomenological with periodic boundary conditions imposed. The local map
Cahn—Hilliard equatichdescribing the nonlinear dynamics Was chosen to be
of several systems with conserved-order-parameter.
Models of this class are expected to represent several f(x)=ax+bz(1-2), z=frac(x). 2

typical non-equilibrium physical phenomena. For instance,  This CML can also be regarded as a finite difference

surface W:_:lveg,where the average depth of the fluid in the 55 oximation of the differential equation continuous in both
container is conserved, electrohydrodynamic instabilities iNpace and time

nematics with insulating plat€swhere the total charge is

conserved, disturbances in the atmosphere and ocean sys- gtu(x,t)zgif(u(xyt))_ 3
tems, where the totaldepth integratedheat is conserved,

and even some types of hard turbuleAdks such they are A differential equation of this form represents the competi-
significant as tools for studying the complex spatiotemporation between two opposing tendencies: generation of chaotic
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312 R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps

perturbations by the non-linear part tfx) and dissipation Note that at the upper boundary all exponents corresponding
of these perturbations by the diffusive coupling introducedto all Fourier modesk= 27n/L become real and positive,

by the second spatial derivative. whereas at the lower boundary tke = mode goes unstable
The model clearly possesses the conservation law: to a period 2 oscillation.
L Stability analysis of the square of the mép gives the
u= E E u"=const, (4) bqunda_ries of the Iingar stability region of the 2-cycle state
L= written in a slightly different form:

so that aside from the two parameters of the local mamnd u,, Iifi+niseven,
b we have an additional control parameter—the additive ui'=
conserved quantity, which is defined by the initial condi-

tion and is of critical importance to the behavior of the sys-  The dynamics is invariant under the transformation

®

u_, ifi+nisodd.

tem. u—u=1. As a consequence it turns out that there are two
We are primarily interested in the dynamics in the “ther- types of 2-cycles possible. Oriype-I) with
modynamic limit” L—o, although the numerics is obvi- [u ]=[u,]-1 ©)
- +

ously restricted to finite systems.

The outline of this paper is as follows. In section Il we ([ -] denotes the integer pamequires
study the phase diagram of the coupled map model. In sec- 2b
tion Il we introduce the symboli¢reduced description of u.=ulle—---——
the system dynamics. In section IV we discuss the quantita- - 4bu+1-2a
tive description of the reduced dynamics. In section V weand has a stability region bounded by the surfaces given by
study phase transitions in our model and determine theithe following two equations:
types. In particular, we study the effect of the conservation
law on the type of the transition and on the values of critical (1-2a+2b+4bu_)(1-2a-2b+4bu,)=—-1 (1D
exponents. In section VI we discuss the applicability of theand
Lyapunov dimension to the description of the dynamics in
the system. In section VII we present numerical data suggest- ;= i. (12)
ing the reason for the existence of the singularity in the spec-
trum of Lyapunov exponents. In section VIII we demonstratea; the upper boundary12) the k=7 mode becomes grow-
the effgct of violations of the gonservation law on t.he sys_ten]ng' while at the lower boundaril1) a Hopf bifurcation of
dynamics. The paper ends with a summary and discussion e |k| = /2 modes occurs. This is quite fortunate, since one
section IX. can obtain the analytic expressions for the phase boundaries

for a system of arbitrary size from the analysis of a system

Il. PHASE DIAGRAM with L=4.
The other(type-Il) 2-cycle is such that

1 , (10

Despite its simple form, this model has a very rich struc-
ture. Numerical simulations show that depending on the val- u_+u,
ues of the control parameters it can be strongly or mildly 2
chaotic, show spatiotemporal intermitten¢yTI), give rise
to pattern formation or simply decay into the spatially uni-
form stable state, offor L — even a 2-cycle in both space

=u and[u_]=[u.,], (13

and, for the local maj(x) given by eq.(2), it can only exist
at the stability boundary of the uniform state given by

and time. Both asymptotically regulgnon-chaoti¢ states atb 1
can be described by a single equation: u= b 4b’ (14)
ul=u+(—1)*"A, (5)

but can have an arbitrary amplitude= (u, —u_)/2, subject

In order to gain some insight into the phase diagram weonly to the condition(13).
analytically determine the boundaries of the stability regions ~ Figure 1 presents two cross sections of the parameter
of the two non-chaotic asymptotic states of the system. Linspace. We will denote the region where the uniform state
ear stability analysis of the spatially uniform state gives(1-cycle is linearly stable as the phase L1. Similarly, the
Lyapunov exponentéequivalent to the growth rateén the ~ Phase L2 will stand for the linear stability region of the

form 2-cycle state. As we are going to see later, the 2-cycle state is
not the only possible asymptotic state in this phase, so it will

Ap=In|1—-4(a+ b—2bu)sin2(77—n) ‘ (6) _be useful to introduce the additiqnal subdivision of this phase

L into subphases for a more detailed analysis.

From this one can conclude that the region of linear stability The attractors of the p_hase; T1 and T2 are chaqtlc.'The
of the uniform phase is given by two phases are not es.sentlally different. One can easily f|r_1q a
continuous trajectory in the parameter space that would join

atb _ i<u<a+b @) arbitrary points in phase T1 with those in phase T2 without

2b  4b 2b -’ intersecting any phase boundary. Although the dynamics of
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10 : : : Ruell! that eliminates any ambiguity in the choice of invari-
T 7 Discontinuous ant measures on the attracjor.
T Continiions Indeed, numerical data suggest that the attractor is
084 T Discontinuous unique in most of the parameter space. However it is not
Tl always the case: close to the boundary L1-T1 a frozen pat-

tern may form and the details of a pattern do depend on the
initial conditions. So, on the timescale used in our calcula-

tions (typically of order 1 million iterationsthe system did

not appear ergodic. Of course, that does not mean that the
system could not become ergodic on a yet larger timescale.

Another exception is the regions inside the ordered
phases L1 and L2, where two attractors, chaotic and non-
chaotic, can coexist. We will later discuss this situation in
more detail.

One of the objectives of this paper is to study the effect
of the conservation law on the dynamics of the extended
chaotic system. We therefore would like to follow the
changes in the parameters characterizing the dynamics as a

T ' T Discotimons function of the conserved quantity In further work we will
\ — Continuous fix the values of the other two parameters at 0.4,
o \ —— Discontinous b=1.3, which(as seen from the phase diagram, figwll

allow us to study the regimes of intergstrious chaotic as
well as periodic states

Looking at the phase diagram, one can expect that this
model should experience at least four bifurcations or phase
transitions asu is varied in the interval &u<1. (Since we
are interested in diverging correlation lengths near the tran-
sitions between different states in the- limit, and the
consequent possibility of universal exponents, we will use
the term “phase transitions” rather than “bifurcation$.”
Equations (11) and (120 give us u,~0.0520 and
Up=Uq— 0.5~0.1538 as the boundaries of the 2-cycle stabil-
ity region. According to eq(7) the uniform state loses its
stability atu.~0.4615 anduy~0.6538.

Phase transitions from ordered to chaotic states are com-
mon occurrences in coupled map latti¢ésThey may be
FIG. 1. Cross-sections of the phase diagram in a three-dimensional pararggntinuous or discontinuous. For continuous transitions we
eter spaceg) u vsa atb=1.3; (b) u vsb ata=0.4. The solid line corre- might expect the transitions to fall into various universality

sponds to a continuous phase transition. The dashed and the dotted lin ) ” ; X
denote the phase boundaries where discontinuous phase transitions betwddaSSes, characterized by scaling exponents for various diag-

chaotic and non-chaotic states occur. nostics of the chaos near the transition. In this case the tran-
sitions in CML'’s may be representative of transitions to spa-
tiotemporal chaos in more general extended non-equilibrium

the system is somewhat different in the two phases for the séyStems. Although the qualitative features determining the
of parameters used, this distinction is introduced mostly fotiniversality classes are not understood one expects that sym-
convenience. metries, such as the Ising symmetry studied by Miller and
An important property of the system is that despite theHuse!® and conservation laws, rather than the detailed prop-
large number of degrees of freedom the type of the attractogrties of the local maps, will be important.
(and therefore, the type of behavior, if one excludes long In particular, it has been suggestéthat under certain
transienty seems to be uniquely determined by the values oiery general conditionge.g., in systems with a unique ab-
control parameters, b and u and is independent of the sorbing statgthe transition should fall into the universality
details of the initial state. If there exists a single attractorclass of directed percolation, although some counter ex-
then the basin of attraction ié&almos) all configuration amples to this statement are known. It is nevertheless inter-
space. In this case averages over the attractor can be estisting to check whether any of the phase transitions in our
mated as the time average from a single initial condition, andnodel belong to the universality class of directed percola-
we can call the system ergodi@/Ne assume that, at least tion, since, as we are going to see below, the absorbing state
with respect to the numerical computation, there exists an our model is in fact unique for any choice of control
“physical measure” such as discussed by Eckmann angbarameters.
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Ill. REDUCED DYNAMICS —T T T T T

In order to understand the spatial dynamics of the system
better and to see the finer details of the phase diagram we
will (following Kanekd®) reduce the description of the dy-
namics to a finite number of states: in terms of this reduced
dynamics each site of the lattice can be marked either “lami- &
nar” or “turbulent” thus making up a set of laminar and
turbulent domains. Then one would naively expect a laminar
domain to be a region of the lattice with a relatively slow
chaotic dynamicgno large, if any, positive local Lyapunov
exponent¥); and a turbulent domain to be a region where | ‘
the chaotic dynamics is faéwith at least a few large positive — T T T T

" 0w owy oy oW LA 1
local Lyapunov exponenks Positive Lyapunov exponents u
will inevitably make the turbulent domains spatially irregu-
lar, while laminar domains tend to be spatially regular. FIG. 2. One-dimensional cross-section of the phase diagram. Measure of the

We will not put the terms “laminar” and “turbulent” in ~ set of turbulent domaingy , is plotted schematicallfactual numeric results

presented in fig.)&s a function of parameter. Solid lines correspond
quotes below, nevertheless one should Clearly underStarfgethe values for the linearly stable asymptotic states and dashed lines cor-

tha_lt the_se are j_USt a convenient notation and thus are r'esspond to the unstable asymptotic states. Two different linearly stable states
stricted in meaning. coexist in the sub-phasds2,,L2,,L1;. A locked chaotic state always

We need a simple criterion that will determine whether aforms inT1, and for some initial states ib1; as well.
given site belongs to a turbulent or laminar domaire will
only consider as laminar states those that are close to either
uniform or 2-cycle configurations The simple way to dis-
tinguish betweer(uniform) laminar and turbulent sites nu-
merically would be to call a sitg laminar on time stem if

For u,<u<u, the ordered state is reached through a
chaotic transient whose lifetime is usually very small, no
matter what initial condition is chosen, and thus the
asymptotic behavior dominates. For relatively small systems
lul1—ul|<e and|u]—ul,,[<e, (15  (L=400) this results in a fast decay of any initial state into a
limit 2-cycle. For larger systems the quiescent asymptotic
state may be completely regular as well, but it may also have
a few localized turbulent defects moving with unit speed
N |u;‘,1— uj through the homogeneous 2-cycle background. Defects mov-
J:T> € (16) ing in opposite directions eventually die out, colliding with
) o ) each other. Similar properties were observed in a number of
would be considered turbulent, which is clearly incorrect.one. and two-dimensional models featuring spatiotemporally
Therefore, the definition of a laminar domain has to be genjntermittent dynamicgsee Ref. 17 and references therein for
eralized to include a zig—zag pattern with a slowly varyingexample.
envelope of arbitrary amplitude: For u,<u<u, as well as foru,<u<uy the ordered
| A}‘—Aﬂ J state is only conditionally stabléstable to small perturba-
T <e. (17)  tions and most initial conditions result in a spatiotemporally
|Ai +Aj+1| chaotic asymptotic state consisting of a combination of lami-
In this particular model we set~0.01. nar and turbulent domains, with the laminar domains featur-
Based on this reduction one can distinguish betweelng exactly the same structure as the ordered state: the type-I
various types of dynamics in the system. Pictures represeng-cycle. Therefore the phase L2 can be subdivided into three
ing the spatiotemporal evolution of the system in symbolicsub-phases according to whether any turbulent domains are
form are so characteristic that one can easily determineresent in the asymptotic state together with the laminar
which part of phase diagram the system is in just by lookingoackground whose structure is the same throughout the
at the patterns. We will examine several typical picturesphase L2.
highlighting the most interesting phenomena observed in this  Figure 2 shows schematically tligme averagedfrac-
model. tion of the lattice occupied by turbulent domains in the phase
The behavior of our CML in the phase L2 is non-trivial. L2 as a function of parameten. In the sub-phasd 2
We already know that inside the phase there is a stable ofu,<u<u,) the asymptotic state is laminar. In the sub-
dered state. Our numerical data imply however that this orphases L2, (u,<u<up) and L2, (u,<u<up) the
dered 2-cycle state is stable in the non-linear sense only faxsymptotic state can be either laminar or spatiotemporally
values of u satisfyingl,<u,<u<u,<uy (figure 2. As we chaotic. It is interesting to note that the characteristic pat-
are going to see later, it is quite hard to determine the criticaterns produced by the turbulent domains are different in the
valuesu, andu, exactly, but they seem to approach the fixedtwo sub-phases featuring a persistent spatiotemporally inter-
valuesu,~0.063 andi,~0.082 in the thermodynamic limit mittent state. As a result one might expect to see two quite
L—oo, different phase transitions at=u, andu=u,.

and turbulent otherwise. The problem with this definition is
that any 2-cycle with amplitude,

i

A
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FIG. 3. Symbolic representation of the system dynamics close to the phase transition points: turbulent sites are marked black and laminar sit¢s) are white.
“Percolating” state atu=0.06; (b) “nuclear” state atu=0.09; (c) defect dominated state at=0.46; (d) frozen pattern ati=0.66. Lattice size is 256.

A pattern typical for the sub-phade?, is presented on tually immobile turbulent nuclei “mediated” by creation and
fig. 3(a). This state is very similar to some of the spatiotem-absorption of non-linear waves, propagating trough the lami-
porally intermittent states of @-dimensionglmodel studied nar background with unit velocity. This type of “nuclear”
by Chate and Mannevill® The major difference is that in STl state is characteristic for the sub-phas, .
our model turbulent domains typically have a larger size.  The phase L1 also features an internal structeee fig.
Since the absorbingamina) state is an ordered one and is 2). For u.<u<u; (sub-phasé.1,) any initial configuration
unique, we might expect a phase transitiomato belongto  decays quickly into a uniform stable state. In other words,
the universality class of directed percolatidn. the uniform state is non-linearly stable. Rgr<u<uy (sub-

In fact, this kind of STI state is not specific to discrete phasel1;) the uniform state is only conditionally stable and
extended systems. A very similar state can be observed ilarge deviations from it result in a spatiotemporally chaotic
some continuous models as well, for instafti a damped asymptotic state. The transition point separating the two sub-

Kuramoto—Sivashinsky equation: phases is estimated to hg~0.53 in the thermodynamic
o 220 A limit.
FUXY)= = U= GU= dU—udl, (18 Figure 3d) represents a frozen pattern, characteristic of
with 7=0.075. the chaotic asymptotic state of the system in the sub-phase

Figure 3b) presents another type of spatiotemporally in-L1; and in the phase T1 close to the boundary with(lase
termittent state that can be observed in the phase L2. Itwill denote this regiorir'l,). It is probably more appropriate
distinguishing feature is that it is composed of a set of vir-to call this type of dynamics locked chaos: the chaotic state
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is almost stationary in terms of reduced dynamics, withcondition for any given set of control parameters correspond-
chaos localized in turbulent domains. As was briefly mending to ergodic dynamics, i.e., everywhere except the sub-
tioned in section Il, the dimensions and locations of the turphaselL1;.
bulent domains depend on the details of the initial state of Our calculations show that in the chaotic stétsvay
the system. The laminar state in this sub-phase is uniform.from phase boundarigboth P,(l) andP,(l) decay exponen-
And finally, fig. 3¢) gives the reduced dynamics repre- tially. Even more important, typical lengthscales appear to be
sentation of critical behavior displayed by the CML in the almost independent of the value of the conserved quantity
chaotic phase T2 close to the boundary with L1. Here weu, beingl,~1 for laminar and~ 10° for turbulent regions.
encounter yet another example of a spatiotemporally interThis is consistent with the point of view that most of the
mittent state observed in our model. The laminar state isystem is in a turbulent state and the probability of encoun-
again a 2-cyclémore specifically the type-Il 2-cycleand it  tering a laminar region at any particular location is very
is also absorbing, i.e., a new turbulent doméire will call small (but finite and independent of the system siamd
these defects because of their small sz never originate decreases rapidly with increasing domain length, while there
inside a laminar domain, it can only be spawned by otheis no spatial structures defining alternative lengthscales.
defects). However a defect can be consumed by a laminar The behavior of length distribution functions might be
domain, or alternatively it can be destroyed in a collisionexpected to change substantially as the system gets close to
with another defect. the phase transition points. For example, if the transition is
The most prominent feature of this picture is “spontane-continuous the correlation length may grow and the critical
ous” creation and annihilation of turbulent puls@efecty  effects might introduce alternative lengthscales that would
moving in different directions with differenfout constant = modify the form of the distribution functions.
velocities. Therefore we may alternatively regard these de- We first examine the “percolating” STI state character-
fects as traveling waves. Naively one would expect that théstic of the sub-phasé.2,. Figure 4a) shows that both
condition é>1, where¢ is the correlation length, is neces- P,(I) andP,(l) decay exponentially for large This is com-
sary and might also be sufficient for the formation of a num-patible with the assumption that the phase transition at
ber of traveling waves. Numerical results for our model sup-u=u, might in fact belong to the universality class of di-
port this assumptioniin disagreement with the stronger rected percolatiof® It is interesting to note though, th&,
restriction?! according to which the correlation length  has two branches, one corresponding to even, the other to
should be comparable to the size of the system odd size of a domain. About the only useful information that
Nevertheless, since in the strongly chaotic regime thene can extract from this data is typical lengthscales of lami-
correlation length is of order one lattice spacing, the condinar and turbulent domains, which, far=0.06, appear to be
tion £>1 is usually only satisfied close to the hypersurfacedens of lattice spacings for both.
in the parameter space on which the correlation length di- In the previous section we saw that the STI states ob-
verges, i.e., where a continuous phase transition occurs. Theerved insidd_2, andL2, are considerably different. As a
is clearly the case of fig.(8): we have a continuous phase result fig. 4b), which corresponds to the “nuclear” state,
transition atu=u,~0.4615. differs from fig. 4a) substantially: thouglP,(l) still decays
Deeper in the chaotic phases T1 and T2, away from thexponentially, P,(I) does not, but has another peak at
phase boundaries, strongly chaotic behavior could be od+~200. This peak is not a finite size effe@thich can be
served. Here almost all sites on the lattice exhibit turbulenshown using a larger systg¢rand indicates the presence of
behavior, and only occasionally a laminar domain of a veryan internal spatial structure with characteristic lendth
small size is created and then quickly consumed by thétypical separation between the “nuclgiin the STI state.
neighboring turbulent sites. We would call this type of dy- The typical width of the “nuclei” is, in turn, determined by
namics strong chaos in contrast to the mild chaos, where aP(l).
chaotic dynamics is localized to turbulent domains, occupy- Numerical data for a larger systerh £4096) suggest
ing only a part of the lattice, while the rest of it is in the (in contrast with the results obtained by Chate and
laminar state. Mannevilleé®) a crossover type of behavior for the distribu-
tion of laminar domain lengths away from the onset of STI:

1% a<0, forl<l<ly,

IV. DOMAIN LENGTHS Pi()~ exp(—1/1y), forlsI.. (19

A quantitative description of the reduced dynamics is
provided by the probability distribution functior®(l) and ~ As a result, if the characteristic lengtl—o asu—u, we
P,(I) giving the probability for a turbulenfaminap domain  should expect a pure power law decayRfl) atu=u,,.
to have length. In order to calculate these functions numeri- Another interesting phenomenon can be pointed out in
cally we used a single random initial condition and let thefig. 4(c). Both P,(I) and P,(l) have two branches, one cor-
system evolve, counting how many times a lamiftarbu-  responding to even, the other to odd length of a domain. The
lent) domain of a given size formed. The resulting distribu- behavior of these branches is quite peculiar, they cross at
tions did not depend on a particular choice of the initialsome crossover length,~ 36:
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FIG. 4. Domain length probability distributiot+—Ilaminar P (1), @—turbulent P,(l)) in (a) “percolating” state atu=0.06, (b) “nuclear” state at

PP >PP1), 1<ly;

PP <P, 1>l

in the case oP,.

(21
The difference between the branches is largetfaven and
smaller forL-odd. Similar relations hold foP(l), though

(20

Domain Length

128

have a considerable probability of encountering a laminar
domain bounded by a pair of defects which move with equal
and opposite speeds. If at some particular timine length

of such a laminar domain was ev@tdd), it will remain even

(odd) for as long as these defects exist since the length will
increasg(decreasgby 2 at each time step.

the difference between the branches is less pronounced than It is reasonable to assume that the details of the “defect

Close to the boundary T2-L1 a typical stéfig. 3(c)] is

interaction” favor the creation of domains with length of a
given parity, say even over odd. As a result, one will see that

composed of a collection of laminar domains separated bthe probability of finding a laminar domain of small and
small turbulent defects. As we are going to see later, most ofven sizd is higher than the probability of finding a laminar

the turbulent domains tend to have a fixed lenigth6, in-
dependent of the distancm parameter spagédo the transi-
tion point.

domain with comparable odd site-1 (or | +1), thus split-
ting the functionP,(l) into two branches.

Since chaotic fluctuations tend to destroy the determin-

All defects move with a constant velocity, but while the istic predictions like the one we just discussed, we cannot
majority of defects is moving with the maximal speed make any rigorous conclusions about the dynamics of larger

v==1 the rest have a smaller speed<1. Therefore we

laminar domains. The numerical data suggests that the char-
CHAOS, Vol. 7, No. 2, 1997
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318 R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps

acteristic lengthscales determining the decay rates of the twadvantageous to introduce a lodaktensive order param-
branches are different, so they cross at some crossover lengtter. A good candidate seems to be the denBitgf the
I, determined by the average distances between the defedt®Imogorov—-Sinai entropy$gs:
moving with different speeds.

In the case of a frozen pattern one should not expect the |,— ESKSZE 2 Ay (22)
probability density to decay exponentially, rather it should L Lam=o
display several peaks, broadened due to the chaotic fluctu?t—
tions of the domain boundaries, at the lengths occurring in &
particular pattern and then go sharply to zero. This applies to
both P, and P,. Figure 4d) satisfies this prediction quite
well. The underlying reason of this kind of behavior is the
non-ergodicity of the system in the frozen pattern forming
regime.

The numerical results in fig. 4 imply that in the model
studied in this paper simply the ergodicity of the system
dynamics is a sufficient condition for the probability distri-

is clearly zero in the ordered phase and positive in the
sordered phase.

The calculation of the Lyapunov spectra is numerically
costly, so a different approach is used for comparison, based
on the reduced description of the system’s dynamics. In
terms of reduced dynamics the phase transition from the or-
dered to the disordered state can be represented as the ap-
pearance of a set of disjoint turbulent domains on the laminar
background. This leads us naturally to the measure of the set
of turbulent domainsp,, as another local order parameter,

btggtr;r?;gcrmtl?k?el:::tc()lr)relziociuefear? g;i);pgr?egtilgg?/deartedlesrlg:[[ZS describing how the laminar state becomes turbulent. In the
9 y " ordered statg; =0, in the disordered state<Qp,<<1.

On the contrary, the distribution of laminar domains is more : )
o . : . : . And, finally, let us introduce yet another order param-
specific and informativeP|(l) still decays exponentially in ) .
. 4 ! . eter, e;,. One can decompose the chaotic dynamics into
the strongly chaotic states. In the spatiotemporally intermit- ; ;
_ ) . o modes using the Karhunen—Loeve decomposftfoithe
tent state however the behavior Bf varies widely: it might : . ) . . :
; . . . mode intensityg, is defined as the eigenvalue of the integral
or might not decay exponentially. For instance, in case of the

“nuclear” STI state we observe the crossover from exponen—e quation,

tial to power law type of decay. Similarly to Ref. 19 we L

expect to see a pure power law decay at the transition point 21 K@D (1) =Exihi()), (23
1=

u=up.

where the kernel

V. PHASE TRANSITIONS .
K(i,j)=(uilu)n (29

A. Order parameters o ] ) )
is just the 2-point correlation function. Due to the transla-

As mentioned above, we expect to have 4 distinct phasgong| invariance of the systefin case of ergodic dynamigs
transitions, in which the system goes from either umformK(i j)=C(i—j) and therefore the eigenfunctiorg(i) are
state or 2-cycle to a chaotic state. The transition to chaos i]hst Fourier modes. Consequently, the eigenvalBgsare
this example of an extended system with a local conservatioaiven by the values of the static structure function

law does not follow the period doubling cascade or other

routes to chaos characteristic of low dimensional dynamical  Ey=S(k)=(|ug|?),, (25
systems, instead the system goes directly from a simple dy- n. . _
namical state(fixed point, period-2 to a chaotic state. In Whe_ﬁ]uk |tstth|e .F?une.tr trar]c]sft?]rm gf the map.vaga]lzle. q
other words it has a character similar to phase transitions i € total ntensity o € dynamics 1S defined as

Hamiltonian statistical systems where a symmetry of a basi%zEmEm' It mclud_es the contributions from the chaotic as
state is destroyed upon crossing of the critical point. Thiswe” the non—chaotlc. modes. .
feature is common to all the phase transitions in this model. In 'the pon—chaotlc phases L1 and L2 the stable stationary
A conventional dynamical systems approach to the treat§tate IS glven_by th_e general formuls). Therefore, the
ructure function might only be non-zero at two values of

ment of phase transitions in a deterministic chaotic systerﬁ:e wave vectok:
would be to calculate the maximal Lyapunov exponent, :
Amax- The bifurcation from the ordered to disordered state  S(0)=u?, (26)
then occurs at the values of the parameters where the expo- )

nent changes sign and becomes positive. In the case of CMRNd, for a zig—zag state,

with a conservation law, one of the exponents is always zero, S(m)=A2 (27)
thereforeh .« does not change sign, but increasesntinu-
ously or discontinuously, depending on the type of transi- In other words, if we want the order parameter to repre-

tion) from zero as the system crosses the boundary betweegent the strength of chaos in the system, it should be defined
the ordered and the disordered phase. The maximdhrough the intensity of the chaotic modes only. So we arrive
Lyapunov exponent can be considered as an example of at the following expression:

global (intensive order parameter. L2 -1 -

. Op the other h'and, in or.der to get some add|t|qnal in- o == gk, km=L, 28)
sight into the spatial dynamics of the system, it might be m=1 L
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1000 y - T lim I,=1{"=86. (32

E ] u—ug
This means that the onset of disorder at this particular phase
o 100 ) i transition is dominated by the creation of defects of the fixed
width IT". In particular, one can check that the width of all
the defects in fig. @) is about 6 lattice spacings.

All of the order parameters defined above take a zero
value in the non-chaotic phase and increase continuously
from zero in the chaotic phase as we move away from the
-l transition point. What is more interesting, they scale algebra-
ically with the deviation ofu from the transition pointfig.
n7), all with different critical exponents:

Nt (Ug— U)Ar, By ~0.8+0.03: (33
hoc(ug—u)?n, B,~2.0+0.05; (34

10 T T T
0.0001 0.001 0.01

FIG. 5. Correlation length diverges near the continuous phase transitio
The data for the lattice with 2048 sites is used.

which is identically equal to zero in any ordered phase and
larger than zero in any disordered phase. pr*(Ug—u)Pr, B,~1.0+0.01; (35

All order parameters introduced are expected to become _
asymptotically independent of the system dizen the ther- €on (U= U)?e, Be~0.5+0.01. (36
modynamic limitL —oe. One can use these values to compare the transition with simi-
lar phase transitions in other conserving systems, both con-
tinuous and discrete, and perhaps determine whether this

Most of the attention in this study was devoted to thetransition belongs to some universality class.
order—disorder transition occurring at the boundary L1-T2.

This transition is easy to study and it is expected to be quite .
common in models described by a CML with diffusive cou- & Critical exponents
pling and conserved map variable density. A closer look at the details of the phase transition at

The transition point is defined by the equationu=u, reveals that equatio35) is to be expected and that
f’(uc)=1/2. One can see from e(f) that atu=u, a period the transition should necessarily be continuous, as a result of
2 bifurcation occurs and thke= 7 mode becomes growing, the conservation law and a particular feature of the local map
making the uniform configuration unstable. f(x).

Details of the transitior(see the next sectiprsuggest As was mentioned in the previous section, the change in
that this transition is a continuodsecond ordgrphase tran- the growth rate of thek=7 mode is responsible for the
sition, and the numerical data support this conclusion. One afransition. One can determine from &) that foru close to
the clear indications of this fact is presented in fig. 5, whichu,, equating the Lyapunov exponent with the growth rate,
shows that the correlation length diverges as we approach thhe linear stability analysis of the uniform state gives
phase transition point, X~ 8b(u—uy), 37)

AL (29 which changes sign as the system moves across the transition
with critical exponentr estimated to be of order 0.8. The point, from the ordered state L1 to disordered state T2. At
correlation length is hard to measure however, and the prehe transition point the growth rate obviously vanishes, mak-
cision of this result is low, so that this value cannot be con-ing the zig—zag state neither stable nor unstable in the linear
sidered reliable. sense. In fact as mentioned in section Il, the zig—zag state

A better diagnostic of a diverging lengthscale is the av-given by eq.(5) (type-ll 2-cycle with arbitrary amplitude
erage length of a laminar domdliy=Z,IP () which is seen A can exist au=u, (and only atu=u.) and is stationary,
to scale[fig. 6(a)] as meaning that the amplitud& neither grows nor decays. This

- _ is in contrast with the result for phase I(&pe-l 2-cycle,

(U=, u~1.020.02, 30 where the amplitude of the stable state is defined by Xa).
which implies, in particular, that very close to the transition  This fact results in some interesting consequences for the
point the lattice configuration consists of a few large laminarsystem dynamics in the disordered phase close to the transi-
domains, separated by turbulent defects of finite size. tion point. Most of the lattice develops a zig—zag patiéim

The average length of a turbulent domajr=(IP(I)  8) similar to the one we just discussed,
does not scalé¢fig. 6(b)], but shows an exponential depen-

B. Continuous transition

dence on the distance from the critical point: u'=uet (= 1) A, (38)
U.—u where now the amplitudé,; is not a constant, but a slowly
Itwlf’ex% < ) u;~0.0086, (31)  varying function of the lattice site. The whole lattice cannot
Ut be in such a state far<u, because of the conservation law.
approaching the limiting value In order to compensate for the difference, several similar
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1000 T T T T

100+

() lu—u,l

I

10

1 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01

(b) lu—u,l

FIG. 6. Critical behavior of average domain lengtte: length of laminar
domains diverges algebraicallgh) length of turbulent domains converges

exponentially.

turbulent defects separating laminar domains form, with
fixed width | =I{" (see the previous sectipand the local

density of the map variable,

0.012

piot!-1
I_ > ul=u,—éu, (39
i=ig
which is lower than the critical value; by Su.
1 T ¥ Ll
g
£ 014 .
0.01 T T T T
0.0001 0.001 0.01 0.1
(a) lu—u,|
0.1 . :
= 0014 .
0.001 . .
0.001 001 0.1
(b) lu—ul

Here 6u, should not strongly depend an becauseu is
not a local parameter prescribing the dynamics. On the con-
trary, the local density in the turbulent defect is only deter-
mined by the structure of the interface separating two lami-
nar domains that have their local densities fixeduat
independent ofi. The structure of the interface, in turn, de-
pends primarily on the width of the turbulent domain, which
is seen to depend very weakly on Numerical results sup-
port this conclusion.

This results in the value of the conserved quantity being
“adjusted” to comply with the conservation law to give on
average

pilct pi(Uc—ou)=u. (40

Now we can easily extract the dependence,0bn u. Since
pitp=1,

(uc_ U)
pt= su (41)

This derivation confirms the value of the critical expo-
nent=1. Thus the conservation law is ultimately respon-
sible for the way this particular phase transition occurs and
for its type. The ordered state turns into a disordered one by
developing a set of very similar turbulent domaidgfects,

&vhich have a fixed lengtfthe deviation in eq(32) from the

;=6 is due primarily to “defect interaction” effecisbut
whose number increases as the system moves further and
further away from the transition point, so as to compensate
for the change in the density of the map variable in the lami-
nar regions with respect to the average value given by the
conservation law. We may therefore suggest that defects play

& 0.1 i
0.01 T T T T .
0.0001 0.001 0.01 0.1
© lu—u,l
1 T T T U '
=
& 0.15 i
0.0t T T r T r
0.0001 0.001 0.01 0.1
(d) lu-u/|

FIG. 7. Scaling of order parameters at the continuous phase transition calculated on the lattice with 2048 sitesmal Lyapunov exponem ., (b)
Kolmogorov—Sinai entropy density, (c) measure of the turbulent sgt, (d) intensity of chaotic modesy, .
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a more important role in order—disorder transitions in con- 1

serving systems than in non-conserving systéms. dn:n_|f(n)(uc)r n=3. (49)
The value of the critical exponent for the maximal '

Lyapunov exponen{3,~0.8 numerically obtained in eq. Depending on the values of parametei@ndds, we can

(33 is different from the one predicted by €87). However have either a subcritical or supercritical bifurcation at the
the latter value is calculated for a reference trajectory corretransition point. The special case studied in this paper corre-
sponding to the uniform configuration and since foxu,  sponds to

the system is in the chaotic state, the validity of Y) is do=de=-..=0 (50)

far from being obvious, no matter how small the distance to 38 '
the transition point is. We should also consider finite sizeand is intermediate between the two types of bifurcation.
effects. It is natural to expect that numerical and theoretical These special properties follow immediately for continua
values agree if there is just one positive Lyapunov exponendf a andb from the parabolic nature of the map we have
and therefore no mode mixing. From €6) it follows that  used. More generally we can consider maps of the form
the next mode to become growing is the mode with

k=m—(27/L) and this happens when f(x)=ax+bs(x), (52)
2 where s(x) is an arbitrary function symmetric about its
u=uc—Au, Au~_——. (42 maximum. By rescaling and shifting the origin &f and

160 choice of normalization o§ we can ses(0)=0, the maxi-
So we might expect the crossover behavior for the exponemhum of s to occur ats=1/2 and thers(1/2)=1, leaving the
By two parameter& andb as well as the conserved quantity
u to define the system. For this general family of maps the
Ar=08, uc—u=Au, “3) degenerate bifur():/ation to the per%od-Z state oyccurs orlJ1ly for
Br=1.0, u;—u<Au. (44  a=1/2 and foru at the maximum o8, i.e.u=1/2. Thus the
universality class is codimension-2—two parameters must be
tuned to arrive at this type of transition.
For other values o andb in (51) the bifurcation to the
. , period-2 state will be either supercritical or subcritical. For
cal calgufl_atlt?lns(at mostlfﬁo 9. . hat th | ¢ the supercritical case a stable laminar 2-cycle state develops,
the ﬁ:?ticelrzx{);i:r\:\gucar: setoe\gfur:,'[gg ;r(?rgqttk?evl?r:ign% which may be the first step in a subharmonic casqade. For
form of the Lyapunovhspectrum Close to the transition pointthe subcritical case a_ttractors de\_/el_op far away in pha_se
o ) . space, and a full non-linear analysis is needed to determine
the p05|t|ye Lyapunoy exponents are well approximated the type of behavior.
the following expression:

Am=Amax—C1M”, y=0.7+0.1. (45)

Together with the equation®2) and (33) this implies that D. Hysteretic transitions
the critical exponent corresponding to the Kolmogorov—
Sinai entropy density is given by

In practice the value ofAu was usually so small
(Au~3x10 % for L=128), that eq(43) was satisfied for
all deviations ofu from the critical value used in our numeri-

Now we turn our attention to the phase transitions that
we expect to occur at the boundaries L2-T1, L2-T2 and
L1-T1. As we are going to see later, all three are very simi-
' (46) lar, so we will concentrate on the transition at L2—T1 below.

There is a considerable difference between the transition
that yields the valug, = 1.94+0.20 consistent with eq34). 4t | 1-T2 and the transition at L2—T1: in the former case the

We might expect these exponents to define a universalitysymptotic state in both L1 and T2 is unique, while in the
class for the onset of spatiotemporal chaos. The argumenfgtter case the asymptotic state in the ordered phase L2 can
leading to the predictions for the values suggest that the clasgse either ordered or spatiotemporally chaotic. As a result we
may depend both on the existence of a conservation law anghould specify between which states the transition occurs.
on special symmetry properties of the map function. The |t will be convenient to introduce an additional param-
restrictions onf(x) can be obtained in the following way.  etery(u) characterizing the volume of the of the basin of

One starts with the relation between the amplitude ancytraction. For example, as we know from section IV in the
the local density of the type-Il 2-cycle for an arbitrary syb-phase 2, (u,<u<u,) the attractor is unique and there-

ﬂﬁ1+1
h= P y

f(x): fore the basin of attraction is the whole configuration space
1 1 with volumeuv,(u)=1-"1=1.
Eddn—|A“*1f(”>(u)= 7 (47) In the sub-phasé 2, the non-chaotic attractor coexists
n-o :

with the chaotic one, so we have<®@,(u)<1 for
Close to the transition point=u it can be rewritten as u,<u<u,. Since there are no other attractors in this sub-
o 3 5, phase, the volume of the basin of attraction of the chaotic
0==r(U=Ug) ATdzA"FdsA - -, 49 attractor is given by (u)=1—uv,(u). Numerical data sug-
wherer =f{"(u.) and coefficientsl, are defined as gest that most of the initial conditions In2, result in spa-
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tiotemporally intermittent chaotic asymptotic state and thereLyapunov exponents also grows showing the increase in the
fore typically v(u)>v,(u). Moreoverv,(u)—0 asu—u, number of chaotic modes. These results are consistent with
while v((u)—0 asu—u, . Ref. 24. But so far we do not have reliable data that will
At the pointu=u, the 2-cycle state loses its stability allow us to determine whether this transition in fact belongs
through a subcritical bifurcation. Outside the phase L2 thédo the universality class of directed percolation or not.
2-cycle state cannot exist and as the system crosses the phase There is a similarity between the transitionuat u, and
boundary all order parameters jump from zero in the phas¢he continuous phase transition @t u,: the laminar state
L2 to some non-zero values in the phase(3de fig. 2. Asa  becomes chaotic through the appearance of a set of turbulent
result one observes a discontinuous transition in the nondomains that gradually spread over the whole system. Nev-
chaotic state: the laminar state abruptly turns into the chaotiertheless there is an important difference: the STI state ob-
one. served inside T2 can never become completely laminar be-
However, there is apparently no phase transition in theeause of the conservation law, while the STI state inside
chaotic state at this point: the dynamics of the system on the2, may decay into a completely laminar state with time.
T1 side of the boundary is very similar to the dynamics of = The above discussion applies completely to the chaotic
the system evolving on the chaotic attractor on the L2 sidesub-phasd.2,, which corresponds to,<u<u,. One just
All order parameters change continuously as the systerhas to replace T1 with T2, with u, and u, with u,. In
crosses the boundary from L2 to T1. Sincgu)—0 as particular,y;(u)—0 asu—u, . One particular feature of the
u—u, , changing the direction does not modify this conclu- chaotic attractor in this sub-phase is worth mentioning: for
sion: the chaotic attractor of the phase T1 smoothly transd.1<u=0.15 the measure of the turbulent spt, grows
forms into the chaotic attractor of the phase L2. linearly with u.
At u=u, the situation is reversed. Obviously there could ~ The phase transition L1-T1 at= uq is also very similar
be no phase transition in the non-chaotic state. On the othée the transition L2—-T1. One just has to repldc2, with
hand, the chaotic attractor does not existLiy, therefore L1, u, with us, andu, with uy in the above discussion.
there should be some kind of phase transition in the chaotic Here, unlike the phase L2, the laminar state is the uni-
state: the order parameters are zerougu<u,, but take  form state, not the 2-cycle. The uniform state is unstable for
on non-zero values in the chaotic state figrru<<up,. Thus  u>uy, so in order for the laminar regions to be stable the
u=u, corresponds to the onset of STI. local density inside them should be in the range<u<uy
The coexisting attractors form a hysteresis loop in thecharacteristic of the ordered phase L1. This is in fact the
sub-phasd.2, (fig. 2). If we start atu>u, and gradually case: the value of the local density in the laminar regions is
decrease parameter the system will remain in the non- u;=~0.53.
chaotic state whilei>u, and then jump to the chaotic one at InsideL1; the number of positive Lyapunov exponents
u=u,. Conversely starting at<u, and gradually increas- grows linearly withp,, while the latter grows linearly with
ing parameteu makes the system remain in the chaotic stateu. This is the kind of behavior one expects in a system where
while u<u,. At u=u, the chaotic state becomes non- all chaos is localized in turbulent domains.
chaotic thus closing the loop. All three cases of hysteretic transitions observed in our
There is a numerical complication here: it is not possiblemodel are very similar and represent many of the character-
to establish the exact value of the critical parametgfor a  istic features of the specific route to chaos. In particular, STI
system of finite size. Fom—>u; the lifetime of the chaotic appears whenever the uniform absorbing state experiences a
transients becomes very long and one cannot reliably detesubcritical bifurcation at the transition poife.g., u=u,);
mine the type of the asymptotic state. On the other handhe hysteresis loop forms as a result of the bistability; onset
v(u)—0 asu—u, , which means that it becomes increas- of STI (e.g., atu=u,) can be either continuous or discon-
ingly hard to find initial conditions resulting in a persistent tinuous, depending on the types of defects supported by the
chaotic state as gets close tai,, especially for small sys- laminar(absorbing state; the lifetime of the “laminar” tran-
tems. Althoughv,(u) grows rapidly with the system size, the sients diverges at the onset; the confinement effects enhance
smaller|u—up| is the larger the system should be in order tothe stability of the absorbing state in relatively small
obtain the persistent chaotic state. Therefore one cannot reystems.
liably determine the values of the order parameters in the
chaotic state close to=u,,. VI. LYAPUNOV DIMENSION
As aresult, it is even hard to determine reliably whether  |n this section we will briefly comment on the applica-
the transition ati=uj in the chaotic state is actually con- pjlity of the Lyapunov dimension as a parameter character-
tinuous, although the correlation length seems to diverge afzing the dynamics in the system under consideration. This
proaching the transition point. The order parameters do ndias been used by a number of auth@rs., Refs. 23 and 10

provide a clear picture either. Bothandp; seem to increase to assess the strength of chaos in non-linear dynamical sys-
continuously from zero, buX .« and e;, jump discontinu-  tems.

ously as the system moves across the transition point to the The Lyapunov dimension is defined as

chaotic sub-phase2,. All order parameters gradually in-

crease as the system moves away from the transition point D =n+ Yn , (52)
toward the chaotic phase T1. The number of positive Vnt Vnia
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FIG. 8. Typical lattice configuration near the continuous phase transitiorFIG. 9. Lyapunov dimensio®, (@) and turbulent set measupg (+) as
(u=0.46): two large laminar domains with different amplitudés and functions of the conserved quantity calculated on the lattices with 128

A, are separated by two turbulent defects of the same width. Lattice size iand 2048 sites, respectively. Only the values in the chaotic state are shown
256. if two attractors coexist.

wherev,=Z=;_1"\; andn is such that,>0,v,, 1 <0. It was _ )
suggested in Ref. 1 thdd, is not defined for the system Because of the conservation law the only mechanism by

considered, because for the values of the control parameteY§lich such a perturbation can decay is diffusion from the
regions with high average density to the regions with low

used allv,’s were positive. i X ;
This conclusion appears incorrect. First of all, this only@verage density. This process can be described by an effec-

happens for some restricted set of control parameters. Féjve diffusion equation, which can be considered as a long

other values of parameters the Lyapunov dimension is pefvavelength approximation of the original evolution equation.
fectly well defined. Second, there is no problem with allAS @ result the decay rate of a long wavelength perturba-
tions should be given by a quadratic function of the wave

v,’s being positive: it only means th&d, =L—1, i.e., the
dimension of the attractor coincides with the dimension ofV€Ctork. _ _ _
In our model this functional dependency can be moti-

the configuration spaceL (variables with one constraint ! ) _ _
meaning that the attractor fills the configuration space. A¥ated by analogy with the analytic expression obtained for a

one can see from the fig. 9 this only happens away from th&t@ble non-chaotic phase L1. Since there is an exact 1-to-1

boundaries inside the chaotic phases T1 and T2, where tHfgorrespondence between the Fourier mode number and the
system is in the strongly chaotic regime wijth~1. decay rate in L1, we can formally rewrite e¢6), re-

The numerical results show that the Lyapunov dimen-8xpressing the number of the exponemthrough the wave

sion thus defined is a godalbeit costly to calculajemea-  Vectork:

sure of the strength of chaos in the system under consider- K
ation. It is a continuous function of control parameters and MK)=In|1—4(a+ b—2bu)sir12(—)
2

can in principle be used as an alternative order parameter,
though it proved to be hard to calculate with the necessarY_| 5 )
ere for k—0 we haveh(k) o« k< and the density of

(53

precision close to the phase transition points. X
Lyapunov exponents diverges,
VII. SINGULARITIES IN THE LYAPUNOV SPECTRUM n(\)x|N| Y250, \—0". (54)
A. Introduction - . .
One can attempt to apply a similar numerical analysis in

It has been suggestethat all coupled maps with a con- the chaotic phase. We start with writing the evolution equa-
servation law should have a singularity in the spectrum ofion (1) in Fourier space:
Lyapunov exponents at the valune=0. The origin of the

divergence of the number of Lyapunov modes with negative nil on LK)
exponents close to zero is generally explained by the follow- Uk =Uk—4(@+ b—2bu)sir? 2 Yk

ing arguments.
A spatially uniform autonomous system with a locally . E n.n
conserved density is considered. The sufficiently coarse +4bsir® 2 kg(,k Ui et - (9

grained asymptotic state of such a system is supposed to be
uniform, i.e., the density in the asymptotic state should noConsequently the Jacobidf},= dul " */gu, of the evolution

depend on the spatial coordinates. Now a long wavelengttransformation takes on the following form in the Fourier
density perturbation is imposed on such an asymptotic statspace:
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n LK 64 -

‘]kk’: 1—4(a+b—2bu)SIn2 E 5kk’ - 02
) | 0.18
= 48 0.16
n [k g 0.14
+8buy_,,sir 5] (1= bic)- (56) PRE: oz
) ) ) ) ‘5 0.08
Fourier modes are not eigenvectors of this mafumless all S 16 0.6
ug=0 as in the uniform staje but since the off-diagonal o

elements are of orde®(k?) Fourier modes can serve as a 0 T T

T
32

64

96

128

good first order approximation to the exact eigenvectors fol

- . L tor number
k sufficiently small. This argument suggests that wave vectol FREVELOVESE "

k should be a good label for the slow modaad small\) of 1 T T T
the system in chaotic as well as spatially ordered states. W
o . S— :
B. Structure of the Lyapunov vectors
Numerically the Lyapunov spectrum can be calculated
using the QR decomposition of the product of the Jacobian: = = ‘ y )
T | %,
‘]nanlean, (57) 2 ; . : “uuu i
whereQ is orthogonal andR—upper-diagonal to yield =
Jn.. 'JOZQan' . -ROZQan. (58) _JO 3'2 6I4 9|6 128

The columns oQ" give Lyapunov vectors and the diagonal (b) Lyapunov vector number

elements ofR"—the corresponding Lyapunov exponents on

the n-th step: FIG. 10. Power spectrurte) and Lyapunov spectrurtb) at u=0.7, inside

the chaotic phase T1. The dominant contribution to the Lyapunov vectors

1 corresponding to smaN comes from the long wavelength Fourier modes
Am==In(R},) ={IN(Ry,))n - (59 only (the white dashed line gives the fit provided by €§3) with

n a=0.6). As a result a pronounced singularity appears in the Lyapunov

Figures 10-12 show several typical time aVerag(_msspectrum(exponent density becomes singulanat 0). Lattice size is 128.
power spectra of the instantaneous Lyapunov vectors along
with the corresponding Lyapunov spectra. The power spectra ) )
are represented in the form of the density plots showing thé®ng wavelength Fourier modes and there is at least an ap-
relative contributionP,,(k) from the Fourier mode with Proximate 1-to-1 correspondence between the exponent
number kL/27 to the m-th Lyapunov vector, while the number and the dominant Fourier mode number for the rel-
Lyapunov spectra show the correspondence betweefVant vecto_r[fig. 10(@)]. It is therefore natural to e>§pect the
Lyapunov vectors and exponents. The power spectra are nofMall negative Lyapunov exponents to be determined by the

malized, decay rate of the corresponding Fourier mode.
In the long wavelength limik— 0, the latter could be
2 P, (k=1 (60) determined from a hydrodynamic analySisf the problem.
r ’ It was arguedithat at long wavelengths the effect of all short

wavelength corrections to the equation of moti{é6) can be
combined into a stochastic noise term and a renormalized
diffusion constantD, producing an effective(discrete
Langevin equation:

so thatP.(k) can alternatively be interpreted as the prob-
ability distribution functions.

We would like to mention that due to the ergodicity of
the dynamics the power specti@s well as Lyapunov spec-
tra) should be reproducible, i.e., a different initial configura- ~ uf**—ul= — Dk2ufl+ k?z}, (61)
tion with the given set of control parameters should produce . .
the same spectrum and this is found to be the case. It iVsV'th a o-correlated noise term
interesting to note though, that we obtained a unique form (" nin/’>:|35“/5nn/' (62)
for the spectra even for the values of the control parameters
producing frozen patterns, where we expect ergodicity taAccording to the Central Limit Theorem such noise averages
break down. to small values on large lengthscales and therefore, for small

We start with the spectra calculated inside the chaotik, the decay rate of the Fourier modg is equal to—Dk?.
phases T1 and T2. One can easily notice that a singularity Because of the conservation law one of the exponents in
appears in the spectrum of Lyapunov exponédfigs 10(b)]  our model is always equal to zero. Let it bgo. It obviously
when the dominant contribution to the Lyapunov vectors,corresponds to the Lyapunov vector wiki=0. Typically,
corresponding to a slow evolutidsmallA) comes from the for small A, the relation between the numben of the

CHAOS, Vol. 7, No. 2, 1997

Downloaded-29-Aug-2003-t0-130.207.165.29.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/chaos/chocr.jsp



R. O. Grigoriev and M. C. Cross: Dynamics of coupled maps 325
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FIG. 11. Power spectrurte) and Lyapunov spectrurtb) at u=0.3, deep  FIG. 12. Power spectruita) and Lyapunov spectruifb) at u=0.455, close
inside the chaotic phase T2. The dominant contribution to the Lyapunouo the point where the system experiences the continuous phase transition.
vectors corresponding to small comes from the long wavelength Fourier There is a considerable contribution from the short wavelength Fourier
modes, but due to the contribution from mid-wavelength modes the singumodes to the Lyapunov vectors corresponding to stualésulting in the

larity in the exponent density becomes much weaker. Lattice size is 128. disappearance of the singularity. Lattice size is 128.

Lyapunov vector and the dominant long wavelength FourieON€ can easily check that the numerically calculated expo-
modek can be represented by the following simple form: nents are in fact given quite precisely by this expression with
D~=~0.32 for 0<k= /4. So we recover ed54), but now for

20 the chaotic state.

kmzaT(m—mO). (63 Figure 11 provides us with another typical example of
the spectra corresponding to the strongly chaotic dynamics,

now calculated fou=0.3. One can notice that the singular-

Parametersmy and «~0.5 are determined from the ity in the Lyapunov spectrum in fig. 1) is still present
Lyapunov spectrum and power spectrum, respectively yap P 9. P '

(My=0,=0.5 inside L1, although the quadratic fit provided I6§5) is quite poor com
L pared to the one fon=0.7.
The Lyapunov exponent,, is in fact calculated as a . _
. L The power spectrurfig. 11(a)] shows that, similarly to
time averaged decay rate of the corresponding instantaneoys . : o
: . e previous case, the dominant contribution to the Lyapunov

Lyapunov vector. Since the time averaged power spectrum . :

X . S . vectors corresponding to slow evolution comes from the long
Pn(K) gives the averaged relative contribution of the Fourier

modek to them-th Lyapunov vector, we might estimate the wavelength modes, but now the distributiBg,(k) is much
broader. This means that we can no longer approximate
value of them-th exponent as

Pm(k) by 6k _« and there could be considerable corrections to
eg.(65), which does not however change the general conclu-
Am=— Dz Pm(K)k2. (64) sion about the presence of the singularity in the spectrum of
K Lyapunov exponents at~0.

. , These arguments work well in the area of strong chaos,
As one can deduce from fig. GEO f_or u=0.7,Pm(k) is where the large scale dynamics is determined by the long

sharply peaked akr,, so approximatingP(k) =i« We o elength modes, i.e., modes wike 1/¢, whereé is the
readily obtain that the form of the Lyapunov spectrum forcorrejation length in the system. When we approach a con-
small negative values of the exponent should be given by tinyous phase transition, though, the correlation length grows

and becomes comparable to the system &iz&Vhen this

Am~—DKkg, m=mg, mo+1,... . (65  happens, the nonlinear terms in €§5) become relevant on
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every scaltand their effect can no longer be emulated by an 1 . . . .

effective noise term. This results in a strong coupling be- .

tween different long wavelength modése., modes with .

k~1/L) and therefore the approximate 1-to-1 correspon- 0751 ' 1

dence between the mode number and its growth rate is com- ’

pletely destroyed. This means that there is no reason to ex-

pect the divergence of the number of slowly evolving modes | 05 . i

anymore. R
Figure 1Za) suggests that there is a strong mode mixing P . i

in the system and it is not possible to extract the dominant .

contribution to the Lyapunov vectors. In fact, we really have .

a continuous phase transition at=u., very close to 0

u=0.455, and it is responsible for the disappearance of a 11 13 L5 17 19 2.1

singularity in the spectrum in fig. 18). One might still hope b

to find a trace of a singularity at this particular valueuaby

going to much larger system sizhigher resolutioh

FIG. 13. Effective diffusion constant as a function of paramétea=0.4
and u=0.8. The values oD (+) are determined using the Lyapunov
C. Positive side singularity spectrum of the lattice with =128, assumingr=0.5.D¢; (®) is obtained
from the dynamic structure function calculated for 0.017r on the lattice
Some models with a conservation fagre found to have  with L=2048.

a density of exponents diverging on the positiveside,

n(\)—o, A—0", (66) . . . .
not coincide with the ones obtained through the dynamic

although this feature is not considered very common. Thistructure functior8(k,t). According to(61) it is defined(see
divergence is present in our model tfsee fig. 1(b) for Ref. 1) as
exampld, but is somewhat weaker than the divergence at > _DK2

e . S(k,t)=Bk%e Pk, (69
negative\: for some values of the parameters it can be
barely seen even for large latticéypically L>10" is nec- It will be convenient to distinguish these using the notation
essary. ForA—0" the spectrum can usually be fitted quite D for the former andDs; for the latter. In the regions of

precisely by a quadratic function, parameter space where the effective Langevin equation is
~ 5 applicablgland hence eq69) is valid] these approaches can
Am=D(Mm—mg)®, m=mo,me—1,..., (67)  give substantially different results. This is yet another indi-

cation that equatio64) can only provide a very crude esti-
mate and should be amended considerably to obtain adequate
h_results.

which means that the singularity af\) is inverse-square-
root on both positive and negative sides.
Numerically calculated spectra show no sign of smoot

ing out of the singularity(on either sidg with increasing It is instructive to compare how;s and D change if
resolution(increasing size of the systérap to L =512 [the parameteb is varied while botha andu are fixed(see fig.

results forL=128 andL=512 are presented in fig. (@] 13). Foru=1.3D;>Dg; and they both grow with increas-

and also suggest that the &7) could be good for positive ing b. Numerical data available so far suggests that
\ as large as 0)3,,,. D\s/Dgs—1 asb—oo (for strongly chaotic systems

Figures 108) and 11a) suggest that it is possible to Forusl.BI_Dszrop_s almost to zero indicating that there
extract the dominant Fourier modes corresponding to Sma"s_al_most no qllffu5|0n in the syst_em. Inde_ed we know that
positive . Again their wave vectors scale roughly linearly this i the region of locked chaotic dynamicBl(). So this

with my—m and therefore equatiof63) should be replaced result is not surprising: the formation of a locked structure
by prevents diffusion(on any scale larger than some typical

scale determined by that structur@&/e cannot probe smaller
~ 27 scales using the dynamic structure function because the ef-
km=a ——(mp—m), (68)  fective Langevin equatior(61) is not valid for k large
enough, but supposedly diffusion survives there. It is inter-
for m<m,. Equation(64) though should be abandoned in esting to note however that locking has apparently no effect

favor of a more precise one, preferably derived directly fromon the Lyapunov spectrum: the changéip is very gradual
the evolution equatiofs5). We intend to explore this ques- acrossT1.
tion in more detail later.

VIIl. ROLE OF THE CONSERVATION LAW

D. Effective diffusion constant Now that we have studied the dynamics of the CML

We should also mention that the values of the effectivewith the conservation law quite thoroughly and compared the
diffusion constanD numerically obtained from ed65) do  characteristic phenomena with those observed in CML's
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without any conservation laws we would like to discuss 0.15 . r T
whether the distinguishing features are really explained by 3
the presence of the conservation law. 3
It is often very hard to distinguish the effect of the con- 0104 % 1

servation law on the dynamics of a system from the effects
introduced by other aspects of the evolution equation. Here
we would like to explore some consequences of violating the
conservation law, trying to retain the structure of the original
equation (1).

First of all, we are looking for internal homogeneous
perturbations that would violate the conservation law of eq.
(1), but would preserve the structure of the equation. This is ~0.05 Sy

easily furnished by the following modification of the original 052 0.57 062 0.67 0.72
evolution equation: (a) Lyapunov vector number / L

« 0.05 -

u = ul eg(u) + (F(uig) = 2f(ul) +f(ufl ), 02 - ' -
(70

where the local map functiof(x) is the same as above and 014 = 4
a perturbatiorg(x) is introduced. One can easily notice that

in the simplest case of the uniform state it reduces to the
equation determining the evolution of the average density, < 0 "o . 1
=u"+eg(u"). (71

un+1

This equation, though, does not provide us with any reliable -1 1

information concerning the dynamics of the average density :
in the case of a non-uniform state. 0 i

Second, in order to be able to compare two systems, one 55 65 75 85 05
with and one without the conservation law, we should ensure  (b) Lyapunov vector number
that the latter is violated only “mildly.” In other words, we
would like the perturbed system to have a phase diagram th@{c. 14. “Slow” part of Lyapunov spectra of the unperturbed system and
could be compared to that of the original system. In particuthe system with nonlinear “dissipative” perturbatiofn) The spectrum of
lar we would like to preserve the dimensionality of the pa-the perturbed systenug=0.8, L =128) with =0.2 appears to be shifted

. . L downwards and tilted with respect ta) the spectrum of the unperturbed

rameter space. Since IS_ no Ionger Con_serVEd it Is not a system (1=0.8). Here the data for two lattice sizels=128 (@) and
parameter of the_dynamlcs. |n5teaq we 'ntro_duce another pa=s512(+), is superimposed to show the finite-size effects. The density of
rameteru, that will enter the evolution equation through the exponents is seen to be singular on both the positive and negative side. The
perturbation functiorg(x). solid and the dashed lines give the quadratic fit provided by @&3%.and

By “mild” conservation violation we also mean that the (6% respectively.
change of the originally conserved average densitiuring

any single time-step is sufficiently small:
luntl—un|<1. (72 9(x)=(ug—x)°, (74)

We would also like the fluctuation of the average density and chooses=0.02. The dynamics of the perturbed system
to be bounded, such that seems qualitatively very similar to the dynamics of the un-
perturbed system, but now the average density not con-
served and fluctuates abowg with a standard deviation of
for some finitesu at any time stem. Then we would be able order few percent.
to compare the dynamics of the perturbed system with that of Figure 14 of the Lyapunov exponent spectra focuses on
the original system with conserved quantity= u,. the parts corresponding to slow evolutiGmall \). Com-
Our primary interest in this section is the relation of the paring the spectrum of the modified system with that of the
conservation law to the existence of a singularity in the speceriginal system fou=u,= 0.8, one can easily notice that the
trum of Lyapunov exponents. It is thus reasonable to comsingularity is clearly present in the conserving case, while
pare the perturbed system with the original one, described bthe spectrum of the perturbed system appears to be similar to
the equation(1), at the value of the conserved quantity the spectrum of the original system, but slightly tilted and
u=0.8, where the conserving system displays a strongly chashifted downwards.
otic dynamics and has a Lyapunov spectrum with a pro- In order to better understand the origin of such a meta-

Up— du<u"<ug+ du, (73

nounced singularity at=0. morphosis it is advantageous to use another type of pertur-
We will start with the following choice of thénon-  bation which is a lot easier to interpret and study analyti-
linean perturbation function: cally:
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FIG. 15. “Slow” part of Lyapunov spectra of the system with linear “dis- FIG. 16. “Slow” part of Lyapunov spectra of the system with “mixing”
sipative” perturbation. For small perturbatiqa) e=0.01 as well as for  perturbation. For small perturbatidqa) e=0.1 the tangent linédashedl at
large perturbation(b) e=0.1 the spectrum gets shifted downwards by the inflection becomes tilted. The singularity disappears. For very strong
S\~ — e with respect to the spectrum of the unperturbed system. Latticeperturbation(b) e=5.0 the inflection vanishes completely. Lattice size is
size is 128 andi,=0.8. The dashed line gives the quadratic fit provided by 128 andu,=0.8.

eq.(77) with D=0.33[assuming thak is given by eq(63) with «=0.5].

Comparing the spectra of Lyapunov exponents of the
modified systentfig. 15) and the original systerffig. 14(a)]
g(x)=up—Xx. (79 for u=uy,=0.8 we see that the numerically obtained spectra
Sinceg(x) is linear, equation(71) now describes the evolu- ©f the perturbed system follow the prediction of the Lange-
tion of the average densityfor an arbitrary initial state. For Vin equation(76) quite precisely for small{=0.01) as well
€>0 (0.00%k< e<0.1 was usexthe asymptotic state is a con- as for relatively strong{=0.1) perturbations.

figuration withu=uj. We expect the negative shift of the “slow” part of the
The effective Langevin equation Corresponding(fﬁ) SpeCtrum to be attributed to the diSSipative nature of the per-
should read as turbations used above. In fact we could have a positive shift
) ) or no shift at all. In order to see this we pick the non-linear
du(x,t)=—eu+Ddzu+t g n(X1). (76)  perturbation functiorg(x) with the first derivative which is
On large lengthscales noise averages out and we obtaltPt negative-definite:
the following dependence of the growth rate on the wave 20—
vector: g(x)= Y Wox) (78
' , ((Ug—X)*+ %)
A(k)=—e—DK", (7D With e>0. We usedy?=0.001 and 0.0% e<5.
i.e. we should expedfor smallk’s) the Lyapunov spectrum Equation(71) does not hold anymore, but the numerical

of the perturbed system to be shifted downwards bydata suggests that the dynamics of the system is ergodic and
S\ = — e with respect to the spectrum of the conserving systhe averaged density in the asymptotic state fluctuates
tem, while retaining the same type of singularity. The totalaboutu, with fluctuations being again of order few percent.

decay rate is then determined by a linear combinatiin Figure 16 shows the Lyapunov spectra of the perturbed
least for small enough couplingf the diffusion with local  system withuy=0.8. This figure suggests that the spectrum
dissipation. is indeed shifted in the direction of positive rather than nega-
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tive values of\. A small perturbation §=0.1) results in a and the uniform state in the presence of a “dissipative” per-
small distortion of the original spectrum: the slope of theturbation. We can say that, although the phase diagram is
spectrum at the valua=0 on both positive and negative sensitive to the violations of the conservation law, it is robust
sides becomes non-zero, i.e. the singularity in the density ofvith respect to sufficiently weak violations.
Lyapunov exponents disappears. The slope increasesewith ~ Since the changes in the phase diagram provoked by
and for sufficiently strong perturbatior & 2.0) all traces of perturbations are found to be continuous, it is reasonable to
the singularity vanish. expect that the phase transitions which were 1-order in the
These examples suggest that there are, in fact, two difeonserving system will remain 1-order after a perturbation is
ferent aspects of the singularity in the Lyapunov spectrum ofmposed. This leaves us an opportunity to observe how the
a system with the conservation law. The first one is the pressharacteristic exponents change with increasing perturbation.
ence of a singularity at some value=\A,. The numerical In our model the continuous phase transition at the boundary
data obtained suggests that the singularity survives in th&2—L1 seems to be a promising point of investigation. Nu-
special case of the linear perturbation functgix). A non-  merical data we have at the moment does not allow us to
linear perturbation results in the disappearance of the singwanswer an important question of whether the universality
larity. The Jacobian of a perturbed system can be written aslasses change if the conservation law is violated, but we

-1 plan to return and investigate this later in more detail.

- g9 (up)-
Jhe=dn.+e o H Z ug 8 (;1 k|—k+k’),

‘S - IX. CONCLUSIONS
(79

We have systematically investigated the properties of a

whereJy,, is the Jacobiari56) of the conserving system. If coupled map lattice with dynamics constructed to satisfy a
g(x) is non-linear the off-diagonal elements .d)Ek, become conservation law and to show spatiotemporal chaos.
of orderO(1) instead ofO(k?). As a result Fourier modes The conserved quantity provides an additional control
are no longer good as an approximation to the exact eigerparameter: as its value is changed, a rich phase diagram with
vectors even for smak. The wave-vectok can no longer a number of phase transitions between ordered and disor-
label the slow modes of the system and therefore there is ndered states is found. Both continuous and discontinuous
reason to expect the singularity in the density of Lyapunowransitions occur, as in coupled map lattices without a con-
exponents to remain. It becomes “smoothed out” by theservation law. The basic structure of the phase diagram is
perturbation. given by the linear stability boundaries of the ordered

The second aspect is the actual valuengfin case a phases, although near the discontinuous transitions bistability
singularity is present. We already saw that imposing lineamay occur. Increasing the non-linearity, determined by the
perturbation75) made\ , become negativief. (77)]. Thisis  parameteib [see fig.1b)], renders the spatially uniform or-
a consequence of the shift of the “slow” part of the spec-dered phaséphaselL 1) unstable. For &u<1/2 the linear
trum as a whole in response to some local effects, e.g. dissinstability of the uniform state occurs via spatial period dou-
pation. bling (the zone boundary mode goes unstabl&or

We may therefore suggest, that since all known CML’'sa<u<1/2 the transition is immediately to a chaotic state,
with an additive conserved quantity possess a spectrum afhich takes the form of an increasing number of “turbu-
Lyapunov exponents distinguished by the presence of thkent” regions of roughly fixed sizédefect$ moving through
singularity at\ =0, a conservation law is a sufficient condi- the “laminar” background. This transition is continuous
tion for the existence of such a singularity. It seems to be avith a diverging correlation length and other scaling ap-
necessary condition as well, at least in the class of mddgls proaching the ordered state. Fork@<a the transition to
studied in this paper. The singularityXat# 0 indicates that chaos is through a series of two subharmonic bifurcations,
there is a mechanism dfocal) dissipation concurrent with passing first to an intermediate 2-cycle state L2 phasé
diffusion and if this is eliminated the system becomes strictlyThe onset of chaos frorh2 is hysteretic. A complete sub-
conserving. This refinement might be helpful when lookingharmonic cascade is not observed. For<li2<1 the insta-
for hidden conservation laws using Lyapunov spedtna-  bility of the L1 phase occurs through modes of all wave

meric or experimental. vectors going unstable together, and the appearance of chaos
All three types of perturbation studied above are seen tds also hysteretic with frozen chaotic domains developing.
have an effect on the phase diagram. leerO phase dia- As in thermodynamic systems, the phase transitions can

grams in three-dimensional parameter spaced,() and be conveniently described by the use of order parameters,
(a,b,up) obviously coincide. Numerical data for all types of although since we are concerned with the growtkiebrder
perturbation studied suggest that a gradual increase of thbe choice of the appropriate order parameter here is by no
parametefe makes the phase diagram of the perturbed sysmeans obvious. In the case of the continuous transition we
tem change continuously. The boundaries of the phases shiftnd that a number of proposed order parameters scale with
making some of the phases shrink or completely disappeatistance to the transition point, thus allowing the evaluation
(e.g., sufficiently strong perturbation of any type obliteratesof critical exponents, which may help to pin down whether
the phase LR Other phases may expand as the stability ofuniversality classefor the onset of spatiotemporal chaos ex-
their basic state is enhancéak is the case for the phase L1 ist. An interesting question is whether the conservation law,
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which clearly affects the dynamic correlations, also changeand the proportionality constant is greater than 0.5 which
the exponents and the universality clé$such a classifica- would be the value from simply counting the Fourier modes.
tion existg of the phase transitions. The transition frdar Indeed, there is also a concentration of spectral power to-
to T2 in the conserving model and in perturbed versionsvards smallk on the positivex side, with a peak wave
where the conservation law is weakly violated should pro-vector which again appears to scale linearly with—m for
vide a good arena for investigating this. m sufficiently close tamny. Hence the long wavelength Fou-
A symbolic description of the dynamics, reducing therier modes contribute appreciably to the Lyapunov vectors
complex states to regions of lamin@rdered and turbulent  corresponding to small positive as well as negative expo-
(fluctuating regions is useful in describing the chaotic statesnents, which explains the deviation affrom 0.5. There is
near the transitions. In particular we see that the onset afo understanding from the hydrodynamic approach of the
chaos always happens in the form of turbulent regions gradupositive eigenvalue long wavelength modes and associated
ally spreading over the laminar background. Whenever thasingularity in the density of exponents.
chaos appears to grow continuously, the turbulent fluctua- Adding the linear perturbatioti’5) makes\, non-zero,

tions appear in the form of turbulent defects, usually propaput k remains a good label. Non-linear perturbations that
gating across the system, with sizeof order a few lattice  eliminate the conservation law however destroy the singular-
spacings. Similar results were obtained by Kartéor the ity, and presumably in this caseis no longer a good label.

non-conserving CML, although in our case there seems 10 béh s the conservation law appears to be a sufficient condi-
a stronger tendency for the defects to propagate with corygn for Lyapunov spectrum singularity, but a complete

stant velocity. _ . quantitative understanding of this association remains
We have also studied the Lyapunov eigenvalues ani’acking.

eigenvectors of the chaotic states. A conspicuous feature of
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