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Abstract

Convection in a layer of fluid with a free surface due to a combination of thermocapillary stresses and buoyancy has been studied
extensively under atmospheric conditions. However, recent experimental results have shown that removing most of the air from a
sealed cavity significantly alters the flow structure and, in particular, suppresses transitions between different convection patterns
found at atmospheric conditions. On the other hand, removing air has a very small effect on the flow speed, while a simple analytical
estimate predicts that complete removal of noncondensable gases such as air should reduce the flow speed by an order of magnitude.
To understand these unexpected results, we have formulated and numerically implemented a detailed transport model that takes into
account mass and heat transport in both phases in the absence of noncondensables. The model was used to investigate how the flow
is affected by the magnitude of the (poorly defined) accommodation coefficient and by the temperature jump across the liquid-vapor
interface predicted by some phase change models. Our results eliminate both effects as possible explanations for the unexpected
experimental observations, suggesting that the small amount of air left in the cavity in the experiments is the most likely, albeit
somewhat unexpected, explanation for the observations.

Keywords: Buoyancy-thermocapillary convection, buoyancy-Marangoni convection, free surface flow, noncondensable gas,
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1. Introduction

Convection in liquid films driven by horizontal temperature
gradients has attracted attention in the past due to applications
to crystal growth in microgravity environments, where evap-
oration is negligible, buoyancy plays no role, and the flow is
driven by thermocapillarity. More recently, the focus shifted to
flows driven by a combined action of capillary pressure, ther-
mocapillary forces, and buoyancy with phase change playing an
increasingly important role due to applications in thermal man-
agement in terrestrial environments. In particular, devices such
as heat pipes and heat spreaders, which use phase change to en-
hance thermal transport, are typically sealed, with noncondens-
ables (such as air), which can impede phase change, removed
[1].

The liquid film is almost always in contact with a mixture
of its own vapor and air. The fundamental studies on which
the design of such devices is based, however, often do not dis-
tinguish between different compositions of the gas phase. The
experimental studies are typically performed in geometries that
are not sealed and hence contain air at atmospheric pressure,
while most theoretical studies ignore phase change completely.
Those that do consider phase change use transport models of
the gas phase that are too crude to properly describe the effect
of noncondensables on the flow in the liquid layer. Yet, as a
recent experimental study by Li et al. [2] shows, noncondens-
ables play an important and nontrivial role, so the results in one
limit cannot be simply extrapolated to the other.

We have introduced a proper two-sided model for volatile

fluids which provides a detailed description of heat and mass
transport in both the liquid and the gas phase dominated by
noncondensables in a separate paper [3]. This model, as well as
previous experimental studies of volatile and nonvolatile fluids
by Villers and Platten [4], De Saedeleer et al. [5], Garcimartin
et al. [6], Riley and Neitzel [7] and Li et al. [2], shows that
volatile and nonvolatile fluids have similar behavior at atmo-
spheric conditions. At dynamic Bond numbers of order unity,
the flow in the liquid layer is relatively fast and transitions from
a steady unicellular pattern (featuring one big convection roll)
to a steady multicellular pattern (featuring multiple steady con-
vection rolls) to an oscillatory pattern (featuring multiple un-
steady convection rolls) as the applied temperature gradient is
increased. Numerical studies of nonvolatile fluids by Villers
and Platten [4], Ben Hadid and Roux [8], Mundrane and Zebib
[9], Lu and Zhuang [10], and Shevtsova et al. [11] come to the
same basic conclusion, justifying the use of one-sided models
in the limit where the gas phase is dominated by noncondens-
ables.

Here our focus is on the opposite limit, where the gas phase
is dominated by vapors rather than noncondensables. As the
experiments of Li et al. [2] conducted for a volatile silicone
oil at dynamic Bond numbers BoD ≈ 1 demonstrate, transitions
between different convection patterns are suppressed under va-
por, and the flow structure remains the same (i.e., qualitatively
similar to the unicellular flow under air) when the magnitude
of the applied temperature gradient is varied. Moreover, in the
vapor-dominated limit, the flow speeds were found to be com-
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parable to those in the air-dominated limit, although existing
transport models predict that the flow speeds in the absence of
noncondensables should decrease substantially.

Proper interpretation of these experimental observation re-
quires fundamental understanding of two-phase flows in con-
fined geometries in the (near) absence of noncondensables,
which is currently lacking. There are very few theoretical stud-
ies of this limit. Zhang et al. [12] performed an analytical in-
vestigation of a model of a sealed rectangular heat-pipe with
pure vapor (no air) above an essentially flat liquid layer. Their
model, however, was based on a large number of assumptions
(Stokes flow, negligible buoyancy, negligible advective fluxes,
infinite evaporation and Marangoni numbers) that do not hold
for the experimental studies [2]. Kuznetzov and Sitnikov [13]
and Kaya and Goldak [14] proposed and numerically investi-
gated models of heat pipes which do not include buoyancy or
Marangoni effects, do not conserve mass, and treat the liquid
phase in a very restrictive way (as Darcy or lubrication flow).
Kafeel and Turan [15] and Fadhl et al. [16] proposed and in-
vestigated crude models of thermosyphons which treat the fluid
as a mixture of the liquid and vapor phase, with phase change
occurring in the bulk rather than at a (non-existing) interface.

To address this deficit, we introduce a comprehensive two-
sided model of two-phase flow of a volatile fluid in confined
and sealed geometries due to an applied temperature gradient
in the absence of noncondensables. This model is described in
detail in Section 2. Results of the numerical investigations of
this model are presented, analyzed, and compared with exper-
imental findings in Section 3. Finally, Section 4 presents our
conclusions.

2. Mathematical Model

2.1. Governing Equations
The vast majority of theoretical studies of buoyancy-

thermocapillary convection is based on one-sided models where
heat and mass transport in the gas phase are not solved for di-
rectly, but rather are incorporated indirectly through boundary
conditions at the liquid-vapor interface. As we have shown us-
ing a two-sided model [3] which describes heat and mass trans-
port in both phases, Newton’s law of cooling, which is the basis
of most one-sided models, is generally invalid for convection at
atmospheric conditions. Hence, there is no reason, a priori, to
believe that it should hold in the absence of noncondensables.
In order to describe convection in volatile fluids in the absence
of noncondensables, the heat and mass transport in both phases
must be modeled explicitly.

Zhang et al. [12] have previously formulated a two-sided
model for the problem considered here in the limit of vanish-
ing Reynolds number and infinite Marangoni and evaporation
numbers [17] and and obtained an analytical solution for the
case of a pinned contact line and an essentially flat interface.
Unfortunately, almost none of these assumptions actually hold
in the experiments of Li et al. [2], requiring development of a
general two-sided model that does not rely on any of these as-
sumptions. Such a model, based on the one described in Ref.
[3] is presented below.

Both the liquid and the gas phases can be considered incom-
pressible, since the fluid velocities u are much smaller than the
speed of sound at small length scales. Hence the continuity
equation reduces to ∇ · u = 0. Because the fluid velocities can,
however, be large enough for inertial effects to be significant,
the momentum transport in the bulk should be described by the
Navier-Stokes equation

ρ (∂tu + u · ∇u) = −∇p + µ∇2u + ρ (T ) g (1)

where p and T are the fluid pressure and temperature, ρ and µ
are the fluid’s density and viscosity, respectively, and g is the
gravitational acceleration.

Following standard practice, we use the Boussinesq approx-
imation, retaining the temperature dependence only in the last
term to represent the buoyancy force. This is consistent with the
assumption of incompressibility, since the relative change in the
density due to temperature variation is usually quite small: less
than 10% for the vapor and less than 4% for the liquid in the
examples considered below. (To verify the validity of this ap-
proximation, we also performed the simulations with tempera-
ture dependence included for all material parameters and found
only minor differences in the results.) Specifically, in the liquid
phase

ρl = ρ∗l [1 − βl (T − T ∗)], (2)

where ρ∗l is the reference density at the reference temperature
T ∗ and βl = −(∂ρl/∂T )/ρl is the coefficient of thermal expan-
sion. Here and below, subscripts l, v and i denote properties
of the liquid and vapor phase, and the liquid-vapor interface,
respectively. For the vapor, which is assumed to be an ideal
gas,

ρv = pv/R̄vT, (3)

where R̄v = R/Mv, R is the universal gas constant, and Mv is the
molar mass.

The total mass of fluid in a sealed geometry is conserved,∫
liquid

ρldV +

∫
gas
ρvdV = mt, (4)

where mt is the total mass of the working fluid in both phases.
The densities of liquid and vapor are related to the temperature
and pressure through (2) and (3). Furthermore, the solution of
the Navier-Stokes equation defines the pressure field p up to a
constant po, so that absolute pressure is

pv = p + po, (5)

where the pressure offset po can be computed from (4):

po =

[∫
gas

1
R̄vT

dV
]−1 [

mt −

∫
liquid

ρldV −
∫

gas

p
R̄vT

dV
]
.(6)

Finally, the transport of heat is described using an advection-
diffusion equation

∂tT + u · ∇T = α∇2T, (7)

where α = k/ρCp is the thermal diffusivity, k is the thermal con-
ductivity, and Cp is the heat capacity, of the fluid. The inclusion
of advection terms in both transport equations can be justified
by computing the Reynolds and thermal Peclet numbers, pre-
sented below in Table 5.
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2.2. Boundary Conditions
The system of coupled evolution equations for the veloc-

ity, pressure, and temperature fields has to be solved in a self-
consistent manner, subject to the boundary conditions describ-
ing the balance of momentum, heat, and mass fluxes.

Local phase equilibrium between the vapor and the liquid
phase is established when the temperature of the vapor at the
interface is equal to the saturation temperature. The latter is
usually computed using the Clausius-Clapeyron equation

ln
pv

p∗v
=
L

R̄v

(
1

T ∗s
−

1
Ts

)
, (8)

where T ∗s is the saturation temperature at the reference vapor
pressure p∗v and L is the latent heat of evaporation. In the
numerical model we use its generalization (valid over a wider
range of temperatures), known as the Antoine equation

log10 pv = Av −
Bv

Cv + Ts
(9)

where Av, Bv, and Cv are empirical coefficients. Either (8) or
(9) can be also used to define the saturation pressure ps as a
function of temperature.

The heat flux balance across the interface is given by

LJ = kl n · ∇Tl − kvn · ∇Tv, (10)

and the mass flux balance on the vapor side of the interface is

J = ρv n · (uv − ui), (11)

where ui is the velocity of the interface and n is the unit normal.
On the liquid side we can set

n · (ul − ui) =
J
ρl
≈ 0. (12)

since ρl � ρv.
Several theoretical models have been put forward to de-

scribe the mass flux across the liquid-vapor interface due to
phase change. The Kinetic Theory of Gases (KTG) [18] as-
sumes continuous temperature across the liquid-vapor interface,
Tl = Tv = Ti, and leads to the following expression [19]:

J =
2λρv

2 − λ

√
R̄vTi

2π

[
pl − pv

ρlR̄vTi
+
L

R̄vTi

Ti − Ts

Ts

]
, (13)

where λ is the accommodation coefficient, which is usually
taken equal to unity. Combining (3), (10), (13) and (9), we
can solve for the mass flux J, the interfacial temperature Ti,
saturation temperature Ts, and the vapor density at the interface
ρv.

Several alternative phase change models have been proposed
recently which instead predict a discontinuity in the tempera-
ture field at the interface. Non-Equilibrium Thermodynamics
(NET) [20] leads to the following relations between the mass
flux J and the heat flux qv = kvn · ∇Tv on the vapor side:

ps − pv√
2πR̄vTl

= r11J + r12
qv

R̄vTl
, (14)

ps√
2πR̄vTl

Tl − Tv

Tl
= r21J + r22

qv

R̄vTl
, (15)

x

z

L

H

W

y
cT hT

Figure 1: The test cell containing the liquid and vapor or air/vapor mixture.
Gravity is pointing in the negative z direction. The shape of the contact line
reflects the curvature of the free surface.

where Tl and Tv are the interfacial temperatures on the liq-
uid and vapor side, respectively, and ps(Tl) is determined from
(9). The dimensionless resistivities ri j are obtained from the
Onsager reciprocity relation. If the vapor behaves as an ideal
gas with accommodation (condensation) coefficient λ, their val-
ues can be obtained using kinetic theory of gases [21]: r11 =

λ−1 − 0.40044, r12 = r21 = 0.126, and r22 = 0.294.
Equations (3), (9), (10), (14) and (15) can then be solved to

determine the mass flux J, the interfacial temperature Tl at the
liquid side and Tv at the vapor side, the vapor density ρv at the
interface, and the saturation pressure ps. The normal compo-
nent of the vapor velocity at the interface n · uv can again be
obtained from J using (11).

Finally, the mass flux can also be computed using Statistical
Rate Theory (SRT) [22], which predicts

J = 2
ps√

2πR̄vTl

 ps − pv

ρlR̄vTl
+

2κσ
ρlR̄vTl

− 2
(

Tv

Tl
− 1

)2 , (16)

where κ is the interfacial curvature and ps(Tl) is again deter-
mined by (9). We can then solve for the mass flux J, the in-
terfacial temperature Tl at the liquid side and Tv at the vapor
side, and the vapor density ρv at the interface using equations
(3), (9), (10), and (16).

The remaining boundary conditions at the liquid-vapor inter-
face are standard: the tangential velocity components are con-
sidered continuous

(1 − n · n) · (ul − uv) = 0. (17)

The stress balance

(Σl − Σv) · n = nκσ + ∇sσ = nκσ − γ∇sTi (18)

incorporates both the viscous drag between the two phases and
the thermocapillary effects. Here Σ = µ

[
∇u − (∇u)T

]
− p is

the stress tensor, ∇s = (1−n · n) · ∇ is the surface gradient, and
γ = −∂σ/∂T is the temperature coefficient of surface tension.

We further assume that the fluid is contained in a rectan-
gular cavity (see Fig. 1) with thin poorly conducting end
walls (of thickness hw and conductivity kw). The left wall is
“cooled” with a constant temperature Tc imposed on the out-
side, while the right wall is “heated” with a constant tempera-
ture Th > Tc imposed on the outside. Since the walls are thin,
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one-dimensional conduction is assumed, yielding the following
boundary conditions on the inside of the side walls:

T |x=0 = Tc +
kn

kw
hw n · ∇T, (19)

T |x=L = Th +
kn

kw
hw n · ∇T, (20)

where n = g (n = l) above (below) the contact line.
The heat flux through the top, bottom, front and back walls

is ignored (adiabatic boundary conditions are typical of most
experiments). Standard no-slip boundary conditions u = 0 for
the velocity are imposed on all the walls and the boundary con-
dition on the pressure

n · ∇p = ρ(T ) n · g (21)

follows from (1).

3. Results and Discussion

The model described above has been implemented numeri-
cally by adapting an open-source general-purpose CFD pack-
age OpenFOAM [23] to solve the governing equations in both
2D and 3D geometries. Details are available in Ref. [3].

In this section, we will use the computational model to in-
vestigate the buoyancy-thermocapillary flow of a fluid confined
in a sealed rectangular test cell used in the experimental study
of Li et al. [2]. The working fluid is hexamethyldisiloxane, a
silicone oil with a kinematic viscosity ν = 0.65 cSt, which is
a volatile liquid with the properties summarized in Table 1. A
layer of liquid of average thickness dl = 2.45 mm is confined in
the test cell with the inner dimensions L×H×W = 48.5 mm ×10
mm ×10 mm (see Fig. 1), below a layer of vapor. The walls of
the test cell are made of quartz (fused silica) with thermal con-
ductivity kw = 1.4 W/m-K and have thickness hw = 1.25 mm.
Though the silicone oil wets quartz very well, we set the contact
angle θ = 50◦ here to avoid numerical instabilities. This has a
minor effect on the shape of the free surface everywhere except
very near the contact lines.

While the numerical model can describe the flows in both
2D and 3D systems, the results presented here are obtained for
2D flows (ignoring variation in the y-direction), since 3D sim-
ulations require significant computational resources and com-
parison of 2D and 3D results for the same system under air at
atmospheric conditions were essentially identical [3]. The 2D
system corresponds to the central vertical (x-z) plane of the test
cell.

Initially, the fluid is assumed stationary with uniform tem-
perature T0 = (Tc + Th)/2 (T0 = 293 K in all cases), the liquid
layer is of uniform thickness (such that the liquid-gas interface
is flat), and the pressure in the vapor layer pv is set equal to
the saturation pressure at T0, ps(T0) ≈ 4.3 kPa, calculated from
(9). As the system evolves towards an asymptotic state, the flow
develops in both phases, the interface distorts to accommodate
the assigned contact angle at the walls, and a temperature gradi-
ent in both phases is established. The simulations are first per-
formed on a coarse hexahedral mesh (initially all cells are cubic

liquid vapor
µ (kg/(m·s)) 4.95 × 10−4 6.0 × 10−6

ρ (kg/m3) 761.0 0.275
β (1/K) 1.34 × 10−3 1/T

k (W/(m·K)) 0.1 0.03
α (m2/s) 9.52 × 10−8 9.08 × 10−5

Pr 6.83 0.24
σ (N/m) 1.59 × 10−2

γ (N/(m·K)) 7 × 10−5

L (J/kg) 2.14 × 105

Table 1: Material properties at the reference temperature T0 = 293 K. In the
vapor phase, the coefficient of thermal expansion β = 1/T based on the ideal-
gas assumption.

with a dimension of 0.5 mm), since the initial transient state is
of secondary interest. Once the transient dynamics have died
down, the simulations are continued after the mesh is refined in
several steps, until the results become mesh independent.

3.1. Fluid Flow and Temperature Fields
Simulations were performed at temperature differences ∆T

ranging from 10 K to 30K using the KTG expression for the
evaporation/condensation mass flux (13) with accommodation
coefficient λ = 1. For this range of ∆T , under atmospheric
conditions, the flow is found to transition from steady unicel-
lular to steady multicellular to oscillatory convection [3], as
Fig. 2 illustrates. In the absence of noncondensables, at oth-
erwise identical conditions, the flow was found to reach steady
state for all of these values of ∆T . The corresponding stream-
lines in both the liquid and the vapor phase are shown in Fig. 3.
The flow in the liquid layer is markedly different under vapor
and under air. Under air the flow in the central region of the
cell is best described as a horizontal return flow with multiple
embedded convection rolls whose strength increases progres-
sively with ∆T . In this case thermocapillarity is the dominant
driving force [3]. The flow under vapor looks qualitatively the
same over this range of ∆T and is dominated by two counter-
clockwise convection rolls, a larger one near the cold wall and
a smaller one near the hot wall. The flow is much stronger near
the end walls than in the central region, suggesting that the main
driving force in buoyancy, rather than thermocapillarity.

The flow in the vapor phase is also qualitatively different.
Under air we find a (clockwise) recirculation flow in the vapor
phase which mirrors the flow in the liquid phase. It is driven
primarily by thermocapillarity, with buoyancy causing counter-
clockwise recirculation in the top corners. In the absence of air,
the flow in the vapor phase becomes unidirectional, with the
liquid evaporating near the hot wall, vapor flowing from the hot
wall to the cold wall and condensing there. Again, increasing
∆T has essentially no effect on the structure of the flow field.
The observation from the numerics that the convection pattern
is independent of applied temperature difference, at least quali-
tatively, is consistent with recent experimental results [2] which
show that transitions from steady unicellular to steady multi-
cellular to oscillatory convection observed under atmospheric
conditions disappear when (most of) the air is removed.

4



∆T = 10 K

∆T = 20 K

∆T = 30 K

Figure 2: Streamlines of the flow under air for different ∆T , reproduced from
Ref. [3]. The gray background indicates the liquid phase, the white background
the gas phase. The contact angle is θ = 50◦. The flow at ∆T = 30 K is time-
periodic; a particular (representative) time instance is shown.

under vapor under air
∆T 〈|ui|〉x uB uT 〈|ui|〉x uB uT

(K) (mm/s) (mm/s) (mm/s) (mm/s) (mm/s) (mm/s)
10 0.6 1.3 0.004 6 1.3 5.3
20 0.9 2.6 0.009 9.4 2.6 7.9
30 1.5 3.8 0.013 11.6 3.8 10.7

Table 2: The spatial average of the interfacial velocity 〈|ui |〉x and the estimates
of thermocapillary and buoyancy contributions based on (35) and (36). A time-
averaged value is given for the time-periodic flow under air at ∆T = 30 K.

Table 2 summarizes the average interfacial velocities pre-
dicted by the numerical model (along with the analytical es-
timates derived below) for different values of ∆T . Not only are
the flow patterns under air and under vapor significantly differ-
ent, but the magnitude of the velocity is quite different as well.
While under air the flow is relatively fast (the largest interfacial
velocity is of order a few cm/s for λ = 1), under vapor the flow
is predicted to be much slower (the largest interfacial velocity
is reduced to a few mm/s, for the same value of λ). In order to
understand this rather significant reduction in the flow velocity
it is helpful to compare the temperature fields in the two cases.

Figure 4 shows the isotherms for both cases when applied
temperature difference is ∆T = 10 K. Under air, the tempera-
ture changes in a relatively smooth manner between the hot end
and the cold end in both phases. Under vapor, the isotherms
are clustered near the “hot” and “cold” end walls, indicating
the formation of sharp thermal boundary layers near the end
walls, with the temperature being nearly constant in the central
region of the cell. Moreover, the temperature appears to be es-
sentially constant along the entire interface. This would suggest
that thermocapillarity will be significantly reduced in the case
under vapor. Indeed, for a liquid in equilibrium with its vapor,
the interfacial temperature is set by the saturation temperature,
which depends only on the absolute pressure. Since the latter is

∆T = 10 K

∆T = 20 K

∆T = 30 K

Figure 3: Streamlines of the flow under pure vapor for different ∆T . The gray
background indicates the liquid phase, the white background the vapor phase.
The contact angle is θ = 50◦.

(a)

(b)

Figure 4: Temperature field for the steady-state flows (a) under air [3] and (b)
under vapor. In both cases ∆T = 10 K, the gray background indicates liquid,
the white background the vapor. The temperature difference between adjacent
isotherms is 0.5 K.

effectively constant, so is the interfacial temperature. We will
look at this in detail next.

3.2. Interfacial Temperature

The variation of the temperature Ti at the interface between
the liquid and gas phase (about its average value 〈Ti〉x ≈ T0) is
shown in Fig. 5. When the system is under air at atmospheric
pressure, Ti(x) is described by a nearly periodic modulation
about a linear profile over most of the interface, as observed, for
instance, in the experiments of Riley and Neitzel [7]. The mod-
ulation corresponds to the advection of heat by convective flow
and the average value of the temperature gradient τ = ∂Ti/∂x
is comparable to the value of the imposed temperature gradi-
ent ∆T/L. In the absence of air, the interfacial temperature be-
comes essentially constant. The value of τ, and the correspond-
ing thermocapillary stresses, decrease by three orders of mag-
nitude, compared with the values found under air at the same
∆T .
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Figure 5: Interfacial temperature (a) under air [3] and (b) under vapor. To am-
plify the variation of Ti in the central region of the cell we plotted the variation
δTi = Ti − 〈Ti〉x about the average and truncated the y-axis.

This drastic reduction in the magnitude of τ can be under-
stood using a simple argument. In the absence of noncondens-
ables, the diffusion of vapors does not inhibit phase change, so
the interfacial temperature should be very close to the saturation
temperature due to the large value of latent heat in (13). On the
other hand, Ts is a function of the vapor pressure pv, which is
nearly constant. Hence Ts is nearly constant, and so is Ti.

A quantitative estimate for the variation of Ti in the two limits
can be obtained by a straightforward analysis of the theoretical
model. Using (13) the interfacial temperature can be written as

Ti ≈ Ts +
2 − λ

2λ

√
2π

R̄vTs

R̄vT 2
s

ρvL
J︸                     ︷︷                     ︸

Tp

−
Ts

ρlL
(pl − pv)︸          ︷︷          ︸

Tc

. (22)

The variation ∆Ti ∼ τL in the interfacial temperature over the
central portion of the cell can be computed by adding the con-
tributions describing the variations ∆Ts, ∆Tp, and ∆Tc, of the
three terms on the right hand side of (22). These terms describe
the effect of variation in the saturation pressure, phase change,
and interfacial curvature, respectively.

Let us start with the last term, ∆Tc. Since the fluid velocities
are very low, the pressure jump across the interface is determed
by the Young-Laplace pressure |pl− pv| ≈ κσ, where the curva-
ture of the interface is of order the inverse of the capillary length
scale, κ ∼

√
ρlg/σ. Furthermore, Ts ≈ T0, so the temperature

variation due to the curvature of the interface is

∆Tc ∼
T0

L

√
σg
ρl
≈ 2 × 10−5 K, (23)

irrespective of the presence or absence of noncondensables.
The magnitude of the temperature variation ∆Tp due to the

latent heat absorbed or released at the interface is controlled by
the variation ∆J in the mass flux, which describes the phase
change at the interface. In the absence of noncondensables, the
rate of phase change is limited by the diffusive heat flux in the
region adjacent to the hot (cold) end wall. The relevant length
scale is the thickness of the liquid layer dl and the relevant tem-
perature scale is ∆T/2. Ignoring the negligible heat flux in the
gas phase and using (10) we find

∆J ∼
kl

L

∆T
2dl

. (24)

Substituting the properties of the working fluid gives ∆J ∼ 10−3

kg/(m2s) for ∆T = 10 K, which is consistent with the values
found near the end walls numerically (cf. Fig. 6(b)). With the
typical (for a non-polar liquid) choice λ = 1

∆Tp ∼
2 − λ

4λ

√
2π

R̄vT0

R̄vT 2
0

ρvL
∆J (25)

yields ∆Tp ∼ 10−3 K.
When the gas phase is dominated by noncondensables (air),

phase change will be suppressed, since vapor has to diffuse to-
wards/away from the interface. In this case the mass flux across
the interface is limited by diffusion and the variation in the mass
flux can be estimated as

∆J ∼ D |n · ∇ρv| ∼ D
∆ρv

2dl
, (26)

where D is the diffusion constant and ∆ρv is the variation of
the vapor density, which can be estimated from the equilibrium
values of the vapor pressure at Th and Tc. With the help of (3)
and (8) we find

∆ρv ∼
∂ρv

∂pv

∂pv

∂T
∆T ∼

Lpv

R̄2
vT 3

0

∆T (27)

and therefore

∆J ∼ D
Lpv

R̄2
vT 3

0

∆T
2dl

. (28)

For ∆T = 10 K this estimate gives ∆J ∼ 7 × 10−4 kg/(m2s). A
more accurate estimate can be obtained by using the variation
of temperature along the interface ∆Ti ≈ τL instead of ∆T in
(28), which yields a lower value ∆J ∼ 2 × 10−4 kg/(m2s) that
is in better agreement with the numerical result (cf. Fig. 6(a)).
However, for the purposes of estimating ∆Ti the former, less
accurate, estimate is sufficient and gives ∆Tp ∼ 10−3 K.

Finally, the magnitude of the variation in the saturation tem-
perature ∆Ts is controlled by the variation of the vapor pressure
∆pv, which differs greatly in the two limits considered here.
When the gas phase is pure vapor, the vapor pressure is equal to
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Figure 6: Mass flux for different ∆T (a) under air [3] and (b) under vapor. The
y-axis is truncated so that the details of the variation in the core region of the
flow can be seen.

the absolute pressure in the gas phase. The variation of the ab-
solute pressure along the liquid-gas interface can be estimated
using the pressure drop for the flow of viscous vapor. The flow
has an approximately Poiseuille profile between two infinitely
large parallel planes formed by the top wall and the liquid-vapor
interface, with the separation equal to the vapor layer thickness
dv. The vapor speed is much larger than that on the liquid-
vapor interface, so both planes can be assumed stationary. The
volumetric flow rate per unit width (in the y direction) can be
estimated by integrating the phase change mass flux over the
region of intense evaporation (which has a width of order dl)
Q ∼ ∆Jdl/ρv yielding

∆pv ∼ 12
µvQL

d3
v
∼ 12

µvdlL
ρvd3

v
∆J, (29)

which together with (3) and (8) gives

∆Ts =
∂Ts

∂pv
∆pv ∼ 12

µvdlLT0

ρ2
vd3

vL
∆J. (30)

Using the estimate (24) for ∆J gives ∆Ts ∼ 2 × 10−6 K.
In the presence of noncondensables, vapor pressure is equal

to the partial pressure instead of the absolute pressure. With the
help of (3), (8) and (27) we find

∆Ts =
∂Ts

∂pv

∂pv

∂ρv
∆ρv ∼

R̄vT 2
0

Lpv
R̄vT0

Lpv∆T
R̄2

vT 3
0

= ∆T, (31)

so that, in this case, it is the imposed temperature difference ∆T
that sets the scale for the variation in Ts.

∆Ts (K) ∆Tp (K) ∆Tc (K) ∆Ti (K)
under vapor 2 × 10−6 2 × 10−3 2 × 10−5 2 × 10−3

under air 10 1 × 10−3 2 × 10−5 10

Table 3: Estimates of how various physical effects contribute to the variation in
the interfacial temperature Ti, for ∆T = 10 K.

Table 3 summarizes the estimates that quantify the contri-
butions of different physical effects to the variation of the in-
terfacial temperature. Clearly, the dominant physical effect is
different for the two limiting cases considered here. Under
pure vapor, ∆Ts � ∆Tc � ∆Tp, so that the variation in Ti

is mainly due to the latent heat released or absorbed at the in-
terface. However, despite the absence of noncondensables that
hinder phase change, this is a fairly weak effect: the result-
ing variation ∆Ti ≈ ∆Tp is almost four orders of magnitude
less than the imposed temperature difference ∆T . Under air,
∆Tc � ∆Tp � ∆Ts, so that the variation in Ti is mainly due to
the variation of the saturation temperature, ∆Ti ≈ ∆Ts ∼ ∆T .
Both estimates are in good agreement with the numerical results
presented in Fig. 5.

These estimates have a number of other interesting corollar-
ies. For instance, while our earlier numerical results show that
Newton’s Law of Cooling

n · ∇Tl = Bi
Ti − T0

dl
(32)

(where Bi is the Biot number) completely breaks down under
air [3], the law appears to be somewhat accurate under vapor.
Indeed, in the absence of air, heat conduction in the gas layer
can be ignored, so the heat flux balance relation (10) simply
reduces to

LJ ≈ kl n · ∇Tl. (33)

Furthermore, ∆Tc and ∆Ts are negligible compared to ∆Tp, so
that we can set Tc = 0 and Ts = T0 in (22), which yields (32)
with Bi = E, where

E =
2λ

2 − λ

√
R̄vT0

2π
ρvL

2dl

klR̄vT 2
0

(34)

is the nondimensional evaporation number defined as the ratio
of the latent heat flux at the interface to the conductive heat flux
in the liquid [17].

For the conditions of the present study E = 6.9 × 103. Fig-
ure 7 shows the local Biot number computed for the numerical
solutions in the two limits. The local values of Bi under vapor
are indeed comparable to the theoretical estimate (34) over the
entire x interval. In contrast, under air Bi not only exhibits sig-
nificant variation, it even changes sign, indicating that there is
no correlation between the deviation of the interfacial tempera-
ture from some average value and the normal component of the
temperature gradient in the liquid layer.

The magnitude of the flow velocity at the interface can be es-
timated with the help of the analytical solution for the uniform
flow in an unbounded fluid layer originally derived by Birikh
[24] (and later rederived by Kirdyashkin [25] and Villers and

7



-1.5

-1

-0.5

0

0.5

1

0 10 20 30 40

B
i 

x (mm) 

4 K 10 K 20 K

(a)

0

2000

4000

6000

8000

0 10 20 30 40

B
i 

x (mm) 

10 K 20 K 30 K

(b)

Figure 7: Local Biot number computed using (32) for different ∆T (a) under air
[3] and (b) under vapor. Under vapor we set T0 as the interfacial temperature at
the point where n · ∇Tl = 0, while under air T0 = (Tc + Th)/2.

Platten [26]). The two terms in the solution give the contribu-
tion due to thermocapillary

uT =
1
4
νl

dl
Pr−1Mai (35)

and due to buoyancy

uB =
1

48
νl

dl
Pr−1Ra, (36)

where Pr = νl/αl is the Prandtl number,

Mai =
γd2

l τ

µlαl
(37)

is the interfacial Marangoni number,

Ra =
gβld4

l ∆T
νlαlL

(38)

is the Rayleigh number and νl = µl/ρl is the kinematic viscos-
ity of the liquid. It should be noted that our definition of Ra
differs from the one used, e.g., in Refs. [3, 7]. The reason is
that, while uT is controlled by the interfacial temperature gra-
dient τ ∼ ∆Ti/L, uB is controlled by the imposed temperature
difference ∆T , which sets the vertical temperature variation in
the liquid layer both under air and under vapor. For the range
of ∆T considered here, τ and ∆T are not related in any simple
way. For instance, under air the relationship is nonlinear: ∆T/L
is a low-order rational function of τ [3].

While uT is sensitive to the presence of noncondensables, uB

is not. The ratio of the two velocities is
uT

uB
≈ 12

Lτ
∆T

Bo−1
D , (39)

under vapor under air
∆T (K) 10 20 30 10 20 30

Ra × 10−4 3.1 6.2 9.4 3.1 6.2 9.4
Mai 0.45 0.89 1.34 547 804 1096
BoD 0.853

Lτ/∆T 1.3 × 10−4 0.3 0.22 0.2

Table 4: The values of nondimensional parameters for the numerical solutions
under vapor and under air [3].

Rel Rev Pel Pev

under vapor 2.3 4 15.7 0.95
under air 23.1 3.5 157.3 2.4

Table 5: Reynolds and thermal Peclet numbers for the liquid and the gas phase
under vapor and under air at ∆T =10 K.

where the dynamic Bond number

BoD =
βlρlgd2

l

γ
(40)

is 0.853 for the liquid layer of average thickness dl = 2.45 mm
considered here. In the experiments of Li et al. [2], dl is com-
parable to this value, with BoD ranging from 0.85 to 1.0. The
values of various nondimensional parameters are summarized
in Tables 4 and 5. Under air Lτ/∆T varies from about 0.2 to
0.3 for ∆T between 10 K and 30 K, so the flow is dominated
by thermocapillary, u ≈ uT . Under vapor Lτ/∆T � 1, so the
flow is dominated by buoyancy, u ≈ uB and should be slower
by a factor of 2.8 to 4.2, compared with the flow at the same ∆T
under air. Overall, these estimates are consistent with the nu-
merical results presented in Table 2, although the numerically
computed flow speeds under vapor are even smaller than uB,
since the flow profile differs substantially from the analytical
solution on which the estimate (36) is based.

The experiments, on the other hand, paint a completely dif-
ferent picture [2]. To facilitate the comparison, we summarized
the experimental results in Table 6 in terms of the correspond-
ing interfacial Marangoni and dynamic Bond numbers. Unlike
the numerical results and analytical estimates, in the experiment
the values of Mai and the corresponding interfacial velocities
under vapor are comparable to, and even slightly higher than,
those under air. Since buoyancy is unaffected by the presence of
noncondensables, this implies that the thermocapillary stresses
and hence the interfacial temperature gradient τ in the experi-
ment should be essentially the same at atmospheric conditions
and when most of the air has been removed.

In the conclusion of this section let us point out that, as Fig. 5
illustrates, the interfacial temperature varies much more rapidly

under vapor under air
∆T (K) 3.9 11.6 3.8 11.5

Mai 460 790 370 690
BoD 1.0 0.89 0.89 0.85

Table 6: The values of nondimensional parameters for the experiments reported
in Ref. [2] under vapor and under air.
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near the end walls than in the central portion of the cell, chang-
ing by δT = O(∆T ) across very narrow boundary layers. The
width δx of these boundary layers can be estimated by not-
ing that contact lines correspond to the stagnation points of the
flow. Hence heat transport in the boundary layers is dominated
by conduction and, since kv � kl both under vapor and un-
der air, the right-hand-side of (10) can be estimated as klδT/δx,
which gives the estimate J ∼ (klδT )/(Lδx) for the mass flux
near the contact line. On the other hand, this mass flux can also
be estimated using (13). Evaluated at the interface, Ts changes
very little across the boundary layer, while outside the bound-
ary layer Ts ≈ Ti. Hence we can set Ti − Ts ∼ δT in the second
term on the right-hand-side of (13) and ignore the first (cur-
vature) term. Equating the two estimates yields the boundary
layer thickness [27]

δx ∼ E−1dl, (41)

where E is the evaporation number defined by (34). Evaluating
this for the present case, we obtain δx ∼ 0.36 µm, which is two
orders of magnitude less than the spatial resolution of the finest
computational mesh used here, explaining the singular behavior
of J and Ti in the vicinity of the contact lines.

3.3. Comparison of Different Phase Change Models

Our analysis of the KTG-based model shows that significant
gradient of the interfacial temperature can only be established
when noncondensables impede the transport of vapor from the
hot end to the cold end of the cell. Hence, when air is removed
completely from the test cell, thermocapillary stresses are dra-
matically suppressed. The experiment, however, shows that the
observed flow velocity is comparable in the two limiting cases
[2], raising the question about the cause of the thermocapillary
stresses which arise under vapor. One possibility, considered
below, is that the KTG prediction breaks down under intense
phase change and a different theoretical model has to be used
to describe phase change in the (near) absence of noncondens-
ables. Indeed, SRT and NET predict a temperature jump across
the liquid-vapor interface, which could, in principle, lead to a
variation in the temperature of the liquid that exceeds the vari-
ation of the temperature of the gas at the interface, and hence
produce stronger thermocapillary stresses. Some experimental
studies report temperature jumps across the interface as high as
3 K for unforced evaporation and as high as 10-20 K for evap-
oration of heated layers of water [28, 29, 30].

We have computed the steady state flows under vapor for
∆T = 10 K using three different models of phase change. For
KTG and NET we set the accommodation coefficient λ = 1
following the vast majority of theoretical studies. The corre-
sponding mass flux J is shown in Fig. 8. Quite interestingly, the
spatial profile of J is independent of the choice of the model –
the three curves are indistinguishable. The temperature profiles
on the liquid side of the interface shown in Fig. 9(a) are also
very similar, especially for KTG and SRT. The interfacial tem-
perature profile for NET deviates slightly from those for KTG
and SRT near the end walls, but this deviation is quite small in
absolute terms – less than 10−3 K. Most importantly, all three
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Figure 8: Mass flux for ∆T = 10 K. The accommodation coefficient is λ = 1
for KTG and NET. The y-axis is truncated so that the details of the variation in
the core region of the flow can be seen.

models are consistent with the estimates derived in the previous
section. In other words, all three models unequivocally predict
that the thermocapillary stresses should essentially disappear
when the noncondensables are removed from the cell.

NET and SRT both predict that the temperature field is not
continuous across the interface. Fig. 10 shows the temperature
jump Tl −Tv computed numerically for these two phase change
models. Here we do find a notable difference. NET predicts a
substantially larger temperature jump than SRT. For NET the
largest temperature jump occurs near the cold (hot) wall where
vapor condenses (liquid evaporates) and reaches values of 0.6
K (-0.6 K). For SRT the largest temperature jump is also found
near the end walls, but is considerably smaller, with values of
only 0.02 K (-0.02 K). Indeed, the variation of the vapor tem-
perature along the interface far exceeds the variation of the liq-
uid temperature along the interface, although both are substan-
tially less than the imposed temperature difference ∆T . This
means that KTG provides a reasonably accurate description of
the phase change process and the temperature can be assumed
continuous across the interface without introducing significant
errors.

3.4. Dependence on the Accommodation Coefficient
Another possible explanation for the discrepancy between

the model predictions and the experimental observations is an
incorrect value of the accommodation coefficient λ. As dis-
cussed earlier, ∆Ti ≈ ∆Tp under vapor. Assuming that the mass
flux J is independent of the details of the phase change model
(and, in particular, the choice of λ), from (25) it follows that

∆Ti ∝ f (λ) =
2
λ
− 1 (42)

for small values of λ. While there are no reliable values for
the accommodation coefficient reported in the literature for the
0.65 cSt silicone oil, values as low as 10−2 have been reported
for water [29, 31, 32]. We therefore repeated the numerical
simulations for λ = 0.05, which is most likely substantially less
than the actual value for the silicone oil (which is a non-polar
liquid), to quantify the dependence of our results on the accom-
modation coefficient. According to (42), this should increase
∆Ti by a factor of 2/λ ≈ 40.
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Figure 9: Interfacial temperature profiles for ∆T = 10 K. Plotted is the devia-
tion δT = Ti − 〈Ti〉x from the average value (on the liquid side for NET). For
KTG and NET, the accommodation coefficient is unity in (a) and 0.05 in (b).

The results of numerical simulations presented in Fig. 11
show that the mass flux J is independent not only of the choice
of the phase change model, but also of the value of λ. This result
can be easily rationalized by generalizing the argument which
lead to the relation (24) between the overall variation ∆J and
the heat flux through the liquid layer. In the absence of non-
condensables the heat flux through the gas layer is negligibly
small, while the interfacial temperature is effectively constant.
Under these conditions, thermocapillarity is negligible and the
flow in the liquid layer is governed solely by buoyancy. This
flow, along with the heat conduction through the liquid, deter-
mines the temperature distribution, and hence the conductive
heat flux kln · Tl ≈ LJ, along the entire interface.

Fig. 9(b) compares the interfacial temperature Ti computed
using KTG and NET for λ = 0.05. The interfacial temperature
profiles are even more similar in this case than the profiles for
the same two models at λ = 1 shown in Fig. 9(a). As expected,
the interfacial temperature variation ∆Ti increases rather signif-
icantly as λ decreases from unity to 0.05.

To quantify the changes in the interfacial temperatures asso-
ciated with the changes in the accommodation coefficient, the
data from Fig. 9 were replotted in Fig. 12, which shows the
temperature variation δTi = Ti − 〈Ti〉x about the mean rescaled
by the dimensionless factor f (λ). Aside from the spike near the
cold wall for NET with λ = 1, the scaled interfacial temperature
profiles are essentially independent of both the model and the
value of λ. This means that ∆Ti does indeed scale with f (λ),
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Figure 10: Temperature jump across the interface for ∆T = 10 K. The two
panels at the bottom show the regions near the end walls.

as predicted previously. While ∆Ti increases as λ decreases, in
order to achieve ∆Ti of order ∆T the value of λ has to be re-
duced to about 10−3 which, for silicone oil, appears unphysical.
Hence, the only logical conclusion is that an improper choice
of the value of the accommodation coefficient also fails to ac-
count for the discrepancy between theoretical predictions and
experimental observations.

Finally, note that while the value of the accommodation coef-
ficient does affect the variation of Ti along the interface, it does
not affect the temperature jump Tl−Tv across the interface. Fig.
10 shows that the temperature jump, along the entire interface,
is independent of the value of λ.

4. Conclusions

We have developed, implemented, and validated a com-
prehensive numerical model of two-phase flows of confined
volatile fluids, which accounts for momentum, mass, and heat
transport in both phases and phase change at the interface. This
model was used to investigate buoyancy-thermocapillary con-
vection in a sealed cavity subject to a horizontal temperature
gradient at dynamic Bond numbers of order unity, in the ab-
sence of noncondensables such as air. The results were com-
pared with numerical results obtained previously for the same
system in the presence of air at atmospheric pressure as well as
with the experimental results in the system where most (but not
all) of the air was removed.

The presence of noncondensable gases was found, as ex-
pected, to have profound effects on the heat and mass trans-
fer. The numerical results show that the convection patterns
are significantly different in the complete absence of air and in
the presence of air at atmospheric pressure. The difference is
due to the thermocapillary stresses which essentially disappear
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Figure 11: Mass flux using for different values of the accommodation coeffi-
cient for (a) KTG and (b) NET. In both cases ∆T = 10 K.

in the absence of air. In both cases, the interfacial tempera-
ture was found to be determined by the saturation temperature,
with a small deviation (of order 10−3 K) due to the latent heat
released/absorbed at the interface as a result of phase change.
When the gas phase is dominated by air, the gradient in the sat-
uration temperature is comparable to the imposed temperature
gradient, and the flow is primarily driven by thermocapillary
stresses. When the air is completely removed, thermocapil-
larity becomes negligible and the flow is driven primarily by
buoyancy.

We have also investigated three different theoretical models
of phase change derived using Kinetic Theory of Gases, Sta-
tistical Rate Theory, and Nonequilibrium Thermodynamics and
found that their predictions are in good quantitative agreement,
at least when the accommodation coefficient is set to unity. Fur-
thermore, KTG and NET were also found to agree for other
values of the accommodation coefficient. While, both SRT and
NET predict a temperature jump across the liquid-vapor inter-
face, unlike KTG, neither this temperature jump nor the depen-
dence of the interfacial temperature on the accommodation co-
efficient were sufficient to explain the discrepancy between the
numerical predictions and the experimental observations. The
only remaining reasonable explanation is that the discrepancy
between the numerical and experimental studies is the presence
of a minute amount of air (molar fractions as low as a few per-
cent) in the experimental system. The effect of residual non-
condensables on the heat and mass transport in confined and
sealed two-phase flows of volatile fluids, which fully confirms
this hypothesis, will be discussed in a subsequent publication.
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Figure 12: Scaled interfacial temperature profiles for (a) KTG and (b) NET. In
both cases ∆T = 10 K.

Finally, this work shows, surprisingly, that Newton’s Law of
Cooling, which completely breaks down at atmospheric condi-
tions, appears to be reasonably accurate in the absence of non-
condensables. Although the inapplicability of Newton’s Law
was admittedly demonstrated for a volatile fluid, there is no
reason to expect the result to be any different for non-volatile
fluids, since volatility plays a minor role when the gas phase
is dominated by noncondensables. Given that a large number
of one-sided transport models are based on this empirical law,
the accuracy of such models at atmospheric conditions needs
re-evaluation.
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