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Abstract

Recent experimental studies have shown that buoyancy-thermocapillary convection in a layer of volatile liquid subjected to a
horizontal temperature gradient is strongly affected by the presence of noncondensable gases, such as air. Specifically, it was found
that removing most of the air from a sealed cavity containing the liquid and its vapors significantly alters the flow structure and, in
particular, suppresses transitions between the different convection patterns found at atmospheric conditions. Yet, at the same time,
the concentration of noncondensables has almost no effect on the flow speeds in the liquid layer, at least for the parameter range
studied in the experiments. To understand these results, we have formulated and numerically implemented a detailed model that
accounts for mass and heat transport in both phases as well as the phase change at the interface. The predictions of this model,
which assumes that the gas phase is dominated by either noncondensables or the vapor, agree well with experiments in both limits.
Furthermore, we find that noncondensables have a large effect on the flow at concentrations even as low as 1%, i.e., values much
lower than those achieved in experiment.

Keywords: buoyancy-thermocapillary convection, buoyancy-Marangoni convection, free surface flow, two phase flow,
noncondensable gas, flow instability, thermocapillarity, numerical simulation

1. Introduction

Convection in volatile fluids with a free surface due to a
combination of thermocapillary stresses and buoyancy has been
studied extensively due to applications in thermal management.
In particular, devices such as thermosyphons, heat pipes, and
heat spreaders, which use phase change to enhance thermal
transport, are typically sealed, with most of the noncondens-
ables (such as air), which can impede phase change, removed
[1]. However, air tends to dissolve in liquids and be adsorbed
into solids, so removing it completely is usually not feasible.
Hence, the liquid film almost always remains in contact with a
mixture of its own vapor and some air.

The fundamental studies on which the design of such devices
is based, however, often do not distinguish between different
compositions of the gas phase (e.g., varying amounts of air in
the system). The vast majority of experimental studies was per-
formed in geometries that are not sealed and hence contain air
at atmospheric pressure. Yet, as a recent experimental study of
convection in a volatile silicone oil (hexamethyldisiloxane) by
Li et al. [2] showed, noncondensables can play an important
role, so the results in one limit cannot be simply extrapolated
to the other. Theoretical studies, on the other hand, tend to use
a piecemeal approach based on breaking up the entire system
into an “evaporator,” a “condenser,” and an “adiabatic region”
in-between [3, 4], often without checking whether such parti-
tioning is justified or attempting to correlate the transport pro-
cesses in the three regions.

The effect of noncondensables on filmwise condensation of

vapors in simple geometries (thin liquid layers of condensate
on flat or cylindrical surfaces) is reasonably well understood.
In particular, in the absence of noncondensables, the heat trans-
fer coefficient is controlled by the thickness of the draining film
[5]. Condensation is reduced dramatically in the presence of
noncondensables. In this case thermal resistance is typically
dominated by the diffusion of vapors through a layer of noncon-
densables that accumulate next to the condensate film, which
can be described using boundary layer theory for both free con-
vection [6] and forced convection [7]. For instance, very small
amounts of noncondensables – mass fractions as small as 0.5%
– will halve the condensation rate, and the corresponding heat
transfer coefficient, for steam condensation [6].

The vast majority of theoretical studies of buoyancy-
thermocapillary convection use one-sided models which de-
scribe transport in the liquid, but not the gas phase and ignore
phase change, with both phase change and transport in the gas
phase indirectly incorporated through boundary conditions at
the liquid-vapor interface [8, 9, 10, 11, 12]. The predictions
of such models are mostly consistent with experimental stud-
ies of volatile and nonvolatile fluids at ambient (atmospheric)
conditions [8, 13, 14, 15, 2] which find that, for dynamic Bond
number of order unity, the flow in the liquid layer transitions
from a steady unicellular pattern (featuring a single large con-
vection roll) to a steady multicellular pattern (featuring multi-
ple steady convection rolls) to an oscillatory pattern (featuring
multiple unsteady convection rolls) as the applied temperature
gradient (and hence the Marangoni number) is increased.

Indeed, at atmospheric conditions phase change is strongly
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suppressed due to diffusion of vapors through air, so phase
change plays a relatively minor role. However, upon closer ex-
amination, one finds that one-sided models fail to predict some
important features of the problem. We have recently introduced
a comprehensive two-sided model [16, 17, 18] of buoyancy-
thermocapillary convection in confined fluids which provides a
detailed description of momentum, heat and mass transport in
both the liquid and the gas phase as well as phase change at
the interface in the entire system. This model shows that at at-
mospheric conditions Newton’s Law of Cooling, which serves
as a foundation for all the one-sided models, completely breaks
down [18]. Furthermore, one finds, rather counter-intuitively,
that there are regions of evaporation (condensation) next to the
cold (hot) end wall of the cavity containing the fluid [17].

In comparison, very few studies have been performed in the
(near) absence of noncondensables. One notable exception is
the study of Li et al. [2], who performed experiments for a
volatile silicone oil. They found that the transitions between
different convection patterns were suppressed when the concen-
tration of noncondensables was reduced. In particular, only the
steady unicellular regime is observed over the entire range of
imposed temperature gradients at the lowest average air con-
centration investigated (14%). Interestingly, the experiments
also show that, at small imposed temperature gradients, the flow
structure and speeds remain essentially the same as the air con-
centration decreases from 96% (ambient conditions) to 14%,
which corresponds to a reduction by more than two orders of
magnitude in the partial pressure of air.

There are at present no theoretical models that are capable
of explaining these experimental observations. The theoretical
studies [19, 20, 21, 22, 23] available to date employ extremely
restrictive assumptions and/or use a very crude description of
one of the two phases. Our own two-sided model [18], which
treats the gas phase as pure vapor, correctly predicts the sup-
pression of transitions between convection patterns. However,
it also predicts that thermocapillary stresses essentially vanish
and the flow speed decreases substantially, which is not consis-
tent with experimental observations. The high flow velocities
found in experiment imply that thermocapillary stresses remain
significant, which suggests that the presence of noncondens-
ables in the gas phase, even at rather low concentrations, has a
profound effect on the flow and has to be accounted for.

Hence, to better understand the effect of noncondensables on
heat and mass transport in volatile fluids in confined and sealed
geometries, our two-sided model [16, 17, 18] was further gen-
eralized to describe situations where the gas phase is dominated
by vapor, but still contains a small amount of noncondensables
[24]. The model is described in detail in Section 2. The results
of the numerical investigations of this model are presented, ana-
lyzed, and compared with experimental observations in Section
3 and our summary and conclusions are presented in Section 4.

2. Mathematical Model

2.1. Governing Equations
We describe transport in both the liquid and the gas phase us-

ing a generalization of the pure-vapor model [18]. The present

model is very similar to the one introduced in Ref. [17] (which
describes transport at atmospheric conditions when the gas
phase is a binary mixture dominated by air), but now the gas
phase is dominated by vapor, rather than air. Both phases are
considered incompressible and the momentum transport in the
bulk is described by the Navier-Stokes equation

ρ (∂tu + u · ∇u) = −∇p + µ∇2u + ρ (T, ca) g (1)

where p is the fluid pressure, ρ and µ are the fluid’s density and
viscosity, respectively, ca is the concentration of air, and g is
the gravitational acceleration. (The air is noncondensable, so
ca = 0 in the liquid phase.) Following standard practice, we use
the Boussinesq approximation, retaining the temperature and
composition dependence only in the last term to represent the
buoyancy force. In the liquid phase

ρl = ρ∗l [1 − βl (T − T ∗)], (2)

where ρ∗l is the reference density at the reference temperature
T ∗ and βl = −(∂ρl/∂T )/ρl is the coefficient of thermal expan-
sion. Here and below, subscripts l, g, v, a, and i denote proper-
ties of the liquid and gas phase, vapor and air component, and
the liquid-vapor interface, respectively. In the gas phase

ρg = ρa + ρv, (3)

where both vapor (n = v) and air (n = a) are considered to be
ideal gases

pn = ρnR̄nT, (4)

R̄n = R/Mn, R is the universal gas constant, and Mn is the molar
mass. The total gas pressure is the sum of partial pressures

pg = pa + pv. (5)

On the left-hand-side of (1) the density is considered constant
for each phase. We set it equal to the spatial average of ρ(T, ca).

To ensure local mass conservation of air, which is the less
abundant component in the gas phase, we describe mass trans-
port using the advection-diffusion equation for its density

∂tρa + u · ∇ρa = D∇2ρa, (6)

where D is the binary diffusion coefficient of one component in
the other. For a volatile fluid in confined geometry, the exter-
nal temperature gradient causes both evaporation and conden-
sation, with the net mass of the fluid being globally conserved∫

liquid
ρldV +

∫
gas
ρvdV = ml+v, (7)

where ml+v is the total mass of liquid and vapor. The total pres-
sure in the gas phase is pg = p + po, where the (constant) pres-
sure offset po is

po =

[∫
gas

dV
R̄vT

]−1 [
ml+v −

∫
liquid

ρldV −
∫

gas

pdV
R̄vT

]
. (8)

The concentrations (or, more precisely, the molar fractions)
of the two components can be computed from the equation of
state using the partial pressures

cn = pn/pg. (9)
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Finally, the transport of heat is also described using an
advection-diffusion equation

∂tT + u · ∇T = α∇2T, (10)

where α = k/(ρcp) is the thermal diffusivity, k is the thermal
conductivity, and cp is the heat capacity, of the fluid.

The transport equations (1), (6) and (10) in the gas phase
essentially represent the leading order of the Chapman-Enskog
expansion [25], which is valid when the temperatures of the two
components are the same. As argued by Hamel [26], when the
masses of the two components are substantially different (for
instance, for hexamethyldisiloxane Mv ≈ 162 g/mol−1, while
for air Ma ≈ 29 g/mol−1), a more accurate description would re-
quire the introduction of two different temperatures Ta , Tv and
some modifications to all the transport equations. Most impor-
tantly, the Navier-Stokes equation in the dilute approximation
is written for the dominant component, rather than for the mix-
ture, and includes an additional term for the cross-collision mo-
mentum transport. However, for the problem considered here
the cross-collision frequency characterized by the dimension-
less parameter Cr is high (Cr � 1 for ca � 10−9), and in this
limit [26] Hamel’s generalized model effectively reduces to the
Chapman-Enskog description.

2.2. Boundary Conditions
The system of coupled evolution equations for the velocity,

pressure, temperature, and density fields should be solved in a
self-consistent manner, subject to the boundary conditions de-
scribing the balance of momentum, heat, and mass fluxes. The
phase change at the free surface can be described using Kinetic
Theory [27]. As we have shown previously [18], the choice of
the phase change model has a negligible effect on the results.
The mass flux across the interface is given by [28]

J =
2λ

2 − λ
ρv

√
R̄vTi

2π

[
pl − pg

ρlR̄vTi
+
L

R̄vTi

Ti − Ts

Ts

]
, (11)

where λ is the accommodation coefficient (for nonpolar liquids
λ ≈ 1 [29, 30]), L is the latent heat, and subscript s denotes sat-
uration values for the vapor. The dependence of the local satu-
ration temperature on the partial pressure of vapor is described
using the Antoine equation for phase equilibrium

ln pv = Av −
Bv

Cv + Ts
, (12)

where Av, Bv, and Cv are empirical coefficients. The Antoine
equation generalizes the Clausius-Clapeyron equation and is
valid over a wider range of temperatures and pressures.

The mass flux balance for the vapor is given by

J = −D n̂ · ∇ρv + ρv n̂ · (ug − ui), (13)

where the first term represents the diffusion component, the sec-
ond term represents the advection component (referred to as the
“convection component” by Wang et al. [31]), and ui is the ve-
locity of the interface. Since air is noncondensable, its mass
flux across the interface is zero:

0 = −D n̂ · ∇ρa + ρa n̂ · (ug − ui). (14)

x

z

L

H

W

y
cT hT

Figure 1: The test cell containing the liquid and air/vapor mixture. Gravity is
pointing in the negative z direction. The shape of the contact line reflects the
curvature of the free surface.

The mass diffusivity D is a function of pressure and temperature

D = D∗
p∗

p

( T
T ∗

)3/2

, (15)

where D∗ is the diffusion coefficient at reference temperature T ∗

and pressure p∗. For binary diffusion, the concentration gradi-
ents of vapor and air have the same absolute value but opposite
directions, which yields the relation between the density gradi-
ents of vapor and air

n̂ · ∇ρv

Mv
+

n̂ · ∇ρa

Ma
= −

pg

RT 2
i

(
n̂ · ∇Tg

)
. (16)

The heat flux balance is given by

LJ = n̂ · kg∇Tg − n̂ · kl∇Tl. (17)

The advective contribution to the heat flux can be ignored on
both sides. In the gas phase conduction is the dominant contri-
bution (due to the large value of thermal diffusivity αg), while
on the liquid side n̂ · (ul − ui) is negligibly small. Indeed,

n̂ · (ul − ui) =
J
ρl

(18)

and, since the liquid density is much greater than that of the gas,
the left-hand-side of (18) is very small compared with n̂·(ug−ui)
and can be set to zero.

The remaining boundary conditions for u and T at the liquid-
vapor interface are standard: the temperature is continuous

Tl = Ti = Tv (19)

as are the tangential velocity components

(1 − n̂ · n̂)(ul − ug) = 0. (20)

The stress balance

(Σl − Σg) · n̂ = n̂κσ − γ∇sTi (21)

incorporates both the viscous drag between the two phases and
the thermocapillary effect. Here Σ = µ

[
∇u − (∇u)T

]
− p is the

stress tensor, κ is the interfacial curvature, ∇s = (1−n̂ · n̂)∇
is the surface gradient, and γ = −∂σ/∂T is the temperature
coefficient of surface tension.

We further assume that the fluid is contained in a rectan-
gular test cell with inner dimensions L × W × H (cf. Fig. 1)
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and thin walls of thickness δw and conductivity kw. The left
wall is cooled with constant temperature Tc imposed on the
outside, while the right wall is heated with constant tempera-
ture Th > Tc imposed on the outside. Since the walls are thin,
one-dimensional conduction is assumed, yielding the following
boundary conditions on the inside of the side walls:

T |x=0 = Tc +
kn

kw
δw n̂ · ∇T, (22)

T |x=L = Th +
kn

kw
δw n̂ · ∇T, (23)

where n = g (n = l) above (below) the contact line.
Since in most experiments side walls are nearly adiabatic,

heat flux through the top, bottom, front, and back walls is ig-
nored. Standard no-slip boundary conditions u = 0 for the ve-
locity and no-flux boundary conditions

n̂ · ∇ρa = 0 (24)

for the density of air are imposed on all the walls. The pressure
boundary condition follows from (1)

n̂ · ∇p = ρ(T ) n̂ · g, (25)

when the inertial and viscous stresses are neglected.

3. Results and Discussion

The model described above has been implemented numeri-
cally by adapting an open-source general-purpose CFD pack-
age OpenFOAM [32] to solve the governing equations in both
2D and 3D geometries. Newton iteration is used to solve the
system of equations (4), (11), (12), (13), (14), (16), and (17)
for the mass flux J, the interfacial temperature Ti, the satura-
tion temperature Ts, the normal component of the gas velocity
at the interface n̂ · (ug − ui), the density of the vapor ρv, and the
normal component of the density gradients of the two compo-
nents of the gas, n̂ ·∇ρv and n̂ ·∇ρa. After this the bulk transport
equations (1), (6), and (10) are solved for u, ρa, and T , and the
process is iterated until convergence. More details concerning
the implementation are available in Ref. [17].

In this section, we will use the computational model to inves-
tigate the buoyancy-thermocapillary flow of a volatile silicone
oil (hexamethyldisiloxane) confined in a sealed rectangular test
cell used in the experimental study of Li et al. [2]. The prop-
erties of the working fluid are summarized in Table 1. A layer
of liquid of average thickness dl = 2.5 mm is confined in the
test cell with the inner dimensions L × H ×W = 48.5 mm ×10
mm ×10 mm (cf. Fig. 1), below a layer of gas, which is a mix-
ture of vapor and air, held around the vapor pressure. The walls
of the test cell are made of quartz (fused silica) with thermal
conductivity kw = 1.4 W/m-K and have thickness δw = 1.25
mm. Though the silicone oil wets quartz well, we set the con-
tact angle θ = 50◦ here to avoid numerical instabilities. This
has a minor effect on the shape of the free surface everywhere
except very near the contact lines; moreover, previous studies
[17] show that the influence of the contact angle on the flow pat-
tern is relatively weak. We verified that the weak dependence

liquid vapor air
µ (kg/(m·s)) 5.27 × 10−4 5.84 × 10−6 1.81 × 10−5

ρ (kg/m3) 765.5 0.27 1.20
β (1/K) 1.32 × 10−3 3.41 × 10−3 3.41 × 10−3

k (W/(m·K)) 0.110 0.011 0.026
α (m2/s) 7.49 × 10−8 2.80 × 10−5 2.12 × 10−5

Pr 9.19 0.77 0.71
D (m2/s) - 1.46 × 10−4 5.84 × 10−6

σ (N/m) 1.58 × 10−2

γ (N/(m·K)) 8.9 × 10−5

L (J/kg) 2.25 × 105

Table 1: Material properties of pure components at the reference temperature
T0 = 293 K [33, 34]. For the gas phase, the weighted average of the two
components (based on the average air concentration c̄a) is used. The coefficients
Av, Bv, and Cv for the Antoine’s equation were taken from Ref. [35].

on θ and also on the wall thickness δw persists over the entire
range of the average concentration of air c̄a.

While the numerical model can describe the flows in both 2D
and 3D systems, the results presented here are obtained exclu-
sively for 2D flows (ignoring variation in the y-direction), since
3D simulations require significant computational resources and
comparison of 2D and 3D results for the same system under
air at atmospheric conditions shows that 3D effects are rather
small [17]. The 2D system corresponds to the central vertical
(x-z) plane of the cavity.

Initially, the fluid is assumed stationary with uniform tem-
perature T0 = (Tc + Th)/2 (= 293 K in all cases), the liquid
layer is of uniform thickness (such that the liquid-vapor inter-
face is flat), and the gas layer is a uniform mixture of vapor
and air. The partial pressure of vapor is set equal to the satu-
ration pressure at T0, pv = ps(T0) ≈ 4.1 kPa, calculated from
(12). The partial pressure of air was used as a control param-
eter, which determines the net mass of air in the cavity. Our
initial simulations showed that the effect of temperature depen-
dence of material parameters on the heat and mass transport is
quite small. Therefore, all final results presented below were
obtained using the values at the reference temperature.

As the system evolves towards an asymptotic state, the flow
develops in both phases, the interface distorts to accommodate
the assigned contact angle at the walls, and the gradients in the
temperature and vapor concentration are established. The sim-
ulations are first performed on a coarse hexahedral mesh (ini-
tially all cells are cubic with a dimension of 0.5 mm), since the
initial transient state is of secondary interest. Once the transient
dynamics have died down, the simulations are continued after
the mesh is refined in several steps, until the results become
mesh-independent.

The experimental study of Li et al. [2] investigated the im-
pact of two parameters – the average concentration c̄a of air
and the imposed temperature difference ∆T – on the convec-
tion pattern arising in the liquid layer. Our previous studies
of the limiting cases (atmospheric conditions [17] and pure va-
por [18]) identified thermocapillary stresses as the main driving
force controlling the flow in the liquid layer. These stresses are

4



determined by the interfacial temperature profile which, in turn,
depends on the concentration field in the gas phase. We will
therefore also look at how c̄a and ∆T affect the mass transport
in the gas phase and the associated concentration field.

3.1. Solutions in the bulk
In order to investigate the effect of noncondensables on the

the flow, we performed numerical simulations for ∆T varying
between 0.01 K and 30 K and c̄a varying between 0 (pure vapor)
and 0.96 (atmospheric pressure). We used the numerical model
described in Ref. [17] in the cases where the gas phase is dom-
inated by air (here c̄a ≥ 0.85), the numerical model described
in Section 2 in the cases where the gas phase is dominated by
vapor (here 0 < c̄a ≤ 0.16), and the numerical model described
in Ref. [18] in the absence of air (c̄a = 0).

3.1.1. Flow field
The dependence of the flow on the imposed temperature gra-

dient was discussed in many other studies, including our own
[17], so here we will concentrate on the dependence of the flow
on the concentration of noncondensables at a fixed ∆T = 10
K. Fig. 2 shows the streamlines of the flow in both the liquid
and the gas phases. At atmospheric conditions, c̄a = 0.96 (or
96% air), we find an oscillatory multicellular flow (OMC) with
convection rolls covering the entire liquid layer. The amplitude
of oscillation, however, is extremely small, so the flow can ef-
fectively be considered steady.

As the average air concentration is lowered, the convection
rolls gradually weaken and disappear, starting near the cold end
wall. This can be seen already at c̄a = 0.85, where a steady
multicellular flow (SMC) is found. When the concentration of
air is lowered to 16% (c̄a = 0.16), all of the convection rolls dis-
appear except for two, one near each end wall. In the central re-
gion we find a horizontal return flow which has the same profile
in any vertical cross section (the corresponding velocity field in
the liquid layer is known analytically [36, 17]). This flow is re-
ferred to as a steady unicellular flow (SUF). As c̄a is reduced to
8% or below, the horizontal flow speed becomes nonuniform,
with a pronounced minimum forming around x ≈ 38 mm. The
flow at these low, but nonzero values of c̄a is qualitatively simi-
lar to that found under pure vapor (c̄a = 0) [18].

The flow in the gas phase is not directly observable in ex-
periment, so numerical simulation is, at present, the only way
to describe the transport of vapors. Two features of this flow
are worth mentioning. First of all, as c̄a is reduced, the global
flow structure changes gradually but qualitatively. At (near-)
atmospheric conditions (c̄a ≥ 0.85) we find a return flow with
the gas (mostly noncondensables) flowing from the hot to the
cold wall along the free surface and in the opposite direction
along the top of the cavity, with almost all streamlines closed.
In the (near-) absence of air (c̄a ≤ 0.04) the flow is unidirec-
tional, with the gas (mostly vapor) flowing from the hot to the
cold end wall. At intermediate concentrations (c̄a = 0.08 and
0.16) the velocity field exhibits features of both types of flows:
there is a region of recirculation (closed streamlines) near the
top of the cavity, but most of the streamlines originate and ter-
minate on the interface, as one would expect for a gas mixture

c̄a = 0 (0% air)

c̄a = 0.04 (4% air)

c̄a = 0.08 (8% air)

c̄a = 0.16 (16% air)

c̄a = 0.85 (85% air)

c̄a = 0.96 (96% air)

Figure 2: Streamlines of the flow (solid lines) at different average concentra-
tions of air. The temperature difference is ∆T = 10 K. The arrows indicate the
direction of the flow. Here and below, the gray (white) background indicates
the liquid (gas) phase.

dominated by vapor. Second, at (near-) atmospheric conditions
we also find local convection rolls in the gas phase located di-
rectly above the respective convection rolls in the liquid phase
for c̄a. This reflects the dominant role of interfacial processes
in destabilization of the uniform return flow and the emergence
of convection pattern. Correspondingly, there are no convection
rolls in the gas phase when steady unicellular flow is found in
the liquid layer.

3.1.2. Temperature field
Figure 3 shows the temperature fields corresponding to the

flow fields from Fig. 2. The temperature field in the gas phase
is qualitatively similar for all c̄a, but in the liquid it depends
noticeably on c̄a. At intermediate values of c̄a (here 0.08 and
0.16) the temperature in the central portion of the liquid layer
has a simple profile consistent with the analytical solution in
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c̄a = 0 (0% air)

c̄a = 0.04 (4% air)

c̄a = 0.08 (8% air)

c̄a = 0.16 (16% air)

c̄a = 0.85 (85% air)

c̄a = 0.96 (96% air)

Figure 3: The temperature field inside the cavity at different average concen-
trations of air. The temperature difference is ∆T = 10 K and the difference
between adjacent isotherms (solid lines) is 0.5 K. The temperature increases
from left to right.

the SUF regime [36, 17]

T = τx + T̂ (z), (26)

where τ = ∂xTi is the (nearly constant) interfacial tempera-
ture gradient and the vertical profile T̂ (z) is a polynomial func-
tion of the depth. A qualitatively similar state is also found at
(near-) atmospheric conditions and ∆T . 2 K (not shown). For
c̄a ≥ 0.85 the temperature field displays a noticeable modula-
tion about the profile (26) caused by the advection of heat by
the flow. For c̄a . 0.08 the temperature in the central portion of
the liquid layer also deviates from the profile (26), but there is
no periodic modulation due to the absence of convection rolls.
Instead, the gradient τ varies, decreasing with x.

Some qualitative features of the temperature field, on the
other hand, are independent of c̄a. For instance, the isotherms
show strong clustering in the liquid phase near both end walls,
indicating the formation of thermal boundary layers. In con-

c̄a = 0.01, δca = 0.001, 0.002 < ca < 0.026

c̄a = 0.04, δca = 0.004, 0.011 < ca < 0.081

c̄a = 0.08, δca = 0.005, 0.032 < ca < 0.134

c̄a = 0.16, δca = 0.005, 0.094 < ca < 0.220

c̄a = 0.85, δca = 0.00125, 0.822 < ca < 0.863

c̄a = 0.96, δca = 0.0004, 0.952 < ca < 0.963

Figure 4: Air concentration ca in the gas phase for ∆T = 10 K and different
c̄a. The interval between adjacent level sets and the total variation for ca are
different. In the gas phase, darker shade indicates higher air concentration,
while in the liquid phase, the concentration field is not defined.

trast, no thermal boundary layers form near the end walls in
the gas phase. Instead, the temperature field appears to be in-
sensitive to the fluid flow and is dominated by heat conduction,
which appears odd, given that thermal conductivity kg of the
gas is considerably smaller than thermal conductivity kl of the
liquid. However, in steady state the temperature field is instead
controlled by the thermal diffusivity α, which is much higher in
the gas than in the liquid (see Table 1) due to the vastly different
densities, which explains why conduction dominates.

3.1.3. Concentration field
While the liquid phase is a simple fluid, the gas phase is a

binary fluid, except for the pure vapor case c̄a = 0. The con-
centration field in the gas phase for different c̄a is shown in Fig.
4. The concentration of air is a decreasing function of x for all
c̄a, which is consistent with the air being swept by the flow of
vapor towards the cold end wall. For c̄a ≥ 0.85 we find ca to
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Figure 5: Flow regimes: SUF (#), PMC (4), SMC (2), and OMC (3). Open
symbols correspond to experimental results of Li et al. and filled symbols – to
numerical results from this study. Dashed lines are sketches of the boundaries
between different regimes (based on the experimental results).

vary in a small range about the average. The horizontal concen-
tration profile is linear near the top of the cavity, while near the
interface we find significant spatial modulation about the linear
profile caused by advection of the gas mixture by the convective
flow.

As c̄a decreases, the range of ca increases. For instance, at
c̄a = 0.16 we find that the maximal value of ca is more than
double the minimal value. At this and other intermediate values
of c̄a, the concentration field in the central region of the cavity
has a linear (in the horizontal direction) profile, similar to the
temperature field,

ca = ςx + ĉa(z), (27)

were ς = ∂xca,i is the interfacial concentration gradient and
ĉa(z) is the vertical concentration profile. The concentration
field (27) can be obtained directly from the analytical solution
for the density of vapor in the SUF regime [17]

ρv = %x + ρ̂v(z) (28)

and the equation of state (4) which yields ca = 1 − ρvR̄vT/pg.
The concentration gradient ς can be related not only to the hori-
zontal density gradient %, but also to the interfacial temperature
gradient via the Clausius-Clapeyron equation

ς = −
L(1 − ca)

R̄vT 2
s

τ ≈ −
L(1 − c̄a)

R̄vT 2
0

τ, (29)

where we used the observation that the interfacial temperature
Ti is essentially equal to the saturation temperature Ts in the
problem considered here [18]. The relation (29) is more general
and holds for all the regimes, not just SUF.

For c̄a . 0.08 the horizontal concentration gradient ς is not
constant and its magnitude decreases with x, while the air con-
centration at the hot end wall reduces to a small fraction of c̄a.

At the same time, the vertical concentration profile ĉa(z) be-
comes essentially flat in the central portion of the cavity.

3.1.4. Flow regimes
The flow regimes found in the numerics for different ∆T and

c̄a are summarized and compared with the experimental obser-
vations of Li et al. [2] in Fig. 5. Instead on the dimensional
parameter ∆T , the results are presented in terms of the related
nondimensional parameter – the interfacial Marangoni number

Mai ≡
γd2

l

µlαl
τ̄, (30)

where τ̄ is the spatial average of the interfacial temperature gra-
dient τ. Overall, the two sets of results are found to be in good
agreement, which suggests that the model properly captures the
important physical processes. The flow fields shown in Fig. 2
illustrate all the qualitatively different regimes except for par-
tial multicellular flow (PMC) which features multiple convec-
tion rolls that do not extend all the way to the cold end wall.
While this regime, intermediate between SUF and SMC [2], is
expected to be found for ∆T = 10 K at intermediate values of
c̄a, our model based on a dilute approximation is not expected
to produce accurate predictions when the concentrations of air
and vapor are comparable. We do, however, find PMC states at
higher c̄a and lower ∆T , as Fig. 5 indicates.

In fact, for c̄a ≥ 0.85 we find all four flow regimes, from SUF
at low ∆T , to OMC at high ∆T . Both experiments and numerics
show that a reduction in the concentration of noncondensables
increases the threshold (critical Mai) for transition between dif-
ferent flow regimes. As a result, not all of the four flow regimes
are found at lower c̄a. For instance, at c̄a ≤ 0.16 and ∆T ≤ 30 K
we only find SUF in the numerics. In the experiment only SUF
and PMC states are found at c̄a = 0.14, with the latter requiring
∆T & 11 K.

At atmospheric conditions the thresholds for transitions from
SUF to PMC (Mai ≈ 390) and from SMC to OMC (Mai ≈ 780)
are very similar in the experiment and numerics, however the
transition from PMC to SMC in the numerics (at Mai ≈ 600)
is delayed compared with the experiment (where it happens at
Mai ≈ 430). One potential reason for this discrepancy is the
assumption of the model that condensation does not occurs on
the cold end wall. In the experiment a significant fraction of
the vapor likely condenses on the cold end wall, forming a thin
film that drains towards the liquid layer. This can noticeably en-
hance condensation at all c̄a. As a result, for instance, the same
values of Mai can correspond to different ∆T in the experiment
and numerics.

The changes in the structure of the flow that we find at a
fixed ∆T = 10 K as c̄a increases are qualitatively similar to
the changes found at atmospheric conditions (c̄a = 0.96) as ∆T
increases [2, 17]. Hence, it seems natural to expect that the
same physical mechanism is responsible for destabilization of
the uniform return flow found in the SUF regime in both cases.
In order to better understand the structure and stability of the
flow as a function of ∆T and c̄a, it is helpful to study the in-
terfacial profiles of the velocity, temperature, and concentration
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fields, as well as the mass flux J describing the intensity of
phase change.

3.2. Solutions at the interface
3.2.1. The temperature and velocity profiles

Let us look at the interfacial temperature Ti first. The temper-
ature profiles for different c̄a (and fixed ∆T = 10 K) are shown
in Fig. 6(a). The most significant feature in all the cases is a
nearly linear slope of Ti across almost the entire interface, with
significant deviations only near the end walls (in the regions
where thermal boundary layers form in the liquid). At interme-
diate values of c̄a the temperature gradient τ outside the bound-
ary layers is constant to a very good accuracy (cf. Fig. 6(b)).
For c̄a & 0.85 the temperature gradient exhibits spatial modu-
lation about the average value τ̄ with the periodicity set by the
wavelength λ of the convective structure. For c̄a . 0.08, on the
other hand, the gradient τ slowly (and monotonically) decreases
with x (we will return to this in Section 3.2.3).

Although at atmospheric pressure τ̄ is comparable to the im-
posed temperature gradient ∆T/L, as the concentration of air
decreases, τ̄ also decreases and in the absence of air, the in-
terfacial temperature becomes essentially constant, with τ̄ de-
creasing by three orders of magnitude, compared with the val-
ues found at atmospheric conditions at the same ∆T [17]. We
will discuss the dependence of τ̄ on c̄a in more detail at the end
of this section, but next we turn our attention to the interfacial
flow velocity ui.

The interfacial velocity profiles for different c̄a are shown in
Fig. 7 and can be easily understood with the help of the ana-
lytical solution for a steady return flow in an unbounded liquid
layer driven by a constant temperature gradient τ̄ [36, 17]. At
the interface this solution gives

ui = uT + uB =
1
4
νl

dl

Mai

Pr
+

1
48

νl

dl

Ra
Pr
, (31)

where uT and uB are the contributions of thermocapillarity
and buoyancy, respectively. For an unbounded liquid layer
uB is characterized by an “interfacial” Rayleigh number Ra =

BoDMai, where

BoD ≡
ρlg βld2

l

γ
(32)

is the dynamic Bond number. For a bounded liquid layer we
should instead use the “laboratory” Rayleigh number [18]

RaL ≡
gβld4

l

νlαl

∆T
L
. (33)

The relative strength of buoyancy and thermocapillarity is
therefore described by the ratio of the two components,

uB

uT
=

1
12

∆T
Lτ̄

BoD, (34)

which suggests that thermocapillarity is the dominant force
when τ̄ > τ∗, where

τ∗ =
BoD

12
∆T
L
≈ 0.06

∆T
L

(35)
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Figure 6: Interfacial temperature profile (a) and the interfacial temperature gra-
dient τ = ∂xTi (b) for different average concentrations of air and ∆T = 10 K.
To amplify the variation of Ti in the central region of the cavity we plotted the
variation δTi = Ti − 〈Ti〉x about the average and truncated the y-axis in (a).

for the parameters considered here.
As Fig. 6(b) shows, τ̄ changes relatively little as c̄a de-

creases from 0.96 to 0.16 and its magnitude remains compa-
rable to (about a quarter of) ∆T/L. Hence, the interfacial flow
velocity is determined by the interfacial temperature gradient,
ui ≈ uT ∝ τ, even locally. In particular, ui exhibits spatial
modulation reflecting spatial modulation in τ at higher c̄a. As
c̄a is decreased below about 0.01, τ̄ becomes less that τ∗, so
buoyancy force becomes dominant and the analytical solution
(31) completely breaks down. In this limit the flow velocity
is controlled by two large convection rolls driven by buoyancy,
with pronounced maxima near the two end walls. The flow at
c̄a . 0.01 is similar to that found under pure vapor [18] and cor-
responds to the limit of infinite BoD at atmospheric conditions
(when buoyancy dominates over thermocapillarity). Hence, the
effect of reducing c̄a from the atmospheric value 0.96 to that
corresponding to pure vapor (c̄a = 0) is analogous to increasing
the dynamic Bond number from its reference value (BoD = 0.69
in this study) to infinity.

3.2.2. Phase change
While the concentration of noncondensable affects the veloc-

ity profile only indirectly, its effect on the phase change at the
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Figure 7: Interfacial velocity for different average concentrations of air and
∆T = 10 K.

interface is not only direct, but also rather dramatic. The mass
flux distribution along the interface which characterizes the in-
tensity of phase change is shown in Fig. 8. At atmospheric con-
ditions (c̄a = 0.96) phase change is negligible along almost the
entire interface, as transport of the vapor away from, or towards,
the interface is severely restricted by diffusion through air. The
phase change is only non-negligible very near the contact lines,
with the liquid evaporating near the hot end wall (J > 0) and
the vapor condensing near the cold wall (J < 0).

As expected, decreasing the air concentration enhances the
phase change near the end walls. However, we find also signif-
icant phase change along the entire interface for c̄a & 0.16. In
particular, at c̄a = 0.16 we find a wide region near the hot end
wall where J < 0, i.e., the vapor condenses and narrower region
with J > 0 near the cold end wall where the liquid evaporates.
This somewhat paradoxical result is due to advection, as shown
in our previous work [17].

As the concentration of air is reduced further, the region of
condensation expands and eventually (for c̄a . 0.04) extends
to cover about 4/5 of the entire interface. Although the max-
imal values of J are still found next to the end walls (phase
change is most intense in the contact line regions at all c̄a),
phase change along the rest of the liquid-vapor interface be-
comes non-negligible. As c̄a → 0, the mass flux J smoothly
approaches the profile found in the limit of pure vapor. Simi-
larly, the fluid flow and temperature fields, both in the bulk and
at the interface, smoothly approach those found previously for
pure vapor [18].

Our results for low c̄a have serious implications for model-
ing heat pipes, which typically assume that phase change takes
place only in the “evaporator” and the “condenser” regions sep-
arated by an “adiabatic” section where phase change is negligi-
ble and the temperature varies linearly [37, 38, 39]. Although
the liquid flow in our model is not representative of heat pipes,
the temperature profile and the flow in the gas phase are, espe-
cially at low concentrations of noncondensables, so our numer-
ical results appear to be relevant to heat pipes. In practice, non-
condensables are mostly evacuated from heat pipes to enhance
phase change and the associated latent heat flux. Our results
suggest that in this limit there is no “adiabatic” region, since
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Figure 8: Mass flux due to phase change at the interface at different average
concentrations of air and ∆T = 10 K, with truncated y-axis.
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Figure 9: Integrated mass flux I at different average concentrations of air and
∆T = 10 K.

away from the heated/cooled end walls the temperature profile
is no longer linear, while phase change is non-negligible. The
models of heat pipes which ignore phase change in the “adia-
batic” region appear to be based on results from experiments
performed under atmospheric conditions and, in all likelihood,
do not accurately describe heat and mass flow at reduced pres-
sures.

Quantifying the net amount of phase change (and the asso-
ciated latent heat) requires some care as J is not a monotonic
function of x for all c̄a. For instance, at higher c̄a some of the
evaporation (condensation) near the hot (cold) end wall is off-
set by the condensation (evaporation) just a few mm away. At
lower c̄a phase change is not even localized near the end walls.
To account for the non-monotonic nature of J(x), we will define
the characteristic mass flux J0 across a vertical cross-section of
the cavity

J0 = max
x

I(x), (36)

as the maximum of the (properly normalized) net mass flux I(x)
along a portion of the interface between 0 and x:

I(x) =
1
dg

∣∣∣∣∣∫ x

0
J
√

1 + (dz/dx)2 dx
∣∣∣∣∣ , (37)

where I(L) = 0 in steady state due to mass conservation.

9



0.01

0.10

1.00

0.001 0.01 0.1 1𝒄 𝒂
 𝒄 𝒂
 

J
0
 (

g
/m

2
-s

) 

Figure 10: Characteristic mass flux J0 as a function of the average concentration
of air at ∆T = 10 K.

If phase change were localized to the contact line regions,
I(x) would be essentially constant in the entire “adiabatic” re-
gion and the mass flux of vapor across any vertical cross-section
in that region would be equal to J0. As Fig. 9 shows, I varies
most rapidly near the contact lines where phase change is most
intense for all c̄a. For c̄a = 0.96, aside from some weak modu-
lation due to convection rolls, I(x) is indeed essentially constant
across most of the interface. However, for c̄a . 0.16, I varies
rather significantly (by almost an order of magnitude!) outside
of the contact line regions, which means that the “adiabatic” re-
gion disappears at reduced concentrations of noncondensables.

The dependence of the characteristic mass flux J0 on the av-
erage concentration of noncondensables is shown in Fig. 10.
As expected, J0 is a monotonically decreasing function of c̄a

(noncondensables suppress phase change). J0 does not vary
noticeably for c̄a below about 1%, which suggests that at low
enough concentrations noncondensables essentially do not im-
pede the flow of vapor. Increasing c̄a to about 0.08 (which cor-
responds to 1.5% mass fraction) halves J0, compared with the
pure vapor case, at which point the adverse role of noncondens-
ables becomes apparent, as they significantly reduce the phase
change and the latent heat contribution to the heat flux. As a
reference, for filmwise condensation of steam, the condensa-
tion rate is halved at air mass fraction of 0.5% [6]. At ambient
conditions J0 decreases by more than two orders of magnitude
compared with the pure vapor case, which illustrates the kind of
improvement in the heat flux that can be achieved by evacuat-
ing noncondensables from heat pipes and other similar passive
thermal management devices.

3.2.3. The concentration profile
At high c̄a, phase change takes place mostly in the immedi-

ate vicinity of the contact line. Due to this, as well as the large
aspect ratio of the cavity, the vapor flux from the hot side of the
cavity to the cold side becomes essentially one-dimensional in
the central portion of the cavity. At lower c̄a, phase change is
non-negligible along the entire interface. However, as Fig. 4
illustrates, the concentration gradient is essentially horizontal,
so the flux of vapor can again be considered one-dimensional.
Even at higher c̄a, when the concentration gradient deviates

from horizontal, the Péclet number

Pe =
udg

D
< 1, (38)

so diffusion still dominates over advection. Hence, vapor trans-
port across the cavity is controlled by diffusion in the range of
∆T considered in this study and we can ignore the variation of
the mass flux of vapor with both x and z in the central portion
of the cavity,

J(x, z) ≈ −J0x̂, (39)

where

J0 ≈ D∂xρv =
Dpg

R̄vT pa
∂x pv, (40)

in agreement with the well-known result for condensation of
vapor on a cold surface [40]. J0 can be related to the average
interfacial temperature gradient τ̄ using the Clausius-Clapeyron
equation and the fact that the interfacial temperature is essen-
tially equal to the saturation temperature [18]:

J0 ≈
1 − c̄a

c̄a

LDpg

R̄2
vT 3

0

τ̄. (41)

Note that, according to (15), the product Dpg is independent
of pg (and hence c̄a), while |T − T0| � T0, so κ = R̄vT0/(Dpg)
is only a function of T0 and can be considered a constant which
has the same value in all the cases considered in this study. Fur-
thermore, since the total pressure pg = pa + pv is essentially
constant [18], we can rewrite (40) as

κJ0 pa ≈ ∂x pv = −∂x pa, (42)

integration of which yields the spatial profile of the partial pres-
sure of noncondensables at the interface

pa ≈
c̄a

1 − c̄a

κJ0L
1 − e−κJ0L p0

ve−κJ0 x, (43)

where p0
v is the saturation pressure of vapor at T0. And since

pa/ca = pg = p0
v/(1−c̄a), the concentration of noncondensables

is given by

ca ≈ c̄a
κJ0L

1 − e−κJ0L e−κJ0 x. (44)

Both pa and ca have nonlinear profiles reflecting the accumula-
tion of noncondensables near the cold end wall when κJ0L & 1
(at low c̄a). As the combination κJ0L decreases below unity (at
high c̄a), the concentration profile becomes linear:

ca ≈ c̄a

[
1 + κJ0

(L
2
− x

)]
. (45)

The transition between linear and exponential profiles should
take place around κJ0L = 1, which corresponds to an interme-
diate value of c̄a ≈ 0.08.

Our numerical results for the (normalized) air concentration
at the interface, which are in very good agreement with the an-
alytical result (45), are shown in Fig. 11. We find that the con-
centration of air has an exponential profile for c̄a . 0.08, with
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Figure 11: Normalized air concentration at different average concentrations of
air and ∆T = 10 K. Numerical and analytical results are represented by symbols
and lines, respectively: c̄a = 0.001 ( and solid line), c̄a = 0.08 (N and dash
line) and c̄a = 0.16 (� and dot line).

the maximum at the cold end wall, x = 0. For c̄a & 0.16 the
concentration profile becomes essentially linear in x both along
the interface and in the bulk. Since the interfacial temperature
gradient τ is related to the interfacial concentration gradient ς
locally via (29), for c̄a & 0.16 (45) yields τ ≈ τ̄. For lower c̄a

the τ-profile also becomes exponential according to (44):

τ

τ̄
≈

ca

c̄a
≈

κJ0L
1 − e−κJ0L e−κJ0 x, (46)

in agreement with the numerical results shown in Fig. 6(b).
Finally, since J0 becomes independent of c̄a below about 0.02

(cf. Fig. 10), the relation (41) predicts that τ̄ becomes a lin-
ear function of c̄a. This prediction agrees with our numerical
results summarized in Fig. 12 and is consistent with the re-
sult of our previous study [18], which showed that thermocap-
illary stresses essentially disappear when noncondensables are
removed completely. In the opposite limit we find that τ̄ be-
comes almost independent of c̄a. In fact, τ̄ changes by less than
20% as c̄a is decreased from 0.96 to 0.16 (which corresponds to
a reduction in the partial pressure of air by over two orders of
magnitude). The change in the interfacial velocity is similarly
small, as Fig. 7 illustrates. This explains the puzzling experi-
mental observation [2] that the interfacial velocity remains al-
most unchanged across much of the interface when the concen-
tration of air is reduced from 0.96 to 0.14. In fact, the interfacial
velocity a few mm away from the cold end wall even increases
slightly as the c̄a is decreased from 0.96 to around 0.16, which
is also in agreement with experimental observations.

4. Summary

We have developed, implemented, and validated a com-
prehensive numerical model of two-phase flows of confined
volatile fluids driven by an applied horizontal temperature gra-
dient, which properly accounts for momentum, mass, and
heat transport in both phases and phase change at the liquid-
vapor interface. This model was used to investigate buoyancy-
thermocapillary convection in a sealed cavity containing 0.65
cSt silicone oil at dynamic Bond numbers of order unity and
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Figure 12: Average temperature gradient τ̄ as a function of the average concen-
trations of air c̄a at ∆T = 10 K. The solid line indicates the linear relationship
predicted in the limits c̄a → 0.

applied temperature gradients as high as 600 K/m. The effect of
noncondensables (air) was investigated by varying their average
concentration from that corresponding to ambient conditions to
zero, in which case the gas phase becomes a pure vapor. The
numerical results were found to interpolate between the limiting
cases studied previously [17, 18]. They were also found to be
in general agreement with the experimental results [2] and with
the predictions of a simple analytical model of vapor transport
through the gas phase.

The noncondensables were found to play a very important
role in this problem. The composition of the gas phase has a
crucial impact on the transport of heat, mass, and momentum.
Although the fluid flow, temperature, and concentration fields
generally affect each other, this interdependence can be untan-
gled for a certain range of parameters in large-aspect-ratio cav-
ities. Specifically, for Pe < 1 the transport of vapor through
the gas layer is dominated by diffusion and the relative con-
centration of the vapor and noncondensables can be computed
analytically. The concentration field profile then determines the
interfacial temperature profile which, in turn, determines the
interfacial velocity profile and the flow fields in both the liquid
and the gas layer for BoD = O(1).

In particular, we find that the linear temperature profile that is
often assumed in the transport models is merely a limiting case
of a more general, exponential profile. When the gas phase is
dominated by noncondensables, the characteristic length scale
on which the concentration and temperature gradients vary di-
verges and the exponential profiles become linear. When the
vapor dominates, its flow sweeps the air towards the cold end
wall, increasing the concentration and its gradient at the cold
end and decreasing them at the hot end of the cavity. The result-
ing concentration profile in this limit deviates noticeably from
linear and so does the temperature profile.

The interfacial temperature gradient differs substantially
from the applied temperature gradient. It is quite sensitive to
the composition of the gas phase when the concentration of
noncondensables is low (below 2% or so), but becomes essen-
tially independent of said composition at higher concentrations
(above 10% or so). As a result, the speed and spatial profile of
the base flow remain essentially unchanged as the partial pres-
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sure of air inside the cavity is reduced from 97 kPa to around
0.75 kPa (and the total pressure – from 101 kPa to 5 kPa). Al-
though this numerical result is consistent with the available ex-
perimental data [2], it remains somewhat counter-intuitive. In
order to fully describe the thermocapillary stresses that control
the flow, a more comprehensive model is needed that would al-
low computation of the characteristic mass flux J0 from first
principles.

While the noncondensables have a relatively weak effect on
the base flow, they strongly affect its stability. As the concen-
tration of noncondensables is decreased, the flow stability is
enhanced, with critical Marangoni numbers for transitions be-
tween different flow regimes increasing rather substantially. In
fact, at sufficiently low concentrations of noncondensables flow
transitions disappear completely, with steady unicellular flow
observed for all applied temperature gradients studied here. As
we observed previously, a decrease in the concentration of non-
condensables has an affect similar to that due to a decrease in
the applied temperature gradient.

Qualitatively this effect can be understood rather easily. The
instability leading to the formation of convection rolls is analo-
gous to the Marangoni instability in that it is driven by the vari-
ation of the surface stresses caused by the variation in the inter-
facial temperature. The interfacial temperature is controlled by
the local composition of the gas phase. Hence, decreasing the
concentration of noncondensables increases the dissipation due
to the enhanced diffusion of the vapor, reducing the variation of
the concentration and interfacial temperature about the average
profile corresponding to the base flow and thereby suppressing
the instability.

Although the geometry investigated here is at best qualita-
tively similar to that of a heat pipe, some of our general re-
sults appear to be relevant for two-phase cooling technologies
more broadly. In particular, we find that evacuating noncon-
densables from sealed cavities can significantly enhance phase
change (by more than two orders of magnitude for the dimen-
sions and working liquid considered here), although the benefit
of reducing the concentration of noncondensables below about
1% is rather small. At such low concentrations significant frac-
tion of phase change occurs away from the heated/cooled re-
gions, so no “adiabatic” regions form where phase change can
be neglected. Finally, vapor transport in the gas phase plays
a crucially important role in determining the transport of both
heat and mass (in the liquid phase), which opens up the possi-
bility of constructing first-principles transport models using the
intuition gleaned from numerical studies.
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