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Abstract

Convection in a layer of fluid with a free surface due to a combination of thermocapillary stresses and buoyancy is one of the classic
problems of fluid mechanics. Although extensively studied, it is still not fully understood. In particular, neither the effect of phase
change nor the thermal boundary conditions at the liquid-vapor interface have been properly described. These two intimately related
issues have a significant impact on the stability of the flow and transitions between different convective patterns. The objective of
this paper is to develop and validate a comprehensive numerical model which properly describes both heat transfer and phase
change at the liquid-vapor interface, as well as the transport of heat and vapor in the gas layer, which is ignored by the vast majority
of theoretical studies with minimal justification. We present a numerical investigation of convection in a long cell filled with a
volatile fluid and air, and investigate the changes in convective patterns due to with changes in the applied horizontal temperature
gradient. We also explore how variations in the wetting properties of the fluid and lateral confinement (three-dimensionality) affect
the flow. While the numerical results have been found to be in general agreement with existing experimental observations, we have
also discovered an unexpected phenomenon: a region of evaporation near the cold wall and a region of condensation near the hot
wall.
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1. Introduction

The flow patterns and dynamic behaviors of liquid films
driven by thermocapillarity have attracted the attention of re-
searchers for many years. Initially the interest was driven by
applications to crystal growth in microgravity environments,
with the focus on liquid metals and, correspondingly, low val-
ues of the Prandtl number Pr (typically Pr < 0.05). Smith and
Davis [1, 2] were the first to perform a linear stability anal-
ysis of thermocapillary (or Marangoni) convection in a later-
ally unbounded liquid layer subject to a horizontal tempera-
ture gradient. Ignoring buoyancy effects, they predicted that
the return-flow basic state would undergo an instability towards
either surface waves (for Pr < 0.15) or hydrothermal waves
(for Pr > 0.15) above a critical Marangoni number Ma, which
characterizes the magnitude of thermocapillary stresses. In par-
ticular, hydrothermal waves were predicted to travel in the di-
rection of the thermal gradient. Their predictions have since
been thoroughly tested and verified both in microgravity and
for thin films in terrestrial conditions. A thorough overview of
these experiments is presented in a review paper by Schatz and
Neitzel [3].

More recently the motivation for further studies of this prob-
lem has shifted rather dramatically due to the increased de-
mands on the performance of various cooling technologies.
Thermal management is a major issue for a wide range of ap-
plications. Many of the modern cooling technologies exploit

the large latent heats associated with phase change at the free
surface of volatile liquids, allowing compact devices to handle
very high heat fluxes. The basic geometry of such cooling de-
vices is similar to the problem investigated under microgravity
– a liquid film on the walls of a sealed cavity, under its own
vapor as well as noncondensable gases, such as air. Heating
one end of the cavity, and cooling the other, establishes a hor-
izontal temperature gradient that drives the flow. However, in
addition to thermocapillarity, under terrestrial conditions one
often has to consider body forces such as gravity and hence
buoyancy. The relative importance of buoyancy and thermo-
capillarity is quantified by the ratio of Rayleigh and Marangoni
numbers Bo = Ra/Ma, referred to as the dynamic Bond num-
ber.

The first systematic study of buoyancy-thermocapillary con-
vection was performed by Villers and Platten [4] who stud-
ied convection in acetone (Pr = 4.24) experimentally and nu-
merically using a one-sided model that ignored heat and mass
transfer in the gas phase. For low Ma they found the same
featureless return flow that characterizes pure thermocapillary
convection. However, as Ma was increased, they discovered
that the convective patterns which emerge when Bo = O(1) dif-
fer substantially from the case dominated by thermocapillarity
(Bo � 1). Instead of hydrothermal waves, they found a steady
flow featuring multiple convection rolls. These rolls were found
to rotate in the same direction, unlike the case of pure buoy-
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ant (or Rayleigh-Bénard) convection. Moreover, unlike the hy-
drothermal waves which form at an angle to the direction of
the thermal gradient, the steady multicellular state features rolls
that align in the transverse direction. At even higher Ma the
steady state was found to be replaced by an oscillatory multi-
cellular pattern that was also unlike a hydrothermal wave. The
convection rolls were observed to travel in the direction oppo-
site to hydrothermal waves.

Similar results were obtained later by De Saedeleer et al. [5]
for decane (Pr = 15) and Garcimartin et al. [6] for decane and
0.65 cSt and 2.0 cSt silicone oil (Pr = 10 and 30, respectively)
in cavities with strong confinement in the spanwise direction.
Riley and Neitzel [7] performed one of the most extensive and
detailed experimental studies of convection in a 1 cSt silicone
oil with Pr = 13.9 in a rectangular cavity with a spanwise di-
mension comparable to the streamwise dimension. They dis-
covered that a direct transitions from steady, unicellular flow
to hydrothermal waves takes place for small values of the dy-
namic Bond number (Bo . 0.2), while for Bo & 0.2 the results
are similar to those of Refs. [4, 5, 6]: first a transition to steady
co-rotating multicells, and upon further increase in Ma, to an
oscillatory multicellular pattern. Riley and Neitzel also deter-
mined the critical values of Ma and the wavelength λ of the
convective pattern as a function of Bo.

The linear stability analysis of Smith and David [1] provides
an accurate description of experimentally observed convective
patterns for low Bo. However, it fails to predict the patterns
that emerge for Bo = O(1), although the spatially uniform re-
turn flow at low Ma is found to be consistent [7] with the an-
alytical solution for the velocity and temperature [8, 9] away
from the lateral boundaries. The majority of the studies that
have performed linear stability analysis around this analytical
solution ignore the effect of the end walls and, hence, predict
incorrect patterns. In particular, for adiabatic boundary condi-
tions at the top and bottom of the liquid layer, Parmentier et
al. [10] predict transition to traveling waves rather than steady
multicellular pattern for Pr ≤ 7 fluids regardless of the value
of Bo. Chan and Chen (2010), who used similar assumptions,
also predict transition to traveling waves for a Pr = 13.9 fluid.
Moreover their critical Ma and wavelength λ do not match the
experiment [7]. In both cases the traveling waves are oblique
for smaller Bo and become transverse for Bo > Boc = O(1).

Mercier and Normand [11] showed that transition to a sta-
tionary convective pattern can take place if the adiabatic bound-
ary conditions are replaced with Newton’s cooling law, al-
though that requires an unrealistically large surface Biot num-
ber (Bi & 185/Bo). Moreover, the predicted pattern corre-
sponds to longitudinal convection rolls, while in the experi-
ments [4, 5, 6, 7] transverse rolls were observed. In a subse-
quent paper Mercier and Normand [12] considered the effects
of the end walls, which they described as spatial disturbances
superimposed on the uniform base flow. It was found that de-
pending upon the Prandtl number, recirculation rolls would de-
velop near the hot end (Pr > 4), near the cold end (Pr < 0.01)
or at both end walls (0.01 < Pr < 4).

Priede and Gerbeth [13] where the first to consider the effect
of the end walls on the stability of the base flow. They used

a generalized linear stability analysis to argue that hydrother-
mal waves correspond to a global oscillatory instability which
dominates at lower Bo, while the stationary patterns result from
a local absolute instability which, for higher Bo, has a lower
threshold value of Ma than the global oscillatory instability.
Their prediction agrees remarkably well with the threshold val-
ues found by Riley and Neitzel [7].

Understanding the convective patterns above the threshold of
the primary instability requires a numerical approach. To date,
the majority of numerical studies (e.g., Villers and Platten [4],
Ben Hadid and Roux [14], Mundrane and Zebib [15], Lu and
Zhuang [16], Shevtsova et al. [17]) have focused on 2D flows.
Furthermore, just like the linear stability analyses, existing nu-
merical studies assume that the temperature gradient is gener-
ated by imposing fixed temperatures on the two end walls; the
free surface is flat and non-deformable; the thermal boundary
conditions on the bottom wall and the interface are either adia-
batic or conducting; and phase change is negligible. Unlike the
other studies, Ji et al. [18] consider the effect of phase change
on the thermal boundary condition at the free surface, but they
ignore buoyancy.

While the 2D approximation may be appropriate in describ-
ing some experiments, the validity of the rest of these assump-
tions is questionable. Validating them is one of the main ob-
jectives of the present study. Furthermore, while the numerical
simulations reproduce some features of the experimental stud-
ies [4, 5, 6, 7], they fail partially or completely in describing
other features, most notably the structure of the boundary lay-
ers near the end walls which defines both the temperature gra-
dient in the bulk and controls the dynamics of oscillatory states
at higher Ma. Description of these boundary layers requires a
detailed model of transport of heat (and mass) in both the liquid
and the vapor layer, as well as phase change at their interface.

We present such a model of two-phase flow and its numerical
implementation in the following Section. The results obtained
using this model in a specific test problem, namely buoyancy-
thermocapillary convection in a sealed rectangular cavity where
the dimension along the temperature gradient is much greater
than the other two dimensions and any evaporation must be bal-
anced by condensation are presented and discussed in Section
3 and our conclusions – in Section 4.

2. Mathematical Model

2.1. Governing Equations
Existing analytical and numerical studies of buoyancy-

thermocapillary convection, with rare exceptions, use one-sided
models where heat and mass transport in the gas phase are in-
corporated indirectly through boundary conditions at the liquid-
vapor interface. While such an approach might be justifiable
for nonvolatile liquids since air is a relatively poor conductor
of heat, volatile liquids require a two-sided model. For volatile
liquids, phase change can lead to significant heat fluxes in the
liquid layer due to the latent heat released or absorbed at the in-
terface. The interfacial mass flux (which defines the heat flux)
cannot be computed reliably without a proper model of bulk
mass transport in the gas phase.
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Two-sided models have been formulated previously by Wang
et al. [19] for a meniscus in a microtube, by Pan and Wang [20]
for a meniscus in an exposed pore, and by Wang et al. [21] for
an open groove. These models, however, assume rather than
compute the shape of the free surface and do not account for
the advective transport of heat and mass in the gas phase.

In order to describe convection in both volatile and non-
volatile fluids, the heat and mass transport in both phases must
be modeled explicitly. Both the liquid and the gas phases can be
considered incompressible, since the fluid velocities u are much
smaller than the speed of sound at small length scales. Hence
the continuity equation reduces to ∇ · u = 0. Because the fluid
velocities can, however, be large enough for inertial effects to
be significant, the momentum transport in the bulk should be
described by the Navier-Stokes equation

ρ (∂tu + u · ∇u) = −∇p + µ∇2u + ρ (T ) g (1)

where p is the fluid pressure, ρ and µ are the fluid’s density and
viscosity, and g is the gravitational acceleration.

Following standard practice, we use the Boussinesq approx-
imation, retaining the temperature dependence only in the last
term to represent the buoyancy force. This is consistent with the
assumption of incompressibility, since the relative change in the
density due to temperature variation is usually quite small (less
than 10% for the vapor and less than 4% for the liquid in the
examples considered below). Specifically, in the liquid phase

ρl = ρ∗l [1 − βl (T − T ∗)], (2)

where ρ∗l is the reference density at the reference temperature
T ∗ and βl = −(∂ρl/∂T )/ρl is the coefficient of thermal expan-
sion. Here and below, subscripts l, g, v, a and i denote properties
of the liquid and gas phase, vapor and air component, and the
liquid-gas interface, respectively. In the gas phase

ρg = ρa + ρv, (3)

where both vapor (n = v) and air (n = a) are considered to be
ideal gases

pn = ρnR̄nT, (4)

R̄n = R/Mn, R is the universal gas constant, and Mn is the molar
mass. The total gas pressure is the sum of partial pressures

pg = pa + pv. (5)

Both equations of state (2) and (4) can be easily generalized as
needed. On the left-hand-side of (1) the density is considered
constant for each phase (defined as the spatial average of ρ(T )).

The Navier-Stokes equation (1) only describes simple flu-
ids or multi-component fluids in the dilute approximation. Al-
though the equations governing momentum transport in multi-
component mixtures generalizing the Navier-Stokes equation
for a simple fluid are known [13], no efficient numerical solvers
for these equations have been developed. Hence, the model is
restricted to situations where the dilute approximation is valid
in the gas phase, e.g., the molar fraction of air is much greater
than that of vapor.

For a volatile fluid in confined geometry, the external temper-
ature gradient causes both evaporation and condensation, with
the net mass of the fluid being globally conserved. Conven-
tionally, the mass transport of the less abundant component,
i.e., vapor, is described by the advection-diffusion equations
for the concentration (defined as the molar fraction) of vapor
in the mixture. However, this equation does not guarantee mass
conservation. To ensure local mass conservation, we use the
advection-diffusion equation for the density of vapor instead,

∂tρv + u · ∇ρv = D∇2ρv (6)

where D is the diffusion coefficient of vapor in air. As a conse-
quence, the mass of vapor is also conserved globally.

Mass conservation of air, which is a noncondensable gas and
the dominant component in the gas phase, requires a separate
equation∫

gas
ρadV = ma, (7)

where ma is the total mass of air. The densities of air and vapor
are related to their partial pressures through (4). Furthermore,
the solution of the Navier-Stokes equation defines the pressure
field p up to a constant po, so that total pressure is

pg = p + po, (8)

where the pressure offset po can be computed from the mass
conservation constraint (7) using (3), (4), (5) and (8):

po =

[∫
gas

1
R̄aT

dV
]−1 [

ma −

∫
gas

p − ρvR̄vT
R̄aT

dV
]
. (9)

The concentration cv of vapor can be computed from the
equation of state using the partial pressure

cv = pv/pg (10)

while the concentration of air is therefore ca = 1 − cv. Fi-
nally, the transport of heat is also described using an advection-
diffusion equation

∂tT + u · ∇T = α∇2T, (11)

where α = k/ρCp is the fluid thermal diffusivity, k is the thermal
conductivity, and Cp is the heat capacity, of the fluid.

2.2. Boundary Conditions
The system of coupled evolution equations for the velocity,

pressure, temperature, and density fields has to be solved in a
self-consistent manner, subject to the boundary conditions de-
scribing the balance of momentum, heat, and mass fluxes. The
phase change at the liquid-gas interface can be described using
the Kinetic Theory [22] expression for the mass flux across the
interface

J =
2λ

2 − λ

√
1

2πR̄v

 ps(Ti)

T 1/2
i

−
pv

T 1/2
g

 , (12)

where λ is the accommodation coefficient, which is usually
taken to be equal to unity (the convention we follow here) and
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subscript s denotes saturation values for the vapor. We used
an alternative form of this expression derived by Wayner et al.
[23] by a Taylor series expansion of (12) about the equilibrium
state

J =
2λ

2 − λ
ρv

√
R̄vTi

2π

[
pl − pg

ρlR̄vTi
+
L

R̄vTi

Ti − Ts

Ts

]
, (13)

which has been further modified to explicitly incorporate the
pressure jump (e.g., due to curvature or disjoining pressure)
across the interface. We have verified that (12) and (13) give
numerically indistinguishable results.

The local saturation temperature depends on the partial pres-
sure of vapor through the Antoine’s equation for phase equilib-
rium

ln pv = Av −
Bv

Cv + Ts
(14)

where Av, Bv, and Cv are empirical coefficients. The Antoine’s
equation is a generalization (valid over a wider range of tem-
peratures) of the Clausius-Clapeyron equation

ln
pv

p∗v
=
L

R̄v

(
1

T ∗s
−

1
Ts

)
, (15)

where T ∗s is the saturation temperature at the reference vapor
pressure p∗v. Again, we have verified that the two relations pro-
duce indistinguishable results for moderate temperature gradi-
ents explored here.

Mass flux balance on the gas side of the interface is given by

J = −D n · ∇ρv + ρv n · (ug − ui), (16)

where the first term represents the diffusion component, and the
second term represents the advection component (referred to as
the “convection component” by Wang et al. [21]) and ui is the
velocity of the interface. Since air is noncondensable, its mass
flux across the interface is zero, therefore

0 = −D n · ∇ρa + ρa n · (ug − ui). (17)

For binary diffusion, the diffusion coefficient of vapor through
air is the same as that of air through vapor, while the concen-
tration gradients of vapor and air have the same absolute value
but opposite direction, which yields the relation between the
density gradients of vapor and air

n · ∇ρv

n · ∇ρa
= −

Mv

Ma
. (18)

Combining (14), (16), (17) and (18) with the statement of heat
flux balance

LJ = n · kl∇Tl − n · kg∇Tg (19)

we can solve for the mass flux J, the interfacial temperature Ti,
the saturation temperature Ts, the normal component of the gas
velocity at the interface n · ug, the air density ρa and the normal
component of the density gradient of vapor n · ∇ρv.

The remaining boundary conditions for u and T at the liquid-
vapor interface are standard: the temperature is considered to be
continuous

Tl = Ti = Tg (20)

x

z

L

H

W

y
cT hT

Figure 1: The test cell containing the liquid and air/vapor mixture. Gravity is
pointing in the negative z direction. The shape of the contact line reflects the
curvature of the free surface.

and so are the tangential velocity components

(1 − n · n) · (ul − ug) = 0. (21)

The normal component of ul can be computed using mass bal-
ance across the interface. Since the liquid density is much
greater than that of the air or vapor,

n · (ul − ui) =
J
ρl
≈ 0. (22)

The stress balance

(Σl − Σg) · n = nκσ + ∇sσ = nκσ − γ∇sTi (23)

incorporates both the viscous drag between the two phases and
thermocapillary effects. Here Σ = µ

[
∇u − (∇u)T

]
− p is the

stress tensor, κ is the interface curvature, ∇s = (1−n · n) · ∇
is the surface gradient, and γ = −∂σ/∂T is the temperature
coefficient of surface tension.

We further assume that the fluid is contained in a rectangu-
lar test cell with inner dimensions L × W × H (see Fig. 1)
and thin walls of thickness hw and conductivity kw. The left
wall is cooled with constant temperature Tc imposed on the
outside, while the right wall is heated with constant tempera-
ture Th > Tc imposed on the outside. Since the walls are thin,
one-dimensional conduction is assumed, yielding the following
boundary conditions on the inside of the side walls:

T |x=0 = Tc +
kn

kw
hw n · ∇T, (24)

T |x=L = Th +
kn

kw
hw n · ∇T, (25)

where n = g (n = l) above (below) the contact line.
Heat flux through the top, bottom, front and back walls is

ignored (adiabatic boundary conditions are typical of most ex-
periments). Standard no-slip boundary conditions u = 0 for the
velocity and no-flux boundary conditions

n · ∇ρv = 0 (26)

for the vapor density are imposed on all the walls. The pressure
boundary condition

n · ∇p = ρ(T ) n · g (27)

follows from (1).
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Field Types of boundary conditions
Interface, Interface, Hot/Cold Other alone
vapor side liquid side walls walls

u Dirichlet Neumann Dirichlet Dirichlet
p Neumann Dirichlet Neumann Neumann
T Dirichlet Neumann Neumann Neumann
ρ Neumann – Neumann Neumann

Table 1: Types of boundary conditions imposed on various boundaries in the
numerical implementation of the model.

2.3. Implementation

The model described above has been implemented numeri-
cally by adapting an open-source general-purpose CFD pack-
age OpenFOAM [24] to solve the governing equations in both
2D and 3D geometries. The types of boundary conditions im-
posed at different interfaces are summarized in Table 1. For
instance, temperature continuity (20) is imposed on the vapor
side, while the heat flux balance (19) is imposed on the liquid
side of the interface.

Each time step involves three major parts: updating the inter-
face shape and the computational mesh; updating the boundary
conditions on the velocity, pressure, temperature and density
fields; and updating pressure, velocity, temperature, density and
concentration fields in the bulk. Since the shape of the interface,
the boundary conditions, and the bulk fields are coupled, these
three parts are repeated iteratively, until convergence.

The shape of the liquid-vapor interface is updated using (22)
based on the normal component of the velocity ul in the liq-
uid phase. We use the surface-tracking method [25] in which
the interface coincides with a set of mesh cell faces. Since the
computational mesh has to conform to the interface shape at all
times, it is being continuously distorted by the interface motion.

In order to solve the governing equations for the bulk fields
in the liquid and the vapor domain, the boundary conditions
described in the previous Section are updated on both sides of
the interface. Since the mass flux J, the interfacial temperature
Ti, the saturation temperature Ts, the normal component of the
gas velocity, the density fields ρa and n · ∇ρv are coupled, the
corresponding boundary conditions are solved iteratively, with
bulk fields held constant. Boundary conditions are also updated
on all the solid walls.

Once the boundary conditions are updated, bulk pressure, ve-
locity, temperature, density, and concentration fields are com-
puted using the finite volume method [26]. In particular, pres-
sure and velocity are solved for using PISO (Pressure Implicit
with Splitting of Operators) algorithm [27], where the velocity
field is predicted before the pressure equation is solved so that
continuity is satisfied, and velocity is then corrected based on
changes in pressure field. It is an iterative procedure repeated
until both the pressure and the velocity field converge. Once the
velocity field is computed, the temperature, density and concen-
tration fields are updated.

liquid gas
µ (kg/m-s) 4.95 × 10−4 1.82 × 10−5

ρ (kg/m3) 761.0 1.43
β (1/K) 1.34 × 10−3 1/T
α (m2/s) 9.52 × 10−8 1.89 × 10−5

Pr 6.83 0.67
σ (N/m) 1.59 × 10−2

γ (N/m-K) 7 × 10−5

D (m2/s) 2.5 × 10−5

L (J/kg) 2.14 × 105

Table 2: Material properties at the reference temperature T = 293 K and pres-
sure p = 1 atm. In the gas phase, the coefficient of thermal expansion β = 1/T
based on the ideal gas assumption and the viscosity is taken equal to that of the
dominant component (i.e., air).

3. Results and Discussion

In this section, we use the computational model to investi-
gate the buoyancy-thermocapillary flow of a fluid confined in a
sealed rectangular test cell used in the experimental study of Li
et al. [28]. A 0.65 cSt silicone oil, hexamethyldisloxane, which
is a volatile liquid with the properties summarized in Table 2,
was used as the working fluid. A layer of liquid is confined in
the test cell (see Fig. 1) below a layer of gas, which is a mixture
of vapor and air, held at ambient pressure. The walls of the test
cell are made of quartz (fused silica) with thermal conductivity
kw = 1.4 W/m-K and have a thickness hw = 1.25 mm. Silicone
oil wets quartz very well, but in the numerics we set the con-
tact angle θ = 50◦ (unless noted otherwise) to avoid numerical
instabilities.

While the numerical model can describe the flows in both 2D
and 3D systems, most of the results presented here are obtained
for 2D flows (ignoring variations in the y-direction), since 3D
simulations require significantly more computational resources.
The 2D system corresponds to the central vertical (x-z) plane of
the test cell, with the inner dimensions L × H = 48.5 mm ×10
mm. The 3D system simulated here, however, is smaller in
length, width, and height than the experimental test cell.

The nondimensional parameters which determine the flow
regimes are conventionally defined in terms of the properties
of the liquid layer, its thickness dl and the gradient of the inter-
facial temperature τ = ∂Ti/∂x. If we ignore the effect of the gas
phase, the main parameters are the Rayleigh number

Ral =
gβld4τ

νlαl
(28)

characterizing buoyancy, the interfacial Marangoni number

Mal =
γd2

l τ

µlαl
(29)

characterizing thermocapillarity, the dynamic Bond number
Bol = Ral/Mal, and the Prandtl number Prl = νl/αl (where
ν = µ/ρ is the kinematic viscosity). Occasionally the Grashof
number Grl = Ral/Prl and the Reynolds number Rel = Mal/Prl

are used instead of Ral and Mal. The geometry is characterized
by the streamwise (longitudinal) aspect ratio Γx = L/dl and the
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Figure 2: Typical 2D computational mesh showing multiple levels of refinement. All the computational mesh cells are hexahedrons (diagonal lines are rendering
artifacts). The largest mesh cell size is 0.5 mm and the smallest mesh cell size is 1/16 mm (= 0.0625 mm). The white solid line indicates the position of the free
surface.

spanwise (transverse) aspect ratio Γy = W/dl. In this study we
fix Prl = 6.8 and Bol = 0.853, which corresponds to dl = 2.45
mm. Of the five parameters (Mal, Bol, Prl, Γx, Γy) only Mal

depends on ∆T = Th − Tc (implicitly through the interfacial
temperature gradient τ).

Initially, the fluid is assumed stationary with uniform tem-
perature T0 = (Tc + Th)/2 (we use T0 = 293 K in all cases),
the liquid layer is of uniform thickness (such that the liquid-gas
interface is flat), and the gas layer is a uniform mixture of the
vapor and the air. The partial pressure of the vapor pv = ps(T0)
is set equal to the vapor pressure at T0, calculated from (14), and
the partial pressure of air pa is such that the total pressure pg is
equal to the ambient pressure. As the system evolves towards
an asymptotic state, the flow develops in both phases, the inter-
face distorts to accommodate the assigned contact angle at the
walls, and gradients in the temperature and vapor concentration
are established.

As the shape of the interface evolves, so does the compu-
tational mesh. As previous numerical studies [14] discovered,
and our simulations confirmed, the size of the mesh cells needs
to be small enough to resolve the fine structure of the flow, es-
pecially in the liquid layer. For instance, we find that, in order
to properly resolve convection rolls in the liquid, the mesh res-
olution should be at least 1/8 mm (= 0.125 mm). Finer meshes
have a greater number of cells and require smaller time steps
and, hence, are more computationally expensive. Since the ini-
tial transient state is of secondary interest, we let the system
relax to the asymptotic state using a coarse hexahedral mesh
(initially all cells are cubical with side 0.5 mm).

Once the transient dynamics have died down, the mesh is
refined in several steps, until the results become mesh indepen-
dent. At each level, the mesh is refined uniformly (by splitting
each cell in all three directions) in the liquid phase and in the
gas phase just above the free surface. Additionally the mesh in
the gas phase is refined in the regions (typically near the contact
lines) where the second derivatives of the physical fields (pres-
sure, velocity, or temperature) exceed specified thresholds. A
typical mesh applied at the final stage of a simulation is shown
in Fig. 2. Additional details are provided in the appendix.

To ensure that an asymptotic state (steady or time-periodic)
is reached, all the 2D simulations were carried out to a physical
time of at least 600 seconds, while the 3D simulations, which

were much more computationally intensive, were carried out
to physical times of at least 100 seconds. We start by present-
ing the results of 2D simulations which correspond to replacing
the physical boundary conditions on the side walls (front and
back of the cavity) with periodic boundary conditions for all
the fields.

3.1. Steady Unicellular and Multicellular Flow

For sufficiently low ∆T , the flow eventually reaches a steady
state. Fig. 3 shows the streamlines of this steady flow in both the
liquid and the gas phases at several values of ∆T . In particular,
when ∆T = 4 K, a uniform return-flow basic state is observed in
the core region of the flow. The liquid flows from the hot end of
the test cell (right) towards the cold end (left) along the free sur-
face, driven by a combination of buoyancy and thermocapillary
stresses, with a return flow near the bottom. In the gas layer,
thermocapillarity opposes buoyancy, resulting in a large clock-
wise convective roll in the core region. Buoyancy produces two
smaller counterclockwise recirculation rolls in the top corners.
Following Riley and Neitzel’s terminology, we will call this a
steady unicellular flow (SUF).

At ∆T = 7 K several convection rolls emerge in the liq-
uid layer near the hot wall. This pattern corresponds to the
steady multicellular flow (SMC). When the temperature differ-
ence is increased to ∆T = 10 K, convection rolls become more
pronounced, especially near the hot wall, but the pattern still
does not extend across the entire cell. This convective motion
starts to affect the temperature field, with the waviness of the
isotherms in the liquid phase (see Fig. 4) near the hot wall re-
flecting the convective motion of the fluid. By the time ∆T is
increased to 15 K, the convective pattern has spread over the
entire cell and the rolls are clearly distinguishable not only in
the liquid, but also in the gas phase. As ∆T is increased further,
to 20 K, the convection in both layers becomes more vigorous.
While convection has a progressively significant effect on the
temperature in the liquid layer, the temperature field in the gas
layer remains qualitatively similar for ∆T ≤ 20 K.

The wave length of the convective pattern appears to grow
monotonically with ∆T . The number of convection rolls first
increases, as the pattern expands from the hot to the cold wall,
and after the multicellular pattern is established, the number of
rolls steadily decreases, until the convection pattern becomes
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∆T = 4 K

∆T = 7 K

∆T = 10 K

∆T = 15 K

∆T = 20 K

Figure 3: Dependence of the flow field on the imposed temperature difference
∆T . Solid lines represent the streamlines of the flow. Here and below, the gray
(white) background indicates the liquid (gas) phase.

time-dependent at higher ∆T . This trend is consistent with both
experiments of Riley and Neitzel [7] and the numerical simula-
tions of Shevtsova et al. [17].

In order to directly compare our results with other numerical,
experimental, and analytical studies, we need to determine the
Marangoni number (29) based on the interfacial temperature
gradient τ, which characterizes the magnitude of thermocapil-
lary stresses. As it has been pointed out in numerous previous
studies, τ differs rather significantly from the imposed gradi-
ent ∆T/L. As a result, the interfacial Marangoni number (29)
differs rather significantly from the “lab” Marangoni number

MaL =
γd2

l ∆T
µlαlL

(30)

used in the earlier studies and based on the applied temperature
difference ∆T . While at lower ∆T the interfacial temperature
(shown in Fig. 5) in the core region of the flow varies linearly
with position x, for higher ∆T there is significant modulation
due to convection in the liquid. Hence we chose to use a spa-
tially averaged value of the gradient which corresponds to a
linear fit to the graph of Ti(x). For ∆T = 4, 7, 10, 15, and 20
K we find, respectively, Mal = 342, 460, 547, 682, and 804. In
the range of ∆T where the flow is steady, ∆T/L is found to vary

∆T = 4 K, δT = 0.25 K

∆T = 7 K, δT = 0.5 K

∆T = 10 K, δT = 0.5 K

∆T = 15 K, δT = 1 K

∆T = 20 K, δT = 1 K

Figure 4: Dependence of the temperature field inside the cavity on the imposed
temperature difference ∆T . Solid lines represent the isotherms, with tempera-
ture difference δT between them as indicated.

as a rational function of τ, as Fig. 6 shows. In the limit ∆T → 0
the fit correctly reproduces the analytical solution

∆T
L

∣∣∣∣∣∣
∆T→0

=

(
1 + 2

kl

kw

hw

L

)
τ = 1.00368τ, (31)

which corresponds to a conductive profile in the liquid layer.
At low values of Mal the unicellular flow in the core re-

gion of the test cell agrees with the analytical solution origi-
nally obtained by Kirdyashkin [8] and later corrected by Villers
and Platten [9]. For the thermocapillarity-buoyancy driven flow
in an extended layer subject to horizontal temperature gradient
with adiabatic boundary conditions at the bottom and the free
surface of the liquid layer, one finds that the horizontal com-
ponent ul,x of the velocity and temperature Tl can be written in
dimensionless form as

ūl,x = −Rel

3z̄2
l

4
−

z̄l

2
− Bol

 z̄3
l

6
−

5z̄2
l

16
+

z̄l

8

 , (32)

and

T̄l = x̄l + Mal

 z̄3
l

12
−

z̄4
l

16
+ Bol

 z̄5
l

120
−

5z̄4
l

192
+

z̄3
l

48

 , (33)

where ūl,x = ul,xdl/νl, T̄l = Tl/τdl, x̄l = x/dl, z̄l = z/dl, and
z = 0 at the bottom of the liquid layer. It should be emphasized
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Figure 5: Interfacial temperature for different imposed temperature difference
∆T . The y-axis is truncated so that the details of the temperature variation in
the core region of the flow can be seen.
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Figure 6: The relation between the gradient τ of the interfacial temperature in
the core region of the flow and the imposed temperature gradient ∆T/L. For
steady flows (∆T = 4, 7, 10, 15, 20 K) the dependence can be fitted with
extremely high accuracy (R2 = 0.9999) by a low order rational function.

that solutions (32) and (33) are only valid if we assume that
∂Ti/∂x = τ = const. This assumption does not follow from the
proper boundary conditions for the two-sided problem at the
free surface (and, in fact, breaks down for higher ∆T , as Fig. 5
illustrates), and hence has to be checked for consistency. Before
we perform this consistency check, however, let us compare
these analytical solutions with numerical ones for lower values
of ∆T , where this assumption appears to hold.

As Fig. 7 illustrates, we find excellent agreement, for both the
velocity and temperature profile, in the middle of the test cell
for moderate temperature differences ∆T = 4 K and ∆T = 7 K
at which unicellular flow is found. The computed flow velocity
is also in reasonably good agreement with experimental mea-
surements (despite the slight difference in the applied ∆T and
the numerics being restricted to 2D). We find the maximum and
minimal values of ul,x are umin = −3.6 mm/s and umax = 1.2
mm/s for ∆T = 4 K and d = 2.45 mm (which corresponds to
Mal = 342.3 and Bol = 0.85), while experimental observations
[28] give umin = −3.7 mm/s and umax = 1.3 mm/s for ∆T = 3.8
K and dl = 2.5 mm (which corresponds to Mal = 370 and
Bol = 0.89).

The assumption that the interfacial temperature varies lin-
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1

2

-5 -3 -1 1

z 
(m

m
) 

u (mm/s) 

(a)

0

1

2

292 292.5 293 293.5

z 
(m

m
) 

T (K) 

(b)

Figure 7: Vertical profiles of the horizontal velocity ul,x (a) and temperature Tl
(b) in the liquid layer in the middle of the cell, x = L/2. Open and close circles
correspond to numerical results for ∆T = 4 K and ∆T = 7 K, respectively; solid
lines show the theoretical predictions.

early in the core region of the flow has been widely used in
previous studies, without much justification, both for deriving
the expressions (32) and (33) for the return flow underlying the
stability analyses [10, 11, 13] as well as in models of the adi-
abatic section of heat pipes [29, 30, 31], which assume unidi-
rectional flow in the liquid phase. However, the validity of this
assumption cannot be established by a one-sided model which
ignores the transport in the gas phase. Proper justification re-
quires showing that this assumption is consistent with a steady-
state solution of the transport equations in the gas phase which
satisfies all of the boundary conditions at the free surface.

We can find the solutions for the gas velocity vg,x and vapor
density ρv in the core region in the same way the solutions (32)
and (33) where obtained in the liquid phase. Solving (1) subject
to the continuity of the velocity at the interface z = dl and the
no-slip boundary condition at the top wall z = H of the cell
yields

ūg,x = −R

3z̄2
g

4
−

z̄g

2
− B

 z̄3
g

6
−

5z̄2
g

16
+

z̄g

8

 , (34)

while solving (6) subject to the no-flux boundary conditions at
the top and bottom of the gas layer we find

ρ̄v = x̄g +
νg

D
R

 z̄3
g

12
−

z̄4
g

16
+ B

 z̄5
g

120
−

5z̄4
g

192
+

z̄3
g

48

 , (35)
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(a)

(b) (c)

Figure 8: Vapor concentration cv in the gas phase for ∆T = 4 K. Entire cell
(a) and the blow-ups of the 3 mm-wide regions near the contact line at the cold
end wall (b) and near the contact line at the hot end wall (c). The difference
between adjacent level sets is δc = 0.02% in (a) and δc = 0.01% in (b) and (c).
Darker shade indicates higher concentration, ranging from 3.82% to 4.46% in
the gas phase. The concentration field is not defined in the liquid phase.

where ūg,x = ug,xdg/νg, ρ̄v = ρv/%dg, x̄g = x/dg, z̄g = (H −
z)/dg, dg = H − dl is the thickness of the gas layer, and % is
some constant. Finally, the parameters R and B incorporate the
properties of both fluid layers,

R =
νldg

νgdl
Rel +

1
12

[
νldg

νgdl
Grl + Grg

]
,

B = −
Grg

R
, (36)

where the Grashof number in the gas layer is defined using the
formula analogous to that for the liquid layer. Note that B is
negative, that is buoyancy forces recirculation of the gas in the
direction opposite to that of thermocapillarity, as illustrated by
the flow fields shown in Fig. 3.

Since both Tv and pg are essentially constant (the variation
in Tv over the core region of the flow is about 0.4% for ∆T = 4
K, while the pressure drop due to viscous effects is negligible
compared with ambient pressure), the concentration field is es-
sentially proportional to the vapor density, so that (35) yields:

cv =
R̄vTv

pg
ρv ≈

R̄vT0

pg
%(x − x0) + h(z), (37)

where x0 is some point in the core region of the flow and h(z) is
some function of z defined by the second term in (35). Indeed,
the numerical solution shown in Fig. 8(a) has precisely this
form in the core region of the flow, where J is negligibly small
and the no-flux boundary condition for ρv is justified.

It should be pointed out that there is no solution analogous
to (33) for Tg. Although the velocity profiles (32) and (34)
are similar and the temperature is governed by an advection-
diffusion equation (11) in both phases, the boundary conditions
for Tg are not symmetric: we have an adiabatic boundary con-
dition at the top of the cavity, but at the free surface we have
instead the continuity condition Tg = Ti = Tl. As a result, (11)

does not admit a solution in the form such as (33). Indeed, the
numerical solutions shown in Fig. 4 illustrate that the tempera-
ture field in the gas layer has a considerably more complicated
shape.

Having obtained the solution for the vapor concentration, we
can proceed to compute the saturation temperature Ts at the
interface, which is a function of cv via (10) and (15):

Ts(x) ≈ Ts(x0) +

[
∂Ts

∂pv

∂pv

∂cv

∂cv

∂x

]
x0

(x − x0). (38)

Since both ∂pv/∂cv = pg and ∂cv/∂x are independent of x, if cv

does not vary significantly across the cell (so that ∂Ts/∂pv can
also be considered constant), we find Ts to vary linearly in x.

Finally, the interfacial temperature Ti can be obtained from
(13). The pressure jump across the interface (the Young-
Laplace pressure) is small for curvatures corresponding to the
capillary length, so the first term in (13) is negligible compared
to the second one. Dropping it and solving for Ti we find

Ti − Ts

Ts
≈

2 − λ
2λ

R̄vTs

L

√
2π

R̄vTs

J
ρv
. (39)

where the right-hand-side is much smaller than unity (for ∆T =

10 K, the typical values are of order 10−7 in the core region and
of order 10−5 near the end walls) due to the relatively large val-
ues of the latent heat. This means that Ti is essentially identical
to Ts at the interface. Combining (38), (37), and (15) we find

τ ≈
∂Ts

∂pv

∂cv

∂x
pg ≈

R̄2
vT 3

0

L
%. (40)

Hence, the interfacial temperature gradient is constant in the
core region of the flow and set by the gradient of the vapor
concentration in the gas phase. However, the temperature will
deviate from a linear profile if either cv changes significantly
(e.g., when the gas phase is dominated by vapor, rather than
air) or the adiabatic boundary condition on the liquid side of the
interface breaks down (e.g., as a result of convection at higher
∆T ).

Near the end walls the assumptions and approximations valid
in the core region break down anyway and we can no longer ex-
pect a linear dependence of Ti on x. Indeed, as Fig. 5 shows, the
interfacial temperature changes very quickly near the end walls.
In fact, the corresponding thermal boundary layers account for a
significant fraction of the imposed temperature difference ∆T .
The remainder of the temperature drop takes place inside the
end walls, as can be seen in Fig. 9. In the present setup the
variation in Ti over the core region of the flow (roughly τL), the
temperature drop across the thermal boundary layers and that
inside the end walls (in the regions wetted by the liquid), are all
comparable.

As shown in Fig. 9, the inner side wall temperature varies
significantly with height, reflecting the variation in the temper-
ature drop across the walls. This temperature drop is negligible
where the wall is in contact with the gas for which kw � kg, but
quite large below the contact line, since kw is comparable to kl.
The largest temperature drop is at the contact line, where heat
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Figure 9: Temperature distribution along the inner surfaces of the end walls.
The temperature imposed on the outer surfaces of the cold and hot walls are
Tc = 288 K and Th = 298 K, respectively, which corresponds to ∆T = 10 K.

conduction through the wall is balanced not only by the heat
conduction through the liquid, but also by the heat released or
absorbed as a result of phase change at the interface. It should
be pointed out, however, that the there is also a strong asymme-
try between the two end walls: the temperature drop below the
contact line is relatively uniform along the hot wall, but varies
by an order of magnitude (between 0.2 K and 2.5 K) along the
cold end wall.

The detailed model which describes heat and mass transport
in both the liquid and the gas phase can also be used to vali-
date the boundary conditions used in the one-side models. In
particular, the interface is assumed to be flat in the core region.
Fig. 10 shows the curvature κ of the interface, which has been
nondimensionalized by the thickness dl of the liquid layer. The
relatively high curvature near the end walls is caused by the
distortion of the interface due to the low contact angle. At this
higher temperature difference (∆T = 20K), the interface in the
core region of the flow is not perfectly flat: the sign of the cur-
vature oscillates, indicating a stationary surface wave caused by
the convection rolls in the liquid layer. However, the amplitude
of these oscillations is quite small (and becomes even smaller
for smaller ∆T ), so the interface can be considered essentially
flat (and rigid) in the core region (roughly 10 mm . x . 40
mm).

Existing one-sided models also ignore phase change at the
interface, which is justified for liquids with low vapor pressures,
such as decane, but certainly not for volatile liquids, such as
acetone or low viscosity silicone oils. In order to determine
whether phase change can indeed be ignored, we have defined
a nondimensional mass flux J̄ = J/J0, where J0 is the mass flux
along the interface due to the flow in the liquid layer,

J0 = ρlui. (41)

Here ui is the tangential component of the velocity at the inter-
face, which can be computed using the analytical solution (32).
As shown in Fig. 11, for the volatile silicone oil considered in
this paper, the phase change is localized to the boundary lay-
ers near the end walls. More importantly, in the core region of
the flow mass flux across the interface due to phase change is
indeed negligibly small compared to J0.

0 10 20 30 40
-0.01

0.01

0.03

0.05

x (mm) 

κ
d

l 

Figure 10: Nondimensional curvature of the liquid-vapor interface for ∆T = 20
K. The variation in the sign reflects the distortion of the interface due to strong
convection in the liquid layer. The vertical range has been truncated to amplify
the variation in the core region of the flow.

Most one-sided models use Newton’s law of cooling

n · ∇Tl = Bi (T0 − Ti), (42)

where Bi is the Biot number, instead of the proper heat flux bal-
ance (19). For the adiabatic boundary condition at the bottom
of the liquid layer, the analytical solution such as (33) is only
valid if the normal component of the heat flux ql = kln · ∇Tl in
the liquid at the interface also vanishes, which corresponds to
the limit Bi = 0. We can check whether ql is vanishingly small
by defining a nondimensional heat flux q̄l = ql/q0, where q0
is the conductive heat flux through the liquid layer along the z
direction,

q0 = kl
δT
dl
, (43)

and δT is the temperature difference across the liquid layer
(e.g., δT = 0.75 K for ∆T = 4 K). Again, Fig. 11 shows that
ql is small compared to q0 in the core region of the flow (3% or
less), mostly justifying the use of the adiabatic boundary con-
dition at the interface away from the end walls. Moreover, we
see a high degree of correlation between J̄ and q̄l. Indeed, this
is to be expected, since by ignoring the heat conduction in the
gas phase we can reduce (19) to ql = LJ. However, there are
regions near the end walls where the heat flux qg = kgn · ∇Tg

in the gas phase cannot be ignored, as is typically done in one-
sided models.

Furthermore, a closer inspection of Fig. 11 shows a rather
counter-intuitive result. There is a region near the cold wall (0.1
mm < x < 1.8 mm) where the liquid evaporates (J > 0), and
another region near the hot wall (45 mm < x < 48.1 mm) where
the vapor condenses (J < 0). Everywhere else the sign of J is as
one would expect. For instance, vapor condenses immediately
next to the cold wall (0 mm < x < 0.1 mm) and liquid evap-
orates immediately next to the hot wall (48.1 mm < x < 48.5
mm). Our intuition, however, is shaped primarily by cases in-
volving thin films, where heat is transported through the liquid
diffusively: when the wall temperature is higher (lower) than
the local saturation temperature Ts, so is the interfacial tem-
perature Ti, and we expect evaporation (condensation). In this
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Figure 11: Nondimensional mass flux J̄ (solid line) and nondimensional heat
flux q̄l in the liquid towards the interface (dashed line) for unicellular flow,
∆T = 4 K. In (a) the vertical range has been truncated to amplify the variation
in the core region of the flow. Panels (b) and (c) show the variation of the mass
flux over its entire range near the end walls.

particular geometry, we expect condensation near a cold wall
(where the wall temperature is lower than Ts) and evaporation
near a hot wall (where the wall temperature is higher than Ts).
Indeed, this is what we find very close to the end walls (within
0.1-0.4 mm). A little further away, heat transport is dominated
by advection, not diffusion (as the shape of the isotherms in Fig.
4 clearly illustrates), and Ti can easily become higher (lower)
than Ts near a cold (hot) wall. As it turns out, this is exactly
what happens.

As we already mentioned, there is a high degree of correla-
tion between J and ql, so it is natural to expect that it is the heat
flux in the liquid (towards or away from the interface, depend-
ing on the local flow field) that controls the sign of J. In order
to see how the flow in the liquid affects the phase change at the
interface, it is instructive to compare the flow field, the tem-
perature field, the normal heat flux, and the mass flux for the
case ∆T = 20 K featuring multiple convection rolls. As Fig.
12 shows, in the presence of convection rolls neither the heat
fluxes at the two sides of the interface nor the mass flux (which
is proportional to the latent heat associated with phase change,
LJ = qm = ql − qg) are negligible in the core region of the flow.
Both J and ql are modulated by convection in the liquid, with
the minima of J and ql located above the rolls and the maxima
located between the rolls, while the heat flux qg in the gas phase
is considerably smaller (although still non-negligible). In par-
ticular, we find that ql can be as high as 10% of q0 and qg as
high as 5% of q0 in the core region of the flow, illustrating the
breakdown of the adiabatic boundary condition in the multicel-
lular regime.

The same relation applies to the rolls adjacent to the end
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Figure 12: Flow structure, heat flux, and temperature field for the case when
∆T = 20 K. The middle panel shows the (nondimensionalized) conductive heat
flux at the liquid side ql = n · kl∇Tl, the vapor side qg = n · kg∇Tg, and the heat
flux associated with phase change, qm = LJ = ql − qg. The vertical range has
been truncated to amplify the variation in the core region of the flow.

walls. In particular, we find a region of condensation above,
and a narrow region of evaporation to the right of, the roll adja-
cent to the hot end wall for both ∆T = 20 K and ∆T = 4 K. The
roll adjacent to the cold end wall is too weak to drive condensa-
tion right above it. However, the flow near the stagnation point
at the contact line is fast enough at all ∆T to invert the sign of ql

and cause evaporation in a narrow region close to the cold wall.
Right at the contact line the velocity vanishes and ql becomes
negative, producing an even narrower region of condensation.

3.2. Time-Periodic Multicellular Flow
As ∆T is increased beyond 20 K, the stationary convection

pattern becomes unstable and the flow becomes unsteady. In
particular, for ∆T = 30 K (which corresponds to Mal ≈ 1096),
the flow is time-periodic, with period T ≈ 3.2 s. Fig. 13 shows
the stream function ψ in the liquid layer at different times during
one period. Just as for the stationary convection at lower ∆T we
find multiple convection rolls. However, the regularity in the
strength and position characteristic of stationary patterns is lost
in the time-periodic case.

Riley and Neitzel [7] refer to this flow as oscillatory mul-
ticell (OMC). Our results suggest that this term may not be
completely accurate. The flow near the hot wall is indeed os-
cillatory. The roll adjacent to the hot(right) wall (labeled A in
Fig. 13) has both a larger size and greater strength than other
rolls. Starting from the time t = 0, roll A grows, mostly in the
x direction during the first half of the period. As it is elongated,
a new roll (labeled B) forms at the left edge of roll A around
t = (3/8)T . During the second half of the period, roll A starts to
shrink, and the new roll B is “pinched” off around t = (5/8)T ,
and recedes from roll A. The strength or roll B gradually de-
creases and it then travels back towards roll A, merging with A
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Figure 13: Stream function in the liquid layer at different times during one
period of oscillation for ∆T = 30 K. The shaded background represents the
value of the stream function ψ, with darker color indicating higher values of ψ.
The time interval between consecutive images is approximately 0.4 s. High-
resolution movie showing the evolution of the flow field and the temperature
field can be downloaded here. The movie shows five periods (which corre-
sponds to about 16.4 s). The upper panel shows the temperature T , the middle
panel – the stream function ψ, and the lower panel – the magnitude of the veloc-
ity u. The standard jet color map is used with blue corresponding to the minima
and red – the maxima. The range of variation for T is 289 to 297 K and for |u|
is 0 to 15 mm/s.

around t = (2/8)T . This is quite similar to what the numerical
simulations of Villers and Platten [4] showed for a liquid layer
with a streamwise aspect ratio substantially smaller than that
studied here (Γx = 9, vs. Γx = 18.6).

Near the cold end, the dynamics are best described as a trav-
eling wave. We find several convection rolls, two of which are
labeled D and E in Fig. 13, traveling to the left. Both rolls D
and E keep moving towards the stationary roll F adjacent to the
cold wall. Around t = (3/8)T roll E starts to merge with roll F,
disappearing around t = (5/8)T . Roll D keeps traveling to the
left, taking at t = (8/8)T the position of roll E at t = (0/8)T ,
after which the process repeats. It should be noted that both the
strength of the rolls and the speed at which they travel towards
the cold wall varies considerably.

In the middle of the cell, it is harder to distinguish individ-
ual convection rolls. The dynamics are dominated by a roll
(labeled C) which nucleates at the right edge of the central re-
gion around t = (4/8)T , just to the left of roll B, travels to
the left edge of the central region and disappears there around
t = (3/8)T . Summing up, we find that the time-periodic flow is

200

500

800

1100

0 0.2 0.4 0.6 0.8 1

M
a

l 

Bol 

SMC 

SUF 

HTW OMC 

Figure 14: The flow regimes observed for different Bol and Mal. The lines
show transitions between different flow regimes in the experiments of Riley and
Neitzel [7]. The labels denote steady unicellular flow (SUF), steady multicellu-
lar flow (SMC), oscillating multicellular flow (OMC) and hydrothermal waves
(HTW). Open squares correspond to MaL and closed squares – to MaL. The
circles show the results of our simulations. White fill denotes steady unicellular
flow, gray – steady multicellular flow, and black – oscillating multicellular flow.

rather complicated, with oscillatory dynamics near the hot end
wall, a traveling wave near the cold end wall, and dynamics
in the middle which appear to be some sort of mixture of the
regimes found near the two end walls.

The flow behavior found in the numerics is qualitatively con-
sistent with the experimental observations of Li et al. [28].
Their experiments also show oscillatory dynamics on one side
of the cavity (periodic modulation of the width of the roll near-
est the hot wall) and traveling motions on the opposite side
(rolls traveling towards the cold end wall).

3.3. Comparison with Experiment

This section summarizes our numerical results and compares
them with experimental results in relevant geometries. The
comparison has a qualitative nature as certain aspects of the ex-
perimental flow cells differ from the 2D simulations presented
here. In most studies the flow cell is not sealed and the liquid
is in direct contact with the temperature-controlled end walls,
while our simulations assume that the fluid is contained in a
sealed thin-walled container (see Fig. 1). Furthermore, the vari-
ation in the contact angle leads to slight variation in the thick-
ness of the liquid layer and the slope of the free surface near the
walls, which affect the strength of both the buoyancy force and
the thermocapillary stresses.

The experiments performed by Riley and Neitzel [7] were in
a geometry (a cavity with a flow section of length L = 50 mm
and width W = 30 mm), which is the closest to that used in our
2D numerical simulations. For the range of liquid depths con-
sidered (0.75 mm ≤ dl ≤ 2.5 mm) these parameters correspond
to the streamwise and spanwise aspect ratios of 12 ≤ Γx ≤ 40
and 20 ≤ Γy ≤ 66.7 (compared with Γx = 18.6 and Γy = ∞ used
here). The working fluid in the experiment was 1 cS Dow Corn-
ing silicone oil with Prl = 13.9, while we used a substantially
more volatile silicone oil with Prl = 6.8.

Fig. 14 (adapted from Ref. [7]) compares the flow regimes
observed in experiment with those found in our simulations. In
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Figure 15: The flow regimes observed for different Bol and MaL. Filled tri-
angles and open squares represent, respectively, oscillatory and stationary flow
patterns observed by Villers and Platten [4]. The circles show the results of
simulation, with notations as in Fig. 14.

the numerics the dynamic Bond number Bol = 0.853 is constant
since the fluid thickness does not vary. As ∆T increases, the in-
terfacial Marangoni number increases, and the flow pattern is
found to transition from steady unicellular flow to steady mul-
ticellular flow, then to oscillating multicellular flow. In particu-
lar, in the numerics the transition from SUF to SMC occurs at
342 < Mai < 460, which is below the critical value Mai ≈ 540
extrapolated from the experimental data (Riley and Neitzel de-
termine the transition threshold between OMC and SMC based
on the splitting of the convection roll closest to the hot wall).
This is consistent with the general trend of the critical Mai in-
creasing with Pr (for Pr & 1) [13]. The transition from SMC
to OMC takes place for 804 < Mai < 1096 in the numerics.
Unfortunately, Riley and Neitzel do not report the critical Mai

for the transition to OMC for Bol > 0.5.
Another useful reference is provided by the experiments of

Villers and Platten [4] which used a cavity with a flow section
of length L = 30 mm and width W = 10 mm and a liquid
layer thickness 1.70 mm ≤ dl ≤ 14.25 mm, corresponding to
2.1 ≤ Γx ≤ 17.6 and 0.7 ≤ Γy ≤ 5.9. The working fluid
was acetone with Prl = 4.2. The experimental observations
are only classified as either stationary or oscillatory flow, so
we can only compare the critical Marangoni number for tran-
sition from SMC to OMC. Villers and Platten only quote the
laboratory Marangoni number (30), so we use the (Bol,MaL)
plane to present the results. As Fig. 15 shows, the transition to
OMC occurs at comparable values of MaL in the experiment
and in the numerics, although, again, quantitative agreement is
not expected due to the difference in the values of Pr and strong
lateral confinement present in the experiment.

The experiments of Li et al. [28] match the numerical simu-
lations presented here almost exactly (same fluid, same length
and height of the cavity). However, there is a discrepancy in
the critical Marangoni numbers characterizing different transi-
tions. In the experiment the transition from SUF to SMC hap-
pens at Mal ≈ 240 and the transition from SMC to OMC at
560 < Mal < 610, with both values lower than our numer-
ical predictions by about 30%. Furthermore, for the oscilla-

θ = 30◦, Mai ≈ 565

θ = 50◦, Mai ≈ 539

θ = 70◦, Mai ≈ 535

θ = 90◦, Mai ≈ 529

Figure 16: Streamlines of the steady flow for different values of the contact
angle θ. ∆T = 10 K and the average thickness of the liquid layer is dl ≈ 2.5
mm.

tory flow, the dynamics of convection rolls in the experiment
are very similar to our numerical results. The temporal period
in the experiment is larger (T = 5.4 s) than in the numerics
(T = 3.2 s), which is not surprising given that the experimental
flow corresponds to a lower value of Mai.

The discrepancies in the critical Mai may be due to a num-
ber of reasons. Lateral confinement effects are one example.
The finite width W = 10 mm of the experimental cell used in
Ref. [28] (which corresponds to Γy of only 4.1) causes a curva-
ture of the free surface in the spanwise direction and a deviation
in the layer thickness at the side walls from the transversely flat
profile assumed by the numerical simulations. The experiments
also show evidence of weak secondary flow in the (y, z) plane
which is not present in the numerics and could modify the tem-
perature distribution in the liquid layer. In order to investigate
the effects of the contact angle and three-dimensionality of the
flow we performed additional studies described below.

3.4. The Effect of the Contact Angle

To investigate how the variation in the contact angle affects
the flow we performed a series of 2D numerical simulations
varying θ over a rather wide range. The geometry of the 2D
cavity was kept the same as in previous simulations to facilitate
comparison. The temperature difference between the outer sur-
faces of the two end walls was chosen to be ∆T = 10 K for all
the cases. This value is reasonably close to the transition from
SUF to SMC, making the structure of the flow quite sensitive to
the variation of any parameters.
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The flow is found to depend on the value of θ, even in the
core region away from the end walls, although this dependence
is not very strong. For the four values of the contact angle that
have been investigated, the flow patterns shown in Fig. 16 are
qualitatively similar, although the values of Mai are slightly dif-
ferent (due to the change in the thickness of the liquid layer with
θ). In the liquid layer, several weak convection rolls can be seen
in the core region of the flow. We find four rolls for θ = 50◦ and
70◦, three for θ = 90◦ and two for θ = 30◦. In the gas layer,
the flow patterns are almost indistinguishable. The temperature
field (not shown), is essentially the same in the range of θ con-
sidered. Summing up, these results suggest that the influence
of the contact angle on the flow pattern, both near the end walls
and in the core region of the flow, is relatively weak and can
only partially account for the disagreement between the exper-
iment and numerics.

3.5. Three-Dimensional Effects
The effect of the lateral walls (lateral confinement for finite

values of Γy) can only be understood by performing a full 3D
simulation. However, simulating the flow in a cell of dimen-
sions 48.5 mm × 10 mm × 10 mm used in Ref. [28] proved
too time-consuming. The requirement to resolve the convective
structures, despite the adaptively refined mesh, produces more
than 106 computational cells (for 1/8 mm resolution). Match-
ing the resolution of the 2D simulations (1/16 mm) would have
required over 107 computational cells. Therefore, we chose to
compare the results of 2D and 3D simulations for a cavity with
inner dimensions of 15 mm × 5 mm × 5 mm (L×H×W), which
has the additional benefit of enhancing the confinement effects.
The thickness of the liquid layer was set to dl = 1.5 mm, which
corresponds to Bol = 0.322. Furthermore, to avoid confusing
the effects of lateral confinement with the effects of the contact
angle, we set θ = 90◦ which produces an essentially flat free
surface.

We have considered two different values of ∆T which place
the system either in the unicellular or the multicellular steady
flow regime. In particular, for ∆T = 4 K (which corresponds to
Mal = 298), we find a steady unicellular flow. Fig. 17 shows
this flow in the vertical mid-plane of the 3D cavity which is
almost indistinguishable from the corresponding 2D flow. Sim-
ilarly, the temperature field in the mid-plane of the cavity is
indistinguishable from the 2D solution (see Fig. 18).

In fact, both the flow field and the temperature field in 3D
are very accurately represented by the 2D solution over most
of the cavity interior. As Fig. 19 shows, the 3D and the 2D
temperature field in the liquid are essentially identical at the
horizontal plane at z = 1 mm passing the center of the two
convection rolls. The vertical component of velocity uz in the
same horizontal plane is the same in 3D and in 2D (see Fig. 20)
everywhere except near the side walls, where the 3D velocity
vanishes due to no-slip boundary conditions.

For ∆T = 20 K (which corresponds to Mal = 602), we
find a steady multicellular flow. Fig. 21 shows that the flow
in the vertical mid-plane of the 3D cavity, again, is almost in-
distinguishable from the corresponding 2D flow. The slight dif-
ference in the position of convection rolls is due to the weak

(a)

(b)

Figure 17: The flow in the vertical plane for ∆T = 4 K. Streamlines of (a) the
2D flow and (b) the 3D flow in the mid-plane (y = 2.5 mm) of the cavity are
shown.

(a)

(b)

Figure 18: The temperature field in the vertical plane for ∆T = 4 K. Isotherms
of (a) the 2D solution and (b) the 3D solution in the mid-plane (y = 2.5 mm)
of the cavity are shown. The temperature difference between two adjacent
isotherms is δT = 0.4 K.

time-dependence of the 3D solution which slowly approaches a
steady flow; the 3D flow structure becomes more similar to the
2D solution with time. Similarly, the temperature field in the
mid-plane of the cavity is essentially indistinguishable from the
2D solution (see Fig. 22).

However, there are significant differences between the 3D
and the 2D solution on either side of the vertical mid-plane,
as the horizontal cross-section of the cavity illustrates. For in-
stance, Fig. 23 shows that the strong modulation (in the x di-
rection) of the 3D temperature field in the mid-plane disappears
near the side walls, making the variation essentially monotonic.
On the other hand, the vertical component of the 3D velocity
field in the horizontal plane (see Fig. 24) shows that the convec-
tion rolls become strongly distorted. Instead of tilting, as linear
stability analyses predict [10, 32], the rolls bend symmetrically,
approaching the side walls at the same angle on both sides.

Summing up, we find that, for θ = 90◦, 2D simulations
provide a reasonably accurate description (both qualitative and
quantitative) of the two-phase flow in the symmetry plane of the
flow cell or cavity containing the fluid in a wide range of applied
temperature gradients. For lower ∆T (in the SUF regime) the
2D solution is accurate everywhere except near the side walls.
For higher ∆T (in the SMC regime) full 3D solution is required
to describe the flow on either side of the symmetry plane. It is
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Figure 19: The temperature of the liquid in the horizontal plane z = 1 mm for
∆T = 4 K. Shown are (a) the 2D solution and (b) the 3D solution.
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possible that for small values of θ, which are more relevant for
experiment, the variation of the thickness of the liquid film in
the y direction could have a more pronounced effect on the flow
structure and stability.

4. Conclusions

We have developed, implemented, and validated a com-
prehensive numerical model of two-phase flows of confined
volatile fluids, which properly accounts for momentum, mass,
and heat transport in both phases and phase change at the in-
terface. This model was used to investigate the problem of
buoyancy-thermocapillary convection in a sealed cavity subject
to a horizontal temperature gradient, in the presence of air at
atmospheric pressure, and was validated by comparing its pre-
dictions against known analytical solutions.

The numerical results were also compared with existing
quantitative experimental data. We find good qualitative agree-
ment for 2D simulations: as the Marangoni number is increased
(while the dynamic Bond number is kept fixed), the flow under-
goes transitions from steady unicellular to steady multicellular
convection with co-rotating rolls, to time-periodic convection
state. The critical values of the Marangoni number are similar
to those found in experiment, but there are noticeable quanti-
tative differences. To be fair, quantitative agreement was not

(a)

(b)

Figure 21: The flow in the vertical plane for ∆T = 20 K. Streamlines of (a) the
2D flow and (b) the 3D flow in the mid-plane (y = 2.5 mm) of the cavity are
shown.

(a)

(b)

Figure 22: The temperature field in the vertical plane for ∆T = 20 K. Isotherms
of (a) the 2D solution and (b) the 3D solution in the mid-plane (y = 2.5 mm)
of the cavity are shown. The temperature difference between two adjacent
isotherms is δT = 1 K.

expected due to the differences between the numerical simu-
lations and experiments (e.g., different Prandtl numbers of the
working fluid and/or the geometry of the cavity).

We have attempted to investigate whether some of the differ-
ences could be due to geometric effects – specifically the cur-
vature of the free surface due to wetting of the cavity walls by
the fluid and the confinement effect of the side walls – but found
that the convection pattern, at least in the symmetry plane of the
cavity, is largely unaffected by these geometrical factors. Both
the structure of the flow field and the temperature field were
essentially the same in the 2D and the full 3D simulations, sug-
gesting that, at least for liquid layers with a small to moderate
transverse aspect ratio, 2D simulations provide reasonably ac-
curate results.

The most likely reason for the discrepancies between the ex-
periment and the numerics is the uncertainty in the values of
various material parameters. Most notably, the value of γ re-
ported in the literature ranges between 6.4 × 10−5 N/m-K [33],
8 × 10−5 N/m-K [34, 35] and 8.9 × 10−5 N/m-K [36, 37]. This
is a variation of more than 30%, which changes both Ma and
Bol by the same amount.

Numerical results, in turn, were used to validate the assump-
tions (of flat interface, negligible phase change, and negligible
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Figure 23: The temperature of the liquid in the horizontal plane z = 1 mm for
∆T = 20 K. Shown are (a) the 2D solution and (b) the 3D solution.
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heat flux through the free surface) made by previous studies
based on one-sided transport models. Specifically, we found
that these assumptions are satisfied in the core region of the
flow, but not close to the end walls, when the convection pattern
is dominated by one big recirculation zone. When convection
rolls appear in the core region of the flow, the heat flux through
the interface can no longer be ignored, although the other two
assumptions might still hold. Unfortunately, this means that
neither the results of numerical simulations nor the results of
linear stability analysis based on one-sided models (i.e., es-
sentially all theoretical results published to date) are quantita-
tively accurate. Although our simulations were performed for
a volatile fluid (0.65 cSt silicone oil), we expect the same con-
clusions to hold for less volatile fluids as well. In fact, since
diffusion of vapors through air greatly suppresses phase change
at the interface, volatile and non-volatile fluids should have very
similar behavior.

Numerically modeling the flow gave us the capability to elu-
cidate the details of the convective patterns and both discover
new phenomena and understand previously unexplained exper-
imental observations. In particular, by investigating the struc-
ture of the boundary layers that form near the end walls of the
cavity we found a counter-intuitive effect that has never been
observed either in experiments or in numerical simulations us-
ing one-sided models: there is a region of evaporation close the

cold end wall and a region of condensation near the hot end
wall. We showed that this effect could be explained by advec-
tive heat transport in the liquid layer.

Furthermore, we derived an analytical solution for the con-
centration of vapor (and gas velocity) in the core region of the
flow and showed that this analytical solution can be used to
explain why the temperature of the free surface varies linearly
with position along the direction of the applied temperature gra-
dient, even though the temperature in the gas phase does not.
This observation has been used previously in numerous numer-
ical and analytical (e.g. linear stability) studies of the problem,
but has never been justified. Together with the “single-phase”
analytical solution for the velocity and temperature in the liquid
layer obtained by Kirdyashkin [8] and Villers and Platten [9],
this new solution provides a self-consistent analytical descrip-
tion of the two-phase flow away from the end walls.

In conclusion, it should be mentioned that this model can,
with straightforward modifications, also describe two-phase
flows in the absence of air (or at greatly reduced total pressure).
This is the situation of relevance for two-phase flows in ther-
mal management technologies (e.g., heat pipes, heat spreaders,
etc.), where noncondensables are removed to minimize their ef-
fects on phase change, and will be considered in the follow-up
publications.
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Appendix A. Grid Convergence of the Numerical Solutions

All of the numerical solutions presented in this study have
achieved grid convergence and the results were presented on the
finest mesh. The properties of typical meshes are summarized
in Table A.3, while Table A.4 illustrates convergence for 2D
simulations with ∆T = 10 K and θ = 90◦.

Mesh 1 Mesh 2 Mesh 3 Mesh 4
Smallest mesh 0.5 0.25 0.125 0.0625size (mm)

No. of cells 480 1920 7680 30720in the liquid
No. of cells 1440 3168 6054 10620in the gas
No. of faces 96 192 384 768along interface
Time step (s) 2 × 10−3 1 × 10−3 4 × 10−4 1 × 10−4

Table A.3: Different 2D meshes used in the mesh refinement procedure.
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Mesh 1 Mesh 2 Mesh 3 Mesh 4
Temp. range 9.71 9.84 9.91 9.94in liquid (K)

Deviation from 2.32 0.99 0.32 –Mesh 4 (%)
Max. vapor 4.54 4.64 4.74 4.82concentration (%)

Deviation from 5.8 3.7 1.7 –Mesh 4 (%)
Min. vapor 3.73 3.73 3.72 3.70concentration (%)

Deviation from 0.65 0.64 0.52 –Mesh 4 (%)
|ul| at x = L/2 3.50 4.55 4.92 5.01(mm/s)
Deviation from 30.1 9.2 1.8 –Mesh 4 (%)

Table A.4: Grid convergence of the temperature, density, and velocity fields for
the numerical solutions reported in this study.

The time step is affected by many factors, such as the mesh
cell size, the value of the contact angle, the temperature differ-
ential ∆T , etc. Generally, finer meshes, smaller contact angles,
and greater temperature gradients require smaller time steps.
Moreover, for θ , 90◦, the higher curvature of the free surface
for 3D simulations, compared with 2D calculations, requires an
even smaller time step. In this study, the time step used in the
2D simulations with Mesh 4 decreases from 10−4 s to 2.5×10−5

s, as θ decreases from 90◦ to 50◦. In the 3D simulations, the
time step decreases from 10−4 s to 10−5 s, as θ decreases from
90◦ to 50◦. The total computation time increases significantly in
the 3D simulations both due to smaller time steps and due to an
increase (by orders of magnitude) in the total number of mesh
cells. Typical computation time for a 2D simulation presented
in this study is about one week on a single core of an Intel Core
i7-3770K CPU, while typical computatation time for a 3D sim-
ulation is over a month, even when parallelized to use multiple
(6 to 16) cores of an AMD Opteron 6300-series CPU. Unfortu-
nately, parallelized simulations are not implemented very effi-
ciently in OpenFOAM, so the actual speed-up for a simulation
running on 16 cores is no more than 3-4.
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