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Abstract

This study revisits the problem of free vapor condensation in the filmwise regime by constructing and solving a comprehensive
transport model that describes heat and mass transport through the gas phase, interfacial and thermal resistance of the condensate
film, and heat conduction through the cooled wall in a self-consistent manner. We have shown that it is possible to obtain an
analytical solution of the model which describes the net condensation fluxes in the presence of an arbitrary amount of noncondens-
ables. This solution demonstrates that the overall thermal resistance reduces to a sum of the thermal resistances of the wall, the
condensate film, the interfacial resistance, and the diffusive resistance of the gas layer only in the limit of infinite thermal resistance
of the gas layer, but generally has a more complicated form. Finally, we derived an analytical solution for the condensate film
thickness profile which generalizes Nusselt’s classical laminar condensation solution. Both finite thermal conductivity of the wall
and thermocapillary stresses were shown to play an important role, noticeably altering the thickness profile.
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1. Introduction

Film condensation has been a widely studied topic due its
relevance in many areas of technology. Fundamental under-
standing of vapor condensation is crucial in a wide variety of
thermal management technologies that rely on phase change. A
particularly important application is to heat exchangers, where
vapor condensation on solid surfaces is often the limiting factor
which controls heat transfer.

The first theoretical model of vapor condensation was de-
veloped by Nusselt [1] who assumed the thermal resistance is
due entirely to the condensate film. Despite this and several
other simplifications, Nusselt’s theory has accurately predicted
the heat transfer coefficient for condensation of pure vapor on
highly conducting surfaces. As Othmer [2] discovered later,
noncondensables have a large impact on condensation; the pres-
ence of as little as 0.5% of air in steam reduces the heat transfer
coefficient by half. His results were later confirmed by a num-
ber of other studies [3, 4, 5, 6, 7] of steam condensation on
vertical flat and cylindrical surfaces. The decrease in the heat
transfer coefficient is due to the accumulation of noncondens-
able gas at the vapor-liquid interface, which forms a concentra-
tion boundary layer limiting the transport of vapor to the cold
surface [8].

There is extensive literature devoted to this subject, with the
bulk of theoretical studies focusing on condensation in the pres-
ence of forced convection. Forced flows tend to be turbulent,
which makes the quantitative description of transport in the gas
phase challenging. As a result, theoretical models tend to be
rather arbitrary, with dependence on many important parame-
ters expressed in terms of correlations based on empirical data
rather than solid fundamental understanding of the problem. In
order to make progress, the present study will instead focus on

condensation in the presence of free convection.
Given that noncondensable gases tend to dissolve in liquids

and are effectively impossible to remove completely, a compre-
hensive description of the condensation problem and the asso-
ciated heat transfer has to involve at a minimum the following
components. Transport of heat, momentum, and mass should
be considered in the gas layer to account for the adverse effect
of noncondensables. Transport of both heat and momentum
should be considered in the liquid condensate film. Finally, heat
transport needs to be considered in the solid wall to account for
finite conductivity. The transport equations in the solid, liquid,
and gas layer should be solved subject to the appropriate bound-
ary conditions at the solid-liquid and liquid-vapor interface. To
our knowledge, only a few studies [9, 10] have considered such
a comprehensive and self-consistent model, but only numerical
analysis has been performed.

Analytical (and even semi-analytical) results are extremely
rare and involve considerable simplification of the problem.
One of the most popular approaches known as the diffusion
layer theory was introduced by Peterson and coworkers [11, 12]
only considers transport in the liquid phase and the gas phase
and leads to a rather simple, effectively one-dimensional de-
scription. The concentration and the temperature boundary
layer are assumed logarithmic, which allows the heat flux to be
expressed in terms of the condensation and sensible heat trans-
fer coefficients. Both coefficients, however, are expressed in
terms of correlations obtained by previous experimental stud-
ies [13], rather than computed from the transport equations.
The condensate film is described using a standard lubrication-
type model [14], but the corresponding heat transfer coefficient
again involves correlations. Despite rather dramatic simplifica-
tions, no explicit solution for the heat transfer coefficient has
been obtained, with the resulting system of equations that has
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to be solved using an iterative procedure. Subsequent studies
[15, 16, 6] used a similar approach.

A considerably more sophisticated and more rigorous the-
oretical description was proposed by Sparrow and Lin [17]
who also considered transport inside the liquid layer and the
gas layer. By seeking similarity solutions in both layers, this
approach also makes the problem effectively one-dimensional,
making it comparable to the diffusion layer theory in terms of
complexity. However, the solutions are still constructed iter-
atively, so no explicit dependence on various parameters can
be obtained. Moreover, the validity of this approach crucially
relies on the assumption that the solution to the transport equa-
tions possess scaling that allows them to be expressed in simi-
larity form. As we argue in the present paper, this assumption
becomes invalid when thermocapillary stresses at the liquid-
vapor interface are taken into account. Subsequent develop-
ments of this approach by Minkowycz and Sparrow [18], Rose
[19], and Wu et al. [20] suffer from the same limitations.

While it is widely accepted that thermocapillary stresses play
an important role in evaporation, e.g., leading to dry-out in heat
pipes [21], oddly enough, the thermocapillary effect is almost
universally ignored, without much justification, in consider-
ing filmwise condensation. As the present paper demonstrates,
thermocapillary stresses arise inevitably in condensate films in
response to variation in their thickness and can have a profound
effect on the thickness profile and therefore the thermal resis-
tance of the liquid layer. This is a good illustration of the kinds
of limitations the lack of an explicit analytical solution describ-
ing film condensation can have: in the absence of an expression
for the interfacial temperature it is difficult to judge the impor-
tance of a physical effect such as thermocapillarity.

The lack of an explicit relation between the heat transfer co-
efficient and the various material parameters and problem ge-
ometry is a significant limitation for our ability to improve ther-
mal management technologies relying on phase change. Our
study fills this void by formulating and solving a model describ-
ing transport in all three layers (solid/liquid/gas) and provides
a clear physical insight into the problem of filmwise conden-
sation in the entire range of the concentration of noncondens-
ables. The focus on free filmwise condensation on a vertical
plane allows us to obtain a tractable description that yields an
explicit analytical expression for the heat transport coefficient
which clearly identifies the physical effects that become the
bottleneck in the heat transfer in various limiting cases. Our
description also gives an explicit expression for the condensate
film thickness profile and, in particular, shows that thermocapil-
lary stresses make it more uniform compared with the boundary
layer-type solutions of Nusselt [1] and Sparrow and Lin [17]
that have become textbook examples.

The paper is organized as follows. Section 2 describes the
mathematical model of the problem. The analysis of the model
is presented in Section 3 and some applications in Section 4.
Section 5 contains the summary and conclusions.
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Figure 1: The geometry of the problem.

2. Mathematical model

The problem under consideration involves a mixture of va-
por and air in a cavity of length L and height H in the presence
of a horizontal temperature gradient. The hot vapor, which is
assumed to be saturated on the right side of the cavity, con-
denses on a cooled vertical wall of thickness hw on the left side
of the cavity. The schematic illustration of the respective ge-
ometry is shown in Fig. 1. For simplicity we will consider a
two-dimensional problem, where all physical observables de-
pend only on the horizontal coordinate x and vertical coordi-
nate z, but not the coordinate y, and the velocity field is planar,
u = x̂u + ẑw.

2.1. Governing equations
The heat and mass transport in the gas and the layer of liq-

uid condensate are governed by the mass, momentum, and heat
conservation equations

∇ · uι = 0, (1)

ρι (∂tuι + uι · ∇uι) = −∇pι + µι∇
2uι + ριg, (2)

∂tTι + uι · ∇Tι = αι∇
2Tι, (3)

where p and T are the pressure and temperature, respectively.
The mass density ρ, thermal diffusivity α, and dynamic viscos-
ity of the two fluids are considered constant. The index ι = g, l
denotes the gas and the liquid phase, respectively. Finally, mass
transport in the gas, which is a binary mixture of vapor and air,
is governed by

∂tca + uι · ∇ca = D∇2ca. (4)

where cι is the molar fraction of the two components of the gas
phase, and D is the binary diffusion coefficient. To account for
the finite thickness and conductivity of the solid walls, we will
also use the heat equation

∂tT = αw∇
2Tw, (5)

where Tw is the temperature of the wall. Thermal diffusivities αι
are related to thermal conductances kι via kι = αιριCp,ι, where
Cp,ι is the heat capacity of the gas/liquid/wall (ι = g, l,w).

Since we are interested in the heat transport in steady state,
we will set the temporal partial derivatives to zero in all of the
above equations. In particular, the steady mass transport equa-
tion (4) in the gas can be rewritten in the form

∇ · jι = 0, (6)
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where

jι = ng(ugcι − D∇cι) (7)

is the number density flux of component i, ng = na + nv is the
net number density of the gas, and we have ignored the spatial
variation in n associated with its dependence on the tempera-
ture, such that the molar fraction determines both the partial
pressures and the number densities of the two components

cι =
pι
pg

=
nι
ng
. (8)

2.2. Boundary conditions
We will assume there is no heat or mass flux through the top

and bottom of the cavity, and on the outer side x = −hw of the
cooled wall the temperature is fixed

Tw = Tc, (9)

e.g., due to the wall being in contact with a coolant at temper-
ature Tc. We will also assume that at x = L the gas has a fixed
temperature

Tg = Th (10)

and the vapor is saturated. Such boundary conditions would
describe a variety of practically relevant situations, e.g., the hot
saturated vapor produced by evaporation of the liquid perco-
lating through a porous wall of constant temperature Th in the
geometry shown in Fig. 1 or being injected from an external
cavity along the centerline of a channel of width 2L. The inner
side x = 0 of the cooled wall is assumed to be covered by a thin
layer of liquid condensate of thickness hl � hw. The heat flux
balance at this interface requires

n · kw∇Tw = n · kl∇Tl, (11)

where n = x̂ is the surface normal. The heat flux balance at the
liquid-vapor interface x = hl requires

LJ = n · kg∇Tg − n · kl∇Tl (12)

where n = x̂ again (assuming hl is nearly uniform), L the
latent heat of vaporization, and J is the mass flux associated
with phase change (here condensation). The temperature at the
liquid-solid and liquid-vapor interfaces is continuous

Tw = Tl, x = 0,
Tl = Tg, x = hl. (13)

The mass/number conservation for the two components of
the gas mixture at the liquid-vapor interface requires

J
mv

= jv · n = ng(n · ugcv − Dn · ∇cv),

0 = ja · n = ng(n · ugca − Dn · ∇ca), (14)

where mv is the mass of one vapor molecule. Adding these we
can find the normal components of the gas velocity

J = ngmvn · ug, (15)

and the liquid velocity

J = ρln · ul. (16)

According to the kinetic theory of gases [22]

J = βutρv

[
σκ

ρlRvTi
+
L

Rv

(
1
Ts
−

1
Ti

)]
. (17)

Here Rv is the specific gas constant for the vapor, ut =
√

RvTi

is the characteristic thermal velocity of the gas molecules,
ρv = mvcvng is the vapor concentration at the interface, σ is
the surface tension, subscripts i and s denote values of the tem-
perature at the interface and the saturation value for the vapor,
respectively, and we have defined a shorthand

β =

√
1

2π
λ

2 − λ
, (18)

where λ is the accommodation coefficient (which can typically
be set to unity). The first term in (17) can be neglected due
to the negligible curvature κ of the liquid-vapor interface. The
pressure dependence of the saturation temperature can be ex-
pressed using the Clausius-Clapeyron equation

ln
pv

p0
v

=
L

Rv

[
1
T0
−

1
Ts

]
, (19)

where p0
v is the saturation pressure at the reference temperature

T0, which we will set equal to Th.
Finally, the stress balance at the liquid-vapor interface gives

(Σl − Σg) · n = n(κσ − J2/ρg) − γ∇sTi (20)

where Σ = µ[∇u + (∇u)T ] − p is the stress tensor, ∇s =

(1−n · n)∇ is the surface gradient, the term J2/ρg describes va-
por recoil, γ = −∂σ/∂T > 0 is the temperature coefficient of
surface tension, and the first term on the right-hand-side can
be ignored. In addition, the tangential velocity components are
continuous at x = hl

(1 − n · n)(ul − ug) = 0 (21)

and satisfy the no-slip boundary conditions at the solid-liquid
interface

ul = 0. (22)

Given that hl is negligibly small compared with L, in the bound-
ary conditions describing the liquid-vapor interface the quanti-
ties describing the gas phase can be evaluated at x = 0 instead
of x = hl.

3. Analysis

We will start our analysis by considering transport of heat,
mass, and momentum in the gas layer, which tends to control
the condensation rate and the associated heat transfer coeffi-
cient when the fraction of noncondensables exceeds a few per-
cent. We will then consider the conjugate heat transfer problem
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which involves the gas layer, the condensate film, and the cold
wall, where spatial nonuniformity of the condensate film is ne-
glected. Next, we will use the results for the condensation rate
to derive a solution for the condensate film thickness that takes
into account the gravitational draining as well as the thermo-
capillary stresses arising due to the nonuniformity of the film.
Finally, we will validate the assumptions made in the analysis
and illustrate how the results are affected by the concentration
of noncondensables using a couple of specific examples.

3.1. Gas layer

It is natural to expect that convective flow in the gas layer
could strongly modify the transport of heat and mass towards
the cold wall, which would require the flow field be computed.
However, this is not necessarily the case, at least for free con-
vection in cavities with a high aspect ratio Γ = L/H. As numer-
ical simulations reported in Ref. [23] illustrate, mass transport
in the gas phase is often essentially one-dimensional even in
the presence of convective flow. This can be understood via
a simple calculation focusing on the central region of the cell.
Let us introduce the nondimensional coordinates χ = x/H and
ζ = z/H, such that the interior of the cavity corresponds to
0 < ζ < 1 and 0 < χ < Γ. Since the flow field is constrained to
the χ− ζ plane and is incompressibile, it can be written in terms
of the stream function ψ(χ, ζ),

ug = x̂ug + ẑwg = x̂∂ζψ − ẑ∂χψ. (23)

In the limit of large Γ, the flow is essentially horizontal in the
central region of the cavity with ug = O(ūg) and wg = O(Γ−1ūg),
where ūg is a characteristic flow velocity in the gas layer. We
can therefore simplify (4) to read

Hug∂ζcv = D(∂2
χcv + ∂2

ζcv), (24)

with the vertical component uz of the velocity yielding a higher
order (in Γ−1) correction. Furthermore, let ug = um + ur, where
um = const < 0 is the mean component of the flow (the vapor
flows towards the cold wall) and ur describes the recirculation
component with zero-mean∫ 1

0
urdζ = 0. (25)

Correspondingly, we can write ψ = umζ + ψ̃(ζ) + O(Γ−1), where
ur = ∂ζ ψ̃, and ∫ 1

0
ψ̃′dζ = ψ̃(1) − ψ̃(0) = 0. (26)

In Ref. [23] the following solution to (24) was derived in the
special case ur = 0

cv = C0 + C1e−Pemχ, (27)

where Pem = |um|H/D is the Péclet number, which corresponds
to the mean flow and the constants C0 > 0 and C1 < 0 are

determined by the boundary conditions at χ = 0 and χ = Γ. In
the general case (i.e., ur , 0) the solution to (24) is

cv = C0 + C1e−Pemχ[1 + f (ζ)], (28)

where

f ′′(ζ) =
umur(ζ)H2

D2 [1 + f (ζ)]. (29)

The right-hand-side of (29), and hence f (ζ) itself, is of order
ε = PemPer, where Per = maxz |ur(z)|H/D is the Peclet number
describing the strength of the recirculation flow ur. Specifically,

f (ζ) =
umH2

D2

∫
ψ̃(ζ)dζ + O(ε2). (30)

Now, finally, the reason for separating ux into the two compo-
nents um and ur becomes clear: the no-flux boundary condition
for cv requires f ′(0) = f ′(1) = 0 which is only consistent with
(30) when (26) is satisfied. Note also that the characteristic ve-
locity ug for arbitrary c̄a can be defined via the Peclet number
Peg = ūgH/D = max(Pem, Per).

The crucial observation is that ε remains small regardless of
the average concentration c̄a of air: Per becomes small in the
limit c̄a → 0, while Pem becomes small in the limit c̄a → 1
[23]. Since ε is small, the z-dependence of the concentration
field is weak and we can effectively treat it as a function of x
alone. Since αg and D are of similar magnitude for gases, the
governing equations (3) and (4) are formally equivalent and so
are the boundary conditions for cv and Tg, the same arguments
apply to the temperature field Tg, such that

Tg = B0 + B1e−Petχ + O(ε), (31)

where Pet = |um|H/αg is the thermal Péclet number and B0, B1
are some constants. Since both cv and Tg can be considered
effectively z-independent and the condensate film is essentially
flat, we can find solutions for ug, Tl, and Tw that are also effec-
tively z-independent. The Navier-Stokes equation (2) and the
incompressibility condition (1) admit the solution

ug = umx̂, (32)

pg = p0
g − ρggz + O(µgur/H2) ≈ p0

g, (33)

where

p0
g =

p0
v

cv|x=L
. (34)

The hydrostatic pressure term ρggz is negligible due to the low
mass density of the gas and the viscous term O(µgur/H2) is
negligible due to the low velocity of the gas. Plugging (32)
together with (27) into the boundary conditions (14) yields

ca = Ceum x/D = Ce−rx/L,

cv = 1 −Ceum x/D = 1 −Ce−rx/L, (35)

where we have defined a parameter

r = −
umL
D

= PemΓ, (36)
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which represents nondimensional flux in the gas phase and

um =
J

mvng
(37)

according to (15). Note that both the diffusion constant

D =
p0

pg
D0 (38)

and the total number density

ng =
pg

mvu2
t

(39)

depend on the average concentration of air c̄a through pg (cf.
Eq. (34)). Here we set Ti equal to Th in evaluating ut, and
D0 and p0 refer to the values of the diffusion coefficient and
pressure at standard atmospheric conditions. However, since
the product ngD is independent of pg, the dimensional mass
flux

J = −
mvngD

L
r = −J0r (40)

can only depend on c̄a through r, where

J0 =
D0 p0

Lu2
t
. (41)

The coefficient C can be related to the average air concentra-
tion by integrating (35) over the cell

C =
c̄ar

1 − e−r . (42)

Correspondingly, equations (3) and (5) governing heat transport
in the liquid and the wall reduce to

∂2
xTl = ∂2

xTw = 0 (43)

with solutions

Tw = Tc + B2(x + hw),
Tl = Ti + B3(x − hl), (44)

with some constants B2 and B3. Using the boundary conditions
(9)-(13) we obtain

Tg = Th − B
(
eum x/αg − eumL/αg

)
= Th − B

(
e−ηrx/L − e−ηr

)
,

(45)

where η = D/αg is the inverse of the Lewis number (which is
independent of pg and hence c̄a),

B =
∆T − LJ0(Zl + Zw)r

ηrZ−1
g (Zl + Zw) + 1 − e−ηr , (46)

where Zw = hw/kw, Zl = h̄l/kl, and Zg = L/kg are the well-
known expressions for thermal resistivity of the cold wall, liq-
uid condensate film, and the gas layer, respectively. The thick-
ness hl of the condensate film is nonuniform, hence Zl is defined
in terms of mean thickness h̄l.

3.2. Mass flux
According to (33)-(35) and (45), at the interface we have

Ti = Tg|x=0 = Th − B(1 − e−ηr),

ρv = mvngcv|x=0 =
1 − c̄ar − e−r

1 − e−r mvng,

pg =
p0

v

cv|x=L
=

1 − e−r

1 − (1 + rc̄a)e−r p0
v . (47)

Since pv = cv pg, the saturation temperature Ts can be computed
from (19) by evaluating the vapor concentration at the interface,
yielding

1
Ts

=
1
Th
−

Rv

L
ln

(
cv|x=0

cv|x=L

)
=

1
Th
−

Rv

L
ln

(
c̄ar + e−r − 1

c̄are−r + e−r − 1

)
.

(48)

Finally, the nondimensional flux r can be computed by substi-
tuting (40) and (48) into the KTG flux expression (17), which
yields

r = −
βLutL
RvD

1 − c̄ar − e−r

1 − e−r ×

×

[
1
Th
−

1
Th − B(1 − e−ηr)

−
Rv

L
ln

(
1 − c̄ar − e−r

1 − c̄are−r − e−r

)]
, (49)

where B and D depend on r and/or c̄a according to (46) and
(38).

An exact solution to the transcendental equation (49) can-
not be obtained analytically. However, a reasonably accurate
approximate solution can be obtained in explicit form by lin-
earizing this equation about r = 0 and ∆T = 0:

r = ∆T
[

D0 p0LZ2

u2
t L

+
D0 p0ThkgutZ3

βLL2 p0
v

+
c̄aThkgu2

t Z3

(1 − c̄a)LL

]−1

, (50)

where

Z2 = Zw + Zl (51)

is the thermal resistance of the wall and the liquid condensate
and

Z3 = Zw + Zl + Zg (52)

is the thermal resistance of the wall, liquid and gas layers. We
can rewrite (50) in nondimensional form

r =
u2

t L∆T
D0 p0LZ

, (53)

or, using (40), in dimensional form

J = −
∆T
LZ

, (54)

where the net thermal resistance

Z = Z2 +
Z3

Zg
(Zi + Zd) (55)
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includes the contributions describing the interfacial resistance

Zi =
Tcu3

t

βL2 p0
v

(56)

and the diffusive resistance of the gas layer

Zd =
c̄a

1 − c̄a

LTcu4
t

D0 p0L
2 . (57)

This expression corresponds to the effective condensation ther-
mal conductivity

kc =
1 − c̄a

c̄a

D0 p0L
2

Tcu4
t

=
L
Zd

(58)

derived by Peterson et al. [11].
It is worth emphasizing that, under the most general condi-

tions, the net thermal resistance is not given by a simple sum of
the resistances of the wall and liquid condensate Z2 = Zw + Zl,
interfacial resistance Zi, and diffusive resistance Zd, but also
depends on the thermal resistance Zg of gas layer. However,
under typical conditions, due to both the large thickness of the
gas layer and its poor thermal conductivity, Zg will be many or-
ders of magnitude larger than Zl and Zw for any c̄a, so that (55)
can be simplified:

Z ≈ Zw + Zl + Zi + Zd. (59)

The corresponding net heat flux can be computed as

Q = −LJ + kg∂xTg|x=0, (60)

so that the corresponding heat transfer coefficient is given by

H =
Q

∆T
=

1
Z3

+
Zg

Z3

1
Z
. (61)

This heat transfer coefficient can be further simplified when
Z3 ≈ Zg � Z, in which case

H ≈
1
Z
. (62)

This result can also be derived from (54) and gives the expres-
sion for the heat transfer coefficient in a simple analytical form
which (i) includes dependence on the problem geometry and
material parameters and (ii) is easy to interpret. Specifically,
we find that H is simplify the inverse of the net thermal resis-
tance, which is a sum of four contributions: the resistance of
the wall and the liquid condensate film, interfacial resistance,
and the diffusive resistance of the gas layer.

3.3. Condensate film
Up until now we have assumed that the condensate film

thickness hl is small and nearly uniform; we need to check
whether this is indeed the case. The flow inside this thin
film can be described using lubrication approximation, where
ul = wl(x)ẑ. In this approximation, the pressure in the liquid
can be computed using (20)

pl = p0
g − ρggz − σκ, (63)

where the curvature of the interface is κ = ∂2
z hl in lubrication

approximation and we have ignored the small vapor recoil pres-
sure term. The vertical component of the Navier-Stokes equa-
tion (2) therefore reduces to

µl∂
2
xwl = ρlg + ∂z pl ≈ ρlg − σ∂3

z hl, (64)

since ρl � ρv. The solution satisfying the boundary conditions
(20) and (22) is

wl =
ρlg − σ∂3

z hl

2µl
(x2 − 2hlx) −

γτ

µl
x, (65)

where τ = ∂zTi is the interfacial temperature gradient. Under
our assumptions, the heat and mass flux are both independent
of z, so that

Q ≈
∆T
Z

= kl
Ti − Twl

hl
, (66)

where Twl is the temperature of the wall-liquid interface that is
also independent of z. Hence,

τ =
∂Ti

∂hl
∂zhl =

∆T
Zkl

∂zhl. (67)

The corresponding volumetric flux is

q =

∫ hl

0
wldx =

σh3
l ∂

3
z hl

3µl
−
ρlgh3

l

3µl
−

γ∆T
2µlZkl

h2
l ∂zhl. (68)

Mass conservation in the liquid together with the mass flux bal-
ance (16) requires that

∂zq =
J
ρl
≈ −

∆T
ρlLZ

, (69)

where q = 0 at the top of the cell z = H (no flux through the top
wall). Integrating this and substituting into (68) yields

−
σh3

l ∂
3
z hl

3µl
+

γ∆T
2µlZkl

h2
l ∂zhl +

ρlgh3
l

3µl
=

∆T
ρlLZ

(H − z). (70)

The terms on the left-hand-side of this equation describe, re-
spectively, the Young-Laplace pressure associated with the cur-
vature of the interface, the thermocapillary stresses, and the
gravitational draining, while the term on the right-hand-side de-
scribes the condensation mass flux.

The first term in (70) can be neglected if there are no high-
curvature regions, such that the resulting differential equation
can be rewritten as

ε f ′ + f = 1 − ζ, (71)

where f = (h/h0)3, prime denotes the derivative with respect to
ζ = z/H,

ε =
γ∆T

2ZklHρlg
, (72)

6



is a (small) nondimensional parameter which determines the
strength of thermocapillary stresses relative to gravity, and

h0 =

3µlH∆T
ρ2

l gLZ

1/3

(73)

is a characteristic thickness scale which describes the flux bal-
ance between condensation and draining due to gravity. Equa-
tion (71) can be solved analytically, yielding

hl = h0

(
1 − ζ + ε

[
1 − Ae−ζ/ε

])1/3
, (74)

where A is some constant. In fact, we should set A = 0 to
ensure that the solution is well-behaved at z = 0 for ε → 0,
which yields the following result for the mean thickness

h̄l =
1
H

∫ H

0
hldz =

3
4

h0

[
(1 + ε)4/3 − ε4/3

]
. (75)

Note that, unlike Nusselt’s classical laminar condensation result
[1],

hl =

4µlklH∆T (1 − ζ)
ρ2

l gL

1/4

, (76)

in our model the thickness of the condensate film does not van-
ish at the top of the cold wall, where hl = h0ε

1/3. This is the
effect of thermocapillarity, which suppresses draining, making
the condensate slightly thicker and more spatially uniform.

Finally, let us note that the curvature term that we dropped in
(70) can be neglected when |∂3

z hl| � ρlg/σ = `−2
c , where `c is

the capillary length which is around 1 mm for most liquids. The
highest curvature region of the condensate film corresponds to
z = H, so we should have

`2
c |∂

3
z hl|z=H =

10h0`
2
c

27H3 ε
−8/3 � 1, (77)

This condition is only satisfied when thermocapillarity is suf-
ficiently strong (ε is not too low). However, even when this
condition is not satisfied, the resulting changes in the thickness
profile near z = H have negligible influence on the overall ther-
mal resistance of the condensate layer.

4. Applications

To illustrate these results, we will discuss how they depend
on the choice of the coolant fluid, the wall material, and the
amount of noncondensable gases present in the cavity, which
are among the most accessible design paramaters. Following a
series of previous numerical [24, 25, 23], analytical [26], and
experimental [27] studies, we will assume that a shallow layer
of liquid coolant is confined inside a sealed rectangular cavity
(cf. Fig. 2). An external temperature gradient is applied by
maintaining the exterior surface of the cold wall at temperature
Tc and the exterior of the hot wall at temperature Th = Tc + ∆T .
As in a typical heat pipe, the liquid coolant evaporates at (or
near) the hot wall, the vapor flows towards, and condenses, on

x 

L 

W 

H Th 

z 
Tc 

y 

Figure 2: Test cell containing the liquid and air/vapor mixture. A layer of liquid
(blue) is at the bottom of the cell and a thin film of condensate covers the entire
cold wall. Thermal gradient in the x direction is imposed by maintaining the
end walls at temperatures Tc and Th > Tc.
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Figure 3: Dependence of the average thickness h̄l of the condensate film on the
air concentration c̄a for condensation of silicone oil on fused quartz.

the cold wall. To simplify things, we will avoid the discussion
of evaporation and the temperature drop across the hot wall and
simply assume that the hot wall is isothermal and the vapor is
in thermal equilibrium with the liquid at x = L. We will assume
that the geometry (L = 48.5 mm, H = 10 mm, hw = 1.25 mm),
reference temperature (Tc = 293 K), and the applied tempera-
ture differential (∆T = 10 K) are fixed at the values considered
in the studies referenced above.

4.1. Silicone oil condensation on fused quartz

We will start by considering a volatile (0.65 cSt) silicone oil
confined inside a test cell made of fused quartz (the values of
all material parameters can be found in Ref. [23]). All of our
calculations were restricted to a range of c̄a varying from a min-
imum of 0.001 (i.e., 0.1% air), which in all likelihood is well
below the value that can be achieved in practice, to the maxi-
mum 1 − p0

v/p0 (i.e. 96% air), which corresponds to the atmo-
spheric pressure p0, when the gas predominantly contains air.

In order to obtain solutions, exact or approximate, of the
model we first substitute (59), (72), and (73) into (75) and solve
the resulting equation for the the mean thickness of the conden-
sate film h̄l for a fixed c̄a. The results for different c̄a are plotted
in Fig. 3, which shows that h̄l varies from the maximum of
around 35 µm when there is essentially no air inside the cell to
around 2.6 µm at ambient conditions, when the gas is predom-
inantly air with only 4% vapor. The thickness profile hl(z) for
the lowest value of the air concentration c̄a = 0.001 is shown in
Fig. 4. The thickness of the film varies between 15 µm at the
top of the cold wall (ζ = 1) to 46 µm at the bottom (ζ = 0).
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Figure 4: Thickness profile hl(ζ) of the silicone oil condensate film for c̄a =

0.001.
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Figure 5: Dependence of the mass flux J and heat transfer coefficientH on the
air concentration c̄a for condensation of silicone oil on fused quartz. Exact nu-
merical solution is shown as a solid curve, the approximate analytical solution
as triangles, and the numerical result from Ref. [23] as circles.

Once the thickness of the condensate film has been deter-
mined, its thermal resistance can be found, which allows com-
putation of the mass and heat flux associated with the condensa-
tion process. The condensation mass flux J (or rather its abso-
lute value, since J < 0) and the corresponding heat transfer co-
efficient H are shown in Figure 5. The approximate analytical
solution based on equation (50) is found to be virtually indis-
tinguishable from the exact numerical solution of equation (49)
in the entire range of composition of the gas phase, which at-
tests to the excellent accuracy of the approximation. The figure
also compares these results with the numerical ones obtained in
a previous study [23] which assumed that the walls of the con-
tainer are partially wetting, so that condensation occurs exclu-
sively at the surface of the liquid layer which covers the bottom
of the cell (cf. Fig. 2). Not surprisingly, the condensation mass
flux (and therefore the heat transfer coefficient) is substantially
higher when the vapor condenses on the cold wall instead. The
difference can be as large as an order of magnitude at low values
of c̄a under otherwise identical conditions and reflects both the
larger area over which the condensation occurs and the smaller
thermal resistance of the thin film of condensate covering the
cold wall.

In conclusion of this section, let us compare the relative mag-
nitude of different contributions to the overall thermal resis-
tance Z of the whole system. The four contributions (Zd, Zi,
Zl, and Zw) are plotted as a function of the average concentra-
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Figure 6: Thermal resistance of the liquid (Zl, solid line), the wall (Zw, short-
dash line), the interfacial resistance (Zi, dash-dot line), and the diffusive resis-
tance of the gas layer (Zd , long-dash line) for silicone oil condensation on fused
quartz at various air concentration.

tion of air c̄a in Fig. 6. Not surprisingly, at high c̄a when mass
transport is severely suppressed by diffusion through air, ther-
mal resistance is dominated by the diffusive contribution. In
fact Zd remains the largest contribution for when the gas con-
tains as little as 1% of air. At even smaller air concentrations,
the thermal resistance of the wall becomes the dominant con-
tribution, which is also not surprising given that the walls are
relatively thick and fused quartz is a relatively poor conductor.
The thermal resistance of the liquid and the interfacial resis-
tance are negligible in this particular scenario, but may become
important when the walls material has high thermal conductiv-
ity, as illustrated below.

4.2. Water condensation on copper
A more practical application of our study is towards charac-

terizing heat transfer in heat pipes and heat spreaders, which
commonly use water as the coolant inside sealed copper con-
tainers. Hence, we will next consider water confined inside a
test cell made of copper, but with the geometry (length, height
of the cavity, wall thickness) that is the same as that considered
in the previous section to enable direct comparison.

The average thickness h̄l of the condensate film is plotted as a
function of c̄a in Fig. 7. It varies from the maximum of around
44 µm at c̄a = 0.001 to around 2 µm at ambient conditions,
when the gas mixture contains just over 2% of water vapor. This
is very similar to the results we have obtained for silicone oil,
since for the water/copper combination the higher latent heat is
offset by the lower overall thermal resistance in the denominator
of (73). The thickness profile hl(z) for the lowest value of the
air concentration c̄a = 0.001 is shown in Fig. 8. The thickness
of the condensate film varies between 27 µm at the top of the
cold wall (ζ = 1) to 54 µm at the bottom (ζ = 0), also similar to
the result of the previous section.

The corresponding condensation mass flux J and heat trans-
fer coefficient H are shown in Figure 9. Again we find the
approximate analytical solution based on equation (50) to be in
excellent agreement with the exact numerical solution of equa-
tion (49) in the entire range of composition of the gas phase.
The condensation mass flux is comparable to that for the sil-
icone oil/fused quartz case (as in the case of condensate film
thickness, this is because for the water/copper combination the
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Figure 7: Dependence of the average thickness h̄l of the condensate film on the
air concentration c̄a for condensation of water on copper.

0

15

30

45

60

0 0.2 0.4 0.6 0.8 1

h l
 (

μm
) 

ζ

Figure 8: Thickness profile hl(ζ) of the water condensate film for c̄a = 0.001.
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Figure 9: Dependence of the mass flux J and heat transfer coefficient H on
the air concentration c̄a for condensation of water on copper. Exact numerical
solution is shown as a solid curve and the approximate analytical solution as
triangles.

higher latent heat is offset by the lower overall thermal resis-
tance in the denominator of (69)). In contrast, the heat transfer
coefficient is substantially higher for the water/copper combi-
nation: for c̄a = 0.001 we find H ≈ 104 W/(m2K) compared
withH ≈ 750 W/(m2K) for the silicone oil/fused quartz combi-
nation, illustrating the clear advantage of water (due to its high
latent heat) and copper (due to its high thermal conductivity).

The relative magnitude of different contributions to the over-
all thermal resistance Z as a function of the average concentra-
tion of air c̄a are shown in Fig. 6. We find that thermal resis-
tance is dominated by the diffusive contribution over almost the
entire range of c̄a. Thermal resistance of the condensate film be-
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Figure 10: Thermal resistance of the liquid (Zl, solid line), the wall (Zw, short-
dash line), the interfacial resistance (Zi, dash-dot line), and the diffusive resis-
tance of the gas layer (Zd , long-dash line) for water condensation on copper at
various air concentration.

comes the dominant contribution only at extremely low c̄a when
the gas contains merely 0.3% of air, which in all likelihood is
impossible to achieve in practice since air tends to dissolve well
in water. Thermal resistance of the wall is negligible because
copper is a very good thermal conductor. Similarly, the inter-
facial resistance (56) is negligibly small, again due to the high
latent heat of water.

As the two examples considered here illustrate, the thermal
resistance of the condensate film becomes the dominant factor
limiting heat and mass flux only under rather extreme condi-
tions (when noncondensables have been effectively completely
removed) that may never be realized in practice. It is only in
this case that the one-dimensional approximation for the heat
and mass transport in the gas phase may become invalid. How-
ever, even in this limit our model should produce reasonably
accurate predictions for the net heat and mass flux. Note that
the condensate film thickness profile in this limit (cf. Figs. 4
and 8) remains relatively uniform, unlike the Nusselt’s solution
which predicts that the condensate film thickness vanishes at
the top of the cold wall, resulting in a divergence of the heat
and mass flux there. This is the only component of the entire
problem that breaks the symmetry of the solution in the vertical
direction. Our results predict no divergence, with the film thick-
ness hl and therefore its local thermal resistance hl/kl varying
relatively little about the mean. As a result, heat and mass flux
in the gas layer, especially at high aspect ratio Γ can be still be
considered effectively one-dimensional.

Finally, let us comment on the effect of geometry on the con-
densate film thickness. As equations (73) and (75) illustrate,
h̄l ∝ H1/3 scales rather weakly with the height of the container
for all c̄a. The dependence on the thickness L of the gas layer
is due primarily to the diffusive resistance (57), which becomes
dominant at typical conditions when the gas contains more than
about 0.3% air, when h̄l ∝ (H/L)1/3. Consider, for instance,
condensation of saturated steam on a 1 m-tall wall of a heat ex-
changer, with the characteristic thickness of the gas layer being
1 cm, in the presence of 1% of air. In this configuration we will
have h̄l = 130 µm, compared h̄l = 30 µm for H = 1 cm and
L = 4.85 cm at the same c̄a.
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5. Conclusions

In this paper we have introduced and solved a comprehen-
sive physical model of filmwise vapor condensation under the
assumption of free convection. Unlike common engineering
models that take a piecemeal approach and treat only a few as-
pects of the problem, our approach describes all aspects of con-
densation, including heat and mass transport through the gas
phase, interfacial and thermal resistance of the condensate film,
and heat conduction through the cooled wall in a self-consistent
manner. We have shown that heat and mass transport in the gas
layer can be considered one-dimensional under rather general
conditions, even when there is convective flow present. Most
importantly, we have obtained an approximate analytical solu-
tion which shows excellent agreement with the exact numerical
solution of the model in the presence of an arbitrary amount of
noncondensable gases such as air.

The analytical solution for the condensation mass flux (and
the corresponding heat flux) allows an easy interpretation, with
explicit dependence on all of the parameters of the problem.
For example, the overall thermal resistance is found to be given
by a sum of the thermal resistances of the wall, the condensate
film, the interfacial resistance, and the diffusive resistance of
the gas layer – all given by the familiar standard expressions
– in the limit of infinite thermal resistance of the gas layer. It
is important to note, however, that this simple additive relation
breaks down when the thermal resistance of the gas layer be-
comes comparable to the combined thermal resistance of the
wall and the condensate film. In the latter case, the net thermal
resistance is given by a more complicated relation (55).

Furthermore, the condensate film thickness profile was de-
rived from first principles using lubrication approximation.
Self-consistency of the solution for mass transport across the
gas and liquid layer and heat transport through the gas, liquid,
and solid layer allowed us to obtain a solution that is different
from that predicted by Nusselt’s classical laminar condensation
theory [1] which uses unrealistic assumptions. In particular, we
have shown that the unavoidable thermocapillary stresses can-
not be neglected and play an important role, notably changing
the thickness profile, making it flatter. The effect of thermocap-
illary stresses is especially important at the very top of the cold
wall, where the thickness of the condensate film remains finite
(and as large as 50% of the maximal thickness at the bottom of
the cold wall in the geometry considered here). As a result, no
unphysical singularities (e.g., in the heat/mass flux) arise in the
present description.
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