
A numerical study of buoyancy-Marangoni convection of volatile binary fluids in confined
geometries

Tongran Qin1, Roman O. Grigoriev1

aSchool of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA

Abstract

A horizontal temperature gradient can cause a flow in a layer of liquid with a free surface via several different mechanisms. The most
universal one is due to thermocapillary stresses that arise due to the temperature dependence of surface tension. For binary liquids,
the flow can also be driven by solutocapillary stresses that arise due to the dependence of surface tension on the composition of the
liquid. For some binary liquids, such as water-alcohol mixtures, solutocapillary stresses are primarily due to phase change (e.g.,
differential evaporation or condensation of the two components), and these two mechanisms can counteract each other. A recent
experimental study [Li and Yoda, IJHMT 102, 369 (2016)] has demonstrated that the flow direction can be reversed by changing
the amount of air present inside the experimental apparatus. To understand how the presence of air affects the interfacial stresses,
we have developed and implemented numerically a comprehensive two-sided transport model, which accounts for transport of heat,
mass, and momentum in both phases and phase change across the interface and is able to reproduce the experimental results. The
detailed analysis of these results shows that air tends to suppress phase change and hence solutocapillary stresses. Removing the
air enhances phase change, instead suppressing the variation in the interfacial temperature and hence thermocapillary stresses.

Keywords: Marangoni convection, Buoyancy-Marangoni convection, Multiphase flows, Two-phase flows, Phase change,
Free-surface flows, Interfacial flows, Binary fluids, Multi-component transport, Surface tension effects, Thermocapillarity,
Solutocapillarity, Flow stability, Heat pipes

1. Introduction

Various types of convective flows can arise in layers of bi-
nary liquid during evaporation [1, 2, 3, 4, 5] or condensation
[6, 7, 8, 9, 10] driven by the gradient in either vapor concen-
tration or temperature normal to the free surface. Perhaps the
most famous example is “wine tears” that form when a mixture
of water and ethanol is allowed to evaporate. This mixture is an
example of a positive binary fluid [11], where the more volatile
component (ethanol) has lower surface tension compared with
the less volatile component (water). Preferential evaporation of
ethanol from a thin layer near a side wall reduces surface ten-
sion of the mixture there and generates solutocapillary forces
that drive the liquid towards, and in some instances up, the
wall, which is a key physical mechanism behind the formation
of wine tears [12, 13]. More recently it has been discovered
that thermocapillary stresses generated via evaporative cooling
of the liquid surface also play a role in this phenomenon [14]. In
this specific case, evaporation causes the temperature near the
edge of the film to decrease, further increasing surface tension,
so thermocapillary stresses enhance solutocapillary ones.

Under certain conditions, however, thermocapillary and so-
lutocapillary stresses can oppose each other. This property can
be usefully exploited when thermocapillarity has an adverse ef-
fect, e.g., in thermal management devices, such as heat pipes,
which rely on evaporative cooling. Heat pipes are effectively
sealed cavities partially filled with a volatile liquid, and it is the
temperature gradient tangential to the free surface that drives

the system out of equilibrium and generates the flow. For pure
fluids, thermocapillary stresses drive the flow away from the
hot end of the heat pipe, which can cause dry-out leading to a
complete loss of evaporative cooling and a dramatic increase in
the temperature of the hot end. The adverse effect of thermo-
capillarity can be ameliorated by using a positive binary coolant
[15], where the differential evaporation of the two components
causes solutocapillary stresses towards, rather than away from,
the hot end. Indeed, experimental studies have shown that the
direction of the flow can be reversed by using a mixture of water
with ethanol [16] or methanol [17]. Beneficial effects of using a
binary mixture on the performance of a heat pipe in micrograv-
ity have also been demonstrated [? ].

There is a vast literature on convection in binary fluids driven
by a vertical [18, 19, 20, 21] temperature gradient, but almost
all of it is devoted to nonvolatile liquids, where solutocapillary
stresses arise due to the Soret effect [22] rather than differen-
tial phase change. We should also mention studies of the role
of solutocapillary stresses in nucleate boiling [? ] and droplet
evaporation [? ], and thin film evaporation [? ]. However,
other than an earlier work [? ], there are no theoretical (either
numerical or analytical) studies of convection in volatile binary
mixtures subjected to a horizontal temperature gradient; the sin-
gle relevant numerical study [23] did not consider the effects of
phase change. Consequently, there is a lack of understanding
of the effects of transport (of heat or mass) in the gas phase or
the effects of noncondensable gases such as air. The present
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Figure 1: A sealed test cell containing the liquid and air/vapor mixture. Gravity
is pointing in the negative z direction.

study addresses this gap in our understanding by introducing
a comprehensive two-sided model that provides a quantitative
description of transport of heat, mass, and momentum in both
the liquid and the gas phase as well as across the liquid-gas in-
terface.

The model is described in detail in Section 2. The results of
the numerical investigations of this model are presented, ana-
lyzed, and compared with experimental observations reported
by Li and Yoda [17] in Section 3. Our summary and conclu-
sions are presented in Section 4.

2. Mathematical Model

2.1. Governing Equations
When the liquid is a binary mixture of two volatile compo-

nents (in this study we will focus on the special case of water-
methanol mixtures), the gas phase above the liquid layer is gen-
erally a multi-component mixture of the vapors of the two com-
ponents of the liquid and various noncondensable gases (e.g.,
air) that tend to be dissolved in the liquid. Under typical ex-
perimental conditions, one tends to find a ternary mixture con-
taining air whose concentration depends on whether the liquid
has been degassed and whether the cavity (cf. Fig. 1) has been
evacuated before being filled with the binary liquid. The trans-
port model describing a layer of binary liquid in local ther-
modynamic equilibrium with the ternary gas mixture can be
constructed as a generalization of the two-sided transport mod-
els [24, 25? , 26] describing single-component liquids. Both
phases (liquid and gas) will be considered incompressible

∇ · u = 0 (1)

with momentum transport in the bulk described by the Navier-
Stokes equation in the Boussinesq approximation

ρ (∂tu + u · ∇u) = −∇p + µ∇2u + ρg, (2)

where u is the velocity, p is the pressure, ρ and µ are the den-
sity and dynamic viscosity of the fluid, respectively, and g is
the gravitational acceleration. Heat transport in the bulk is de-
scribed by the advection-diffusion equation

∂tT + u · ∇T = α∇2T, (3)

where T is the temperature and α = k/ρCp is the thermal diffu-
sivity of the fluid.

The density of the liquid mixture is

ρl = ρl,m + ρl,w, (4)

where ρl,b is the density of component b in the mixture. Here
and below the subscript denotes the phase (l for the liquid, g for
the gas), and/or the component in the mixture (m for methanol,
w for water, a for air). We will use the subscript i to denote the
values at the liquid-gas interface. A linear dependence of the
density of each component on the temperature is assumed,

ρl,b = ρ0
l,b[1 − βl,b (T − T0)], (5)

where βl,b = −ρ−1
l,b∂ρl,b/∂T at T = T0 is the coefficient of ther-

mal expansion, ρ0
l,b is the density of component b in the mixture

at the reference temperature T0, which is given by

ρ0
l,b = nlYbm1

b, (6)

where nl is the total number density in the liquid, m1
b is the mass

of one molecule, and Yb = nl,b/nl is the concentration (molar
fraction) of component b in the liquid phase.

The density and pressure of the gas mixture are

ρg = ρg,m + ρg,w + ρg,a,

pg = pg,m + pg,w + pg,a, (7)

where all components are assumed to be ideal,

ρg,b =
Xb pg

RbT
= ngXbm1

b,

pg,b = Xb pg = ngXbkBT, (8)

Xb = ng,b/ng is the concentration, Rb = R/Mb is the specific
gas constant, Mb = m1

bNA is the molar mass of component b,
and R = kBNa is the universal gas constant. According to the
Boussinesq approximation, the spatial average of ρl and ρg is
used on the left-hand-side (but not the right-hand-side) of the
Navier-Stokes equation (2) for the liquid and the gas phase.

To avoid the assumption of dilute mixtures used in formu-
lating the transport models for simple fluids [24, 26], we will
describe mass transport in both phases using molar fractions
rather than mass densities. The local mass/number conserva-
tion for component b (in either the liquid or the gas phase) can
be described in terms of the corresponding number density nb

∂tnb + u · ∇nb = −∇ · jb, (9)

where jb is the diffusive number flux of component b with re-
spect to the bulk mixture that moves with velocity u. The liquid
phase is a binary mixture, so we can use Fick’s law

jb = −nlDl∇Yb, (10)

where Dl is the conventional binary mass diffusivity of the two
components. With the assumptions of incompressible flow and
constant total number density nl, the local mass/number conser-
vation equation (9) can be rewritten as an advection-diffusion
equation for, say, the water concentration in the liquid

∂tYw + u · ∇Yw = ∇ · (Dl∇Yw) (11)
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with the methanol concentration recovered from

Ym = 1 − Yw. (12)

The gas phase is a ternary mixture of methanol, water, and air.
For a multi-component mixture with N components, the rela-
tion between the diffusion fluxes and the concentration gradi-
ents is given by the Maxwell-Stefan relation [27]

∇Xb =

N∑
k=1

Xbjk − Xkjb

ngDbk
, (13)

where Dbk = Dkb is the conventional binary mass diffusivity
between components b and k. The system (13) can be solved,
yielding the fluxes of the first N′ = N − 1 components

j1
...

jN′

 = D


∇X1
...
∇XN′

 , (14)

such that the flux of the Nth component is

jN = −

N′∑
k=1

jk. (15)

It should be noted that, unlike the binary mass diffusivities Dbk,
the elements of the matrix D depends on the concentrations, and
in general Dbk , Dkb.

For a ternary gas mixture considered in this study, we find

jm = −ngDmm∇Xm − ngDmw∇Xw,

jw = −ngDwm∇Xm − ngDww∇Xw,

ja = −jw − jm, (16)

where

Dmm = D−1
g [XmDma(Dwa − Dmw) + DmwDma],

Dmw = XmD−1
g Dwa(Dma − Dmw),

Dwm = XwD−1
g Dma(Dwa − Dmw),

Dww = D−1
g [XwDwa(Dma − Dmw) + DmwDwa], (17)

and Dg = XmDwa + XwDma + XaDmw.
Note that the diffusive fluxes in a multi-component mixture

generally depend on the concentration gradients of all compo-
nents, so the transport equations (9) are coupled. Furthermore,
the dependence of the diffusion coefficients Dbk on the concen-
trations Xb makes these equations nonlinear. In principle, this
system of equations can be solved numerically, but these two
aspects make numerical solutions rather cumbersome. Different
approaches have therefore been proposed [28] to decouple these
differential equations. For example, after linearization about the
mean concentrations, the mass diffusivity matrix D can be diag-
onalized, yielding a set of uncoupled differential equations for
“pseudo-concentrations” [29, 30, 31]. The disadvantage of this
approach is that the concentrations can differ substantially from
the mean, with the present problem providing a good example.

A widely used alternative approach is based on the concept
of effective mass diffusivity [32, 33, 34, 35, 36]. In particular,
assuming that the off-diagonal terms in (14) are negligible, we
find

jb = −ngDb∇Xb, (18)

where the effective mass diffusivity Db is assumed to depend
only on the composition Xb and the binary mass diffusivities
Dbk. For the water-methanol-air mixture we are interested in,
the conventional binary mass diffusivities Dbk between all pairs
of components are of similar magnitude, and the differences
between them are relatively small. Hence the off-diagonal ele-
ments of matrix D can indeed be neglected, such thatDb ≈ Dbb,
and (16) reduces to

jm = −ngDmm∇Xm,

jw = −ngDww∇Xw,

ja = −j1 − j2. (19)

With the assumptions of incompressible flow and constant total
number density ng, the relation (19) allows the system (9) to be
decoupled and simplified, yielding

∂tXb + u · ∇Xb = ∇ · (Dbb∇Xb) (20)

for b = m and w and the concentration of air given by

Xa = 1 − Xm − Xw. (21)

Together, (20) and (21) describe mass transport in the ternary
gas phase with arbitrary composition. Note that the number
fluxes due to thermodiffusion (the Soret effect) in both phases
were found to be negligible compared with those due to molec-
ular diffusion, and hence were neglected in (10) and (19).

Finally, inside a sealed cavity, global mass conservation
should be satisfied for each component∫

liquid
YmnldV +

∫
gas

XmngdV =
mm

m1
m
,∫

liquid
YwnldV +

∫
gas

XwngdV =
mw

m1
w
,∫

gas
(1 − Xm − Xw)ngdV =

ma

m1
a
, (22)

where mb is the initial total mass of component b and

nl =
ρ0

l,m

m1
m

+
ρ0

l,w

m1
w
,

ng =
pg

kBT
. (23)

An external temperature gradient will cause evaporation near
the hot end and condensation near the cold end, which will not
necessarily balance, so the volumes of the liquid and gas phase
can change. In a numerical implementation of the model, the
change in the liquid volume associated with the motion of the
interface would not satisfy the mass flux balance at the interface
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exactly, and tiny numerical errors will eventually accumulate.
A small inaccuracy in evaluating the volume of the liquid phase
can result in a large relative error for the mass of vapor due
to the large ratio of the densities. Hence, a (spatially uniform)
pressure offset po, methanol concentration correction ∆Xm, and
water concentration correction ∆Xw are computed at each time
step to enforce the three conservation laws (22) evaluated with

pg = p + po,

Xm = X′m + ∆Xm,

Xw = X′w + ∆Xw, (24)

where p is the dynamic pressure in the gas phase obtained by
solving equations (1) and (2), and X′m and X′w are the concentra-
tions of methanol and water, respectively, obtained by solving
the transport equation (20).

2.2. Boundary Conditions
The system of coupled evolution equations (1)-(3) and (11)

for the liquid phase (or (20) for the gas phase) has to be solved
in a self-consistent manner, subject to the boundary conditions
describing the balance of momentum, heat, and number fluxes
at the liquid-gas interface and at the inner surface of the walls
of the cavity. In particular, local phase equilibrium is described
using Raoult’s law

pg,b = γb ps,bYb, (25)

where γb is the activity coefficient of component b, which ac-
counts for deviations from an ideal liquid mixture, and ps,b is
the saturation vapor pressure of pure component b, which can
be related to the interfacial temperature Ti through the Antoine
equation

ln ps,b = Ab −
Bb

Cb + Ti
, (26)

where Ab, Bb, and Cb are empirical coefficients (see Appendix).
Phase change occurs locally where the thermodynamic free

energy is different between the phases. The driving forces
for mixtures include the temperature difference, pressure dif-
ference, and concentration difference across the interface [37].
We find that the effect due to the latter two are negligible in
this study. Therefore, phase change for each component of the
volatile fluid can be described using the kinetic theory expres-
sion [38], which only includes the temperature difference

jb,i =
2χb

2 − χb
ngXb

√
RbTi

2π
Lb

RbTi

Ti − Ts,b

Ts,b
, (27)

where jb,i is the number flux of component b across the inter-
face, χb is the accommodation coefficient, Lb is the latent heat
of phase change, and Ts,b is the saturation temperature of com-
ponent b at a given partial pressure pg,b = pgXb, which can
again be computed using (25) and (26).

On the gas side of the interface, with the help of (19) and
taking into account the fact that air is noncondensable, we can
write the mass/number flux balance as

jm,i = ngXm n̂ · (ug − ui) − ngDmm ∂nXm,

jw,i = ngXw n̂ · (ug − ui) − ngDww ∂nXw,

ja,i = 0. (28)

Here and beyond n̂ denotes the unit vector normal to the inter-
face. On the liquid side

jm,i = nlYm n̂ · (ul − ui) − nlDl ∂nYm,

jw,i = nlYw n̂ · (ul − ui) − nlDl ∂nYw. (29)

The heat flux balance gives

Lmm1
m jm,i +Lwm1

w jw,i = kg∂nTg − kl∂nTl, (30)

where ∂n = n̂ · ∇, and the temperature is assumed continuous

Tl = Tg = Ti. (31)

The tangential components of the velocity across the interface
are also continuous

(I − n̂n̂) · (ul − ug) = 0, (32)

while the normal components are related by the kinematic con-
dition

nln̂ · (ul − ui) = ngn̂ · (ug − ui) = jm,i + jw,i. (33)

The stress balance incorporates the viscous drag between the
two phases, thermocapillary and solutocapillary stresses, and
vapor recoil [39]

(Σl − Σg) · n̂ = n̂κσ + ∇sσ +
∑

b

j2b,i(ρ
−1
l,b − ρ

−1
g,b)n̂, (34)

where

Σ = µ
[
∇u + (∇u)T

]
− pI (35)

is the stress tensor, σ is the surface tension, κ = ∇ · n̂ is the
interfacial curvature, and ∇s = (I − n̂n̂) · ∇ is the surface gradi-
ent. Vapor recoil (the last term on the right-hand side of (34))
is negligible under conditions of interest and can be neglected.

The surface tension of the methanol-water liquid mixture is
not a simple linear combination of the surface tensions of the
two pure substances. Instead, it is predicted using an empirical
expression [40] based on the fits to experimental data

σ = f (Ym)σm + [1 − f (Ym)]σw, (36)

where
f (Ym) = Ym

1 + c1(1 − Ym)
1 − c2(1 − Ym)

, (37)

with empirical parameters c1 and c2 (see Appendix). The sur-
face tension of each component is assumed linear with respect
to the temperature

σb = σ0
b + σ′b(T − T0), (38)

where σ0
b is the surface tension of the pure substance at the

reference temperature T0 and σ′b = ∂σb/∂T is the temperature
coefficient of surface tension. With the help of (36)-(38), the
term ∇sσ on the right-hand-side of (34) can be rewritten as

∇sσ = f ′(Ym)(σm − σw)∇sYm (39)
+

[
f (Ym)σ′m + [1 − f (Ym)]σ′w

]
∇sTi,
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where the first and the second term represent the soluto- and
thermocapillary stresses, respectively.

Following Li and Yoda [17] we will assume that the fluid
is contained in a rectangular cavity with inner dimensions
L × W × H (cf. Fig. 1) and thin walls of thickness hs and
conductivity ks. The left end wall is cooled with a constant
temperature Tc imposed on the outside, while the right end wall
is heated with a constant temperature Th = Tc + ∆T imposed
on the outside. Since the walls are thin, one-dimensional con-
duction inside these is assumed, yielding the following mixed
boundary conditions on the inside of the end walls:

T |x=0 = Tc + kι
hs

ks
∂nT, (40)

T |x=L = Th + kι
hs

ks
∂nT,

where ι = g (ι = l) above (below) the contact line.
Since in most experiments side walls are nearly adiabatic,

heat flux through the top, bottom, front, and back walls is ig-
nored

∂nT = 0. (41)

Standard no-slip boundary conditions u = 0 for the velocity and
no-flux boundary conditions for the concentrations

∂nXb = 0, (42)
∂nYb = 0

are imposed on all the walls. The pressure boundary condition
follows from (2) with inertial and viscous stresses neglected:

∂n p = ρ n̂ · g, (43)

where the density ρ is a function of the local concentration and
temperature.

2.3. Implementation
The two-sided transport model described above has been im-

plemented numerically within the open-source CFD package
OpenFOAM [41], where the surface-tracking method [42] is
used for describing the moving interface and the moving mesh.
The details can be found in Refs. [? 43]. At the liquid-gas
interface, the number fluxes due to phase change jb,i, the in-
terfacial temperature Ti, the saturation temperatures Ts,b, the
normal component of the gas velocity ug and liquid velocity ul,
the vapor pressures pb and ps,b, and the normal components of
the gradients of the concentration fields ∂nXb and ∂nYw satisfy a
set of boundary conditions, most of which are nonlinear. These
interfacial fields were therefore computed simultaneously using
the Newton method. The types of boundary conditions imposed
at different boundaries are summarized in Table 1.

3. Results and Discussion

The model described in the previous section was used to in-
vestigate the two-phase flow of a binary mixture of methanol

Field Types of boundary conditions
Interface, Interface, Hot/cold Top/bottom
gas side liquid side wall wall

u Dirichlet Neumann Dirichlet Dirichlet
p Neumann Dirichlet Neumann Neumann
T Dirichlet Neumann mixed Neumann
Xm Neumann – Neumann Neumann
Xw Neumann – Neumann Neumann
Ym – Neumann Neumann Neumann

Table 1: Types of boundary conditions imposed on various internal boundaries
in the numerical implementation of the model. Periodic boundary conditions
on the side walls are used in 2D, while in 3D the boundary conditions at the
side walls are the same as those at the top and bottom of the cavity.

and water under the conditions matching the experimental study
of Li and Yoda [17], which used a layer of liquid of average
thickness dl = 2.5 mm confined in the test cell with the inner
dimensions L × H ×W = 48.5 mm ×10 mm ×10 mm (material
parameters are provided in the Appendix). For a liquid layer
of this thickness, gravitational effects are substantial in terres-
trial conditions. First of all, the thickness dl is comparable to
the capillary length for water, so the liquid spreads along the
bottom of the cavity in a layer of reasonably uniform thickness.
Since both methanol and water are volatile, the gas layer at the
top of the cavity contains a mixture of methanol vapor, water
vapor, and air. Furthermore, the dynamic Bond number

BoD =
βlρlgd2

l

σ′
(44)

ranges from 0.08 for pure water (Ym = 0) to 0.41 for pure
methanol (Ym = 1), so that buoyancy effects could be com-
parable to the thermocapillary stresses [44].

While the model and its numerical implementation can de-
scribe the flows in both 2D and 3D systems, the results pre-
sented here are obtained exclusively for 2D flows (ignoring
variation in the y-direction), since 3D simulations require sig-
nificant computational resources and time. 2D simulations de-
scribe the central vertical (x-z) plane of the experimental test
cell. Furthermore, we fixed the contact angle at 90 degrees fol-
lowing a previous study of this geometry [24] that showed the
flow patterns in both phases to be quite insensitive to the value
of the contact angle.

All simulations were initialized with the fluid being station-
ary and temperature being uniform, T = T0 (where T0 =

(Tc + Th)/2 = 293 K in all cases), the liquid layer having
uniform thickness dl and composition Ym = Ȳm. The partial
pressure pg,b of the vapors is initially set equal to the equilib-
rium value at Ȳm and T0, calculated using (25) and (26), and
the partial pressure of air is chosen such that Xa = X̄a, i.e.,
pg,a = (pg,m + pg,w)X̄a/(1 − X̄a). The temperature difference
∆T = Th − Tc = 6 K between the outer surfaces of the hot and
cold end walls was set as in the experimental study, and the sys-
tem was allowed to evolve until it reached an asymptotic state,
either steady or time-dependent.
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Figure 2: The flow regimes observed at ∆T = 6 K for different Ȳm and X̄a.
Dashed lines show transition boundaries between different flow regimes ob-
served in the experiments of Li and Yoda [17] and symbols correspond to the
numerical results. The three distinct flow regimes observed in the numerical
simulations are: thermocapillarity dominated flow, TDF ( ), unsteady flow,
UF (N), and solutocapillarity dominated flow, SDF (�). A fourth flow regime,
reversed flow (RF), was only observed in the experiments.

3.1. Dynamical regimes
The experimental study used particle image velocimetry to

investigate convective patterns in the liquid layer as a function
of the two concentrations, X̄a and Ȳm. It was found that the flow
pattern is most sensitive to the changes in the composition of the
gas phase, which unambiguously points to the transport in the
gas phase playing a key role in this problem. The dependence
on the composition of the liquid phase is much weaker and was
conjectured to be associated with the variation in the concen-
tration coefficient of surface tension |∂σ/∂Ym|, which controls
the strength of solutocapillary stresses (cf. Fig. 4 of Ref. [17]).
The results are summarized in Fig. 2, with the dashed line sep-
arating different flow regimes from each other in the (X̄a, Ȳm)
parameter plane. Specifically, at high X̄a one finds a steady
thermocapillary dominated flow (TDF), with the flow along the
entire interface directed away from the hot end wall (opposite
the applied temperature gradient). At low X̄a one finds a steady
solutocapillary dominated flow (SDF), with the flow along the
entire interface directed towards the hot end wall (in the direc-
tion of the applied temperature gradient). At intermediate val-
ues of X̄a, an unsteady flow (UF) is found with a complicated
convection pattern extending over the entire thickness of the
liquid layer and a substantial fraction of its horizontal extent.

At low Ȳm (Ȳm . 0.2), the experiments identified the forth
regime, reversed flow (RF). It is similar to the SDF over most of
the liquid layer except very near the hot end, where the fluid at
the interface moves away from the hot wall (as in TDF), form-
ing a tiny counterclockwise recirculation zone separated from
the rest of the flow. It was conjectured that, at low Ȳm, strong
evaporation could completely remove methanol from the region
inside the recirculation zone, with the liquid effectively becom-
ing a simple fluid (pure water). This would lead to solutocapil-

lary stresses effectively disappearing and the fluid driven away
from the hot wall by a combination of thermocapillarity and
buoyancy [26].

To validate our model, we performed numerical simulations
over a range of methanol concentrations Ȳm in the liquid and
air concentrations X̄a in the gas, with the results summarized as
symbols in Fig. 2. A quick comparison shows that numerical
results agree well with experimental observations over most of
the parameter space: the same dynamical regimes are found,
and the transition boundaries are overall in good agreement,
even though the numerical simulations are 2D, while the flow
in experiments exhibits clear 3D effects. We have not found
flows consistent with RF, which could be due to the fact that
the numerical simulations are 2D or that the contact angle is
notably different from experiment. The big advantage of the nu-
merical simulations is that they provide substantially more de-
tailed information about the flow, compared with experiments.
In particular, they not only resolve the fluid flow in both phases,
but also describe the temperature and concentration fields in the
bulk and at the interface and therefore allow a direct compari-
son of thermo- and solutocapillary stresses that control the flow.
We describe these numerical results next.

3.2. Flow field

Since the dependence of the flow on the methanol concen-
tration in the liquid is weak, we fix Ȳm = 0.6 and explore the
changes in the flow associated with the variation in the air con-
centration X̄a. The flow fields at five different values of X̄a are
shown in Fig. 3 and the associated (time-averaged) interfacial
velocity in Fig. 4. We find that the flow regimes vary from TDF
at X̄a = 0.91 and 0.7 to UF at X̄a = 0.5 and 0.1 to SDF at
X̄a = 0.015, just as in the experiment. The structure of the flow
fields in the liquid layer is also found to be similar to that found
in the experiment. This gradual transition from TDF to SDF as-
sociated with the decrease in X̄a can be easily understood qual-
itatively with the help of the model described in section 2.

At atmospheric conditions X̄a = 0.91, so the gas phase is
dominated by air, while at the lowest concentration we con-
sidered here (X̄a = 0.015) the gas is dominated by the va-
pors. Similar studies of volatile simple fluids (e.g., 0.65 cSt sil-
icone oil in Ref. [26]) have shown that the concentration of air
(or other noncondensable gases) has a significant effect on the
phase change and, as a result, the interfacial temperature distri-
bution. Thermocapillary effects were found to be the strongest
at atmospheric conditions, with phase change suppressed due to
the diffusion of vapors through air. As the concentration of air
is reduced, phase change is enhanced and the latent heat asso-
ciated with phase change reduces the variation of the interfacial
temperature along the interface. In the absence of noncondens-
ables, the gas pressure, and hence vapor pressure and saturation
temperature, all become effectively constant [25]. Since the in-
terfacial temperature is very close to the saturation temperature
[25], the interfacial temperature gradient, and hence thermo-
capillary stresses, also disappear.

Whether the same conclusion should necessarily apply to bi-
nary fluids is not immediately obvious. Indeed, in the absence
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(a)

(b)

(c)

(d)

(e)

Figure 3: Fluid flow in both phases at ∆T = 6 K, Ȳm = 0.6 with (a) X̄a = 0.91,
(b) X̄a = 0.7, (c) X̄a = 0.5, (d) X̄a = 0.1, (e) X̄a = 0.015. The cold end wall is
on the left. Solid lines represent the streamlines of the flow. Here and below,
the background represents the value of the stream function ψ, where darker
(lighter) indicates higher (lower) values of ψ. High-resolution movies of the
flow field are included as supplemental material; their duration corresponds to
two periods for periodic flow at X̄a = 0.5, and two oscillation cycles of the
convection roll next to the cold end for aperiodic flow at X̄a = 0.1.

of noncondensables, differential phase change of the two com-
ponents could lead to spatial variation of the concentrations Xw

and Xm, and hence the saturation temperature Ts,w and Ts,m, of
the two vapors. Although, in principle, this allows the inter-
facial temperature to vary spatially, it is easy to show that Ti

should in fact be constant when the gas pressure pg is con-
stant. Since pg,b = Xb pg, according to (26) we can write
Ts,b = gb(Xb), where gm and gw are some functions. Further-
more, since the saturation temperature of each vapor is very
close to Ti, we should have Xb = g−1

b (Ti) and, since Xa = 0,

Xm + Xw = g−1
m (Ti) + g−1

w (Ti) = 1. (45)

For generic functions gm and gw, this equation can only be sat-
isfied over the entire interface for a fixed constant Ti.

In contrast, solutocapillary stresses are expected to be the
weakest at atmospheric conditions when phase change that
drives the variation in the liquid composition at the interface
is strongly suppressed. As the concentration of air is reduced,
phase change becomes stronger, with the more volatile compo-
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Figure 4: Interfacial velocity at ∆T = 6 K, Ȳm = 0.6 with different X̄a. For
unsteady flow (X̄a = 0.5, 0.1), the value is averaged over a time period corre-
sponding to the oscillation cycle of the convection roll next to the cold end.

nent (methanol) accounting for the bulk of the molecules that
evaporate near the hot end and condense near the cold end. This
corresponds to a decrease in Ym near the hot end and an increase
in Ym near the cold end, establishing a concentration gradient
and associated solutocapillary stresses that drive the flow along
the interface towards the hot end of the cavity. These stresses
should be maximized when the air is removed completely and
the phase change is unimpeded.

To sum up, at conditions close to atmospheric (high X̄a), so-
lutocapillarity can be neglected, thermocapillary stresses domi-
nate, and the binary fluid should behave just like a simple fluid.
In particular, this explains why the stationary convection rolls
observed in the liquid layer at X̄a = 0.91 (cf. Fig. 3(a)) al-
most completely disappear when X̄a is decreased to 0.7 (cf.
Fig. 3(b)). The linear stability analysis [44] attributes this to
a decrease in the modulation of thermocapillary stresses about
the (nearly constant) average associated with enhanced mass
transport in the gas phase.

As the concentration of air is decreased, convection pattern
reappears at around X̄a = 0.5, where a time-periodic pattern
emerges (cf. Fig. 3(c)). It features multiple counterclockwise
convection rolls in the liquid layer traveling towards the cold
end of the cavity. This traveling wave is different from hy-
drothermal waves in simple fluids [45]: it travels in the opposite
direction, as in the case of simple flows driven by a combina-
tion of thermocapillarity and buoyancy [24]. However, unlike
the case of simple fluids, the instability that gives rise to this
convection pattern cannot rely solely on thermocapillarity and
buoyancy [44], and thus has to be due to the solutocapillary
effect. Note that, away from the end walls, the time-averaged
interfacial velocity, and hence thermocapillary stresses, at this
X̄a are nearly the same as those at X̄a = 0.91 (cf. Fig. 4). This
is consistent with the results obtained for the interfacial temper-
ature gradient in simple volatile fluids in the presence noncon-
densables [26].

Flows towards the hot wall (even locally) do not appear in the
central region until X̄a is reduced much further, when convec-
tion pattern becomes aperiodic in space and time. In particular,
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(a)
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Figure 5: Concentration of methanol in the liquid and in the gas at ∆T = 6
K and Ȳm = 0.6 for different X̄a. (a) X̄a = 0.7, Ym = 0.6 ± 2.88 × 10−4,
Xm = 0.26 ± 0.023, (b) X̄a = 0.5, Ym = 0.6 ± 9.31 × 10−4, Xm = 0.43 ± 0.037,
(c) X̄a = 0.1, Ym = 0.6 ± 6.95 × 10−3, Xm = 0.78 ± 0.039, (d) X̄a = 0.015,
Ym = 0.6 ± 3.35 × 10−3, Xm = 0.86 ± 0.014. Solid lines represent equispaced
level sets of the concentration fields (15 in the liquid and 20 in the gas). In both
phases, the lighter (darker) color indicates lower (higher) concentration.

at X̄a = 0.1 (cf. Fig. 3(d)) we find both counterclockwise and
clockwise convection rolls, with the corresponding portions of
the interface featuring flow towards the cold and hot wall, re-
spectively. It is only when almost no air remains in the system
(e.g., X̄a = 0.015, cf. Fig. 3(e)), that counterclockwise con-
vection rolls disappear and convection pattern becomes steady
again, that the flow towards the hot wall is established over the
entire length of the interface. In this limit, thermocapillarity
becomes negligible, and the flow is driven primarily by soluto-
capillary stresses (and, for sufficiently thick layers, buoyancy).

To make the comparison of solutocapillary and thermocapil-
lary stresses more quantitative, in the next few sections we will
consider the concentration and temperature fields.

3.3. Concentration field and solutocapillary stresses
Solutocapillary stresses are determined by the local compo-

sition of the liquid phase, which is strongly influenced by the
advective transport. As Fig. 5 shows, the concentration field Ym

in the liquid layer reflects even the most insignificant details of
the underlying flow. Unlike Ym, the concentration field Xm in
the gas layer is effectively independent of the flow pattern and
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Figure 6: Concentration of methanol (in the liquid) along the interface at ∆T =

6 K, Ȳm = 0.6 with different X̄a. The vertical axis is truncated to highlight the
variation δYm,i = Ym,i −〈Ym,i〉x about the mean value in the central region of the
cavity. For unsteady flows (X̄a = 0.5, 0.1), the values are averaged over a time
period corresponding to the oscillation cycle of the convection roll next to the
cold end.

remains qualitatively the same for all X̄a. This contrast is due
to the large difference in the mass Péclet numbers

Pem =
uid
D
, (46)

where d is the thickness of the layer, ui is the characteristic
magnitude of the interfacial velocity, and D is the relevant dif-
fusion constant (Dl for the liquid, Dmm for the gas). Specifi-
cally, Pem ∼ O(103) for the liquid layer, such that mass trans-
port is dominated by advection, while Pem ∼ O(10−1) for the
gas layer, such that it is diffusion that becomes the dominant
transport mechanism.

Since advection controls mass transport in the liquid layer,
very thin concentration boundary layers tend to form in the liq-
uid layer just below the interface, which has two important con-
sequences. First of all, this requires the use of meshes with high
spatial resolution to properly resolve the variation in Ym in the
bulk and, consequently, along the interface. Second, while the
interfacial composition, and hence solutocapillary stresses, de-
pend sensitively on the flow in the liquid layer, they are only
weakly dependent of the composition of the gas phase on the
other side of the interface. As a result, when thermocapillary
stresses dominate (X̄a & 0.5), driving the fluid along the entire
interface towards the cold end wall, advection makes the inter-
facial concentration Ym essentially uniform (cf. Fig. 6), thereby
effectively eliminating solutocapillary stresses

ΣS = f ′(Ym)(σm − σw)∂xYm, (47)

as illustrated by Fig. 7.
Note that the magnitude of the derivative f ′(Ym) in (47) in-

creases as Ym decreases, according to (37), leading to an in-
crease in the solutocapillary stresses at the same concentration
gradient ∂xYm. This is the origin of the weak dependence on Ȳm

in the regime diagram shown in Fig. 2.
For Ȳm = 0.6, a significant concentration gradient ∂xYm only

appears when X̄a is decreased to around 0.1, at which point the
adverse effect of air on phase change is reduced substantially
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Figure 7: Solutocapillary stresses ΣS at ∆T = 6 K, Ȳm = 0.6 with different
X̄a. The vertical axis is truncated to highlight the variation of ΣS in the central
region of the cavity. For unsteady flow (X̄a = 0.5, 0.1), the value is averaged
over a time period corresponding to the oscillation cycle of the convection roll
next to the cold end.

and the differential phase change becomes strong enough to
compete with the advective transport in the liquid. At this value
of X̄a, the flow is unsteady and features convection rolls rotat-
ing in opposite directions, which causes the interfacial concen-
tration gradient to be nonmonotonic and even change sign (cf.
Fig. 6), which is reflected in the spatial profile of the solutocap-
illary stresses (cf. Fig. 7). Note that the concentration gradient
is first established near the end walls, where phase change is
the most intense. A concentration gradient of the same sign is
established across the entire interface only at very low X̄a (e.g.,
X̄a = 0.015), when, on the one hand, phase change is essentially
unimpeded by the presence of air and, on the other hand, ther-
mocapillary stresses become sufficiently weak. In this limit,
solutocapillary stresses exceed thermocapillary stresses, driv-
ing the fluid along the entire interface towards the hot end wall,
with advection in the liquid layer smoothing out the interfacial
concentration gradients (cf. Fig. 6).

While the concentration fields in the liquid layer are very
complicated, the concentration fields in the gas layer are quite
simple and very smooth, since mass transport there is controlled
by diffusion and is therefore essentially independent of the flow
field. As Fig. 5 shows, away from the end walls, the gradi-
ent of methanol concentration Xm in the vertical direction is
negligible compared with the gradient in the horizontal direc-
tion, suggesting that mass transport in gas phase is effectively
one-dimensional. A similar conclusion has been made for two-
phase flow of a simple fluid [26], which allowed a simplified
transport model to explain the observed concentration profiles
and interfacial temperature profiles, which are both exponen-
tial in x. As Fig. 8 illustrates, the concentration profile in the
ternary gas mixture in the present problem is also exponential in
the central portion of the cavity, with the characteristic length
scale that increases with X̄a. At high X̄a, when phase change
is suppressed, the characteristic length becomes larger than the
length L of the cavity, and the concentration profile becomes
essentially linear.
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Figure 8: Concentration of methanol (vapor) along the interface at ∆T = 6 K,
Ȳm = 0.6 with different X̄a. Deviation δXm,i = Xm,i |x − Xm,i |x=0 from the mean
is normalized by the total variation ∆Xm,i along the interface. For unsteady flow
(X̄a = 0.5, 0.1), the value is averaged over a time period corresponding to the
oscillation cycle of the convection roll next to the cold end.

(a)
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Figure 9: The temperature field T in both phases at ∆T = 6 K, Ȳm = 0.6, and (a)
X̄a = 0.91, (b) X̄a = 0.7, (c) X̄a = 0.5, (d) X̄a = 0.1, (e) X̄a = 0.015. The lighter
(darker) color corresponds to higher (lower) temperature. Solid lines represent
the twenty equally spaced isotherms and the horizontal white solid line denotes
the liquid-gas interface.

3.4. Temperature field and thermocapillary stresses
Just like the concentration fields, the temperature fields in the

two layers (shown in Fig. 9) have a distinctly different character.
Once again, we find that the temperature field in the liquid layer
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Figure 10: Interfacial temperature Ti at ∆T = 6 K, Ȳm = 0.6 with different X̄a.
The vertical axis is truncated to highlight the variation δTi = Ti − 〈Ti〉x about
the mean in the central region of the cavity. For unsteady flow (X̄a = 0.5, 0.1),
the values are averaged over a time period corresponding to the oscillation cycle
of the convection roll next to the cold end.

has a lot of fine structure reflecting the details of the underlying
flow, while the temperature field in the gas layer is effectively
independent of the flow and remains qualitatively the same over
the entire range of X̄a, with the difference due almost entirely
to the boundary condition at the interface (cf. Fig. 10). Hence
we can arrive at a similar conclusion that heat transport in the
gas phase is controlled by diffusion, while heat transport in the
liquid phase is controlled by advection. Indeed, the thermal
Péclet number

Pet =
uid
α
, (48)

is O(1) for the gas layer and O(102) for the liquid layer, reflect-
ing the large difference in the thermal diffusivities of the two
layers.

In contrast with the concentration field, it is the interfacial
temperature Ti that controls the bulk temperature field in both
layers, as Fig. 9 illustrates. Indeed, as Fig. 10 shows, Ti is a very
smooth and monotonic function of position (aside from some
minor modulation), even when an unsteady convection flow is
found in the liquid layer. This is due to a large amount of latent
heat absorbed or released at the interface during phase change,
which results in the interfacial temperature being determined by
the composition of the gas layer, Ti = gm(Xm), where Xm varies
smoothly and monotonically in the horizontal direction, as dis-
cussed in the previous section. Note that, in the central region,
the interfacial temperature has an exponential profile mirroring
the methanol concentration in the gas phase (cf. Fig. 8).

Since Xm and Ym vary relatively little about their spatial
mean, thermocapillary stresses ΣT

ΣT =
[
f (Ym)σ′m + [1 − f (Ym)]σ′w

]
∂xTi

≈
[
f (Ȳm)σ′m + [1 − f (Ȳm)]σ′w

]
g′m(X̄m)∂xXm (49)

are essentially controlled by the interfacial concentration gradi-
ent ∂xXm in the gas phase. As this concentration gradient de-
creases with decreasing X̄a, so does the interfacial temperature
gradient and the thermocapillary stresses, until both essentially
disappear at X̄a = 0.
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Figure 11: Thermocapillary stresses ΣT at ∆T = 6 K, Ȳm = 0.6 with different
X̄a. The vertical axis is truncated to highlight the variation of ΣT in the central
region of the cavity. For unsteady flow (X̄a = 0.5, 0.1), the values are averaged
over a time period corresponding to the oscillation cycle of the convection roll
next to the cold end.

To sum up, a quantitative analysis of the concentration and
temperature fields shows that solutocapillary and thermocapil-
lary stresses are controlled by the concentration fields in the liq-
uid and gas layer, respectively. Thermocapillary stresses dom-
inate at high X̄a and solutocapillary stresses dominate at low
X̄a, as predicted from qualitative considerations in section 3.1.
Since the flow at intermediate values of X̄a is unsteady, no sharp
transition from TDF to SDF is observed at ∆T = 6 K. Unsteady
flow should disappear at lower ∆T , enabling a more direct com-
parison between the experimental or numerical results and ana-
lytical predictions.

4. Summary and Conclusions

We have introduced, implemented, and validated a compre-
hensive transport model for two-phase flows of volatile binary
fluids in confined geometries. The model accounts for momen-
tum, mass, and heat transport in both phases, as well as phase
change at the liquid-gas interface. It should be emphasized
that, with straightforward modifications, the model can also
describe transport in mixtures of an arbitrary number of mis-
cible components with arbitrary composition. The numerical
model was used to investigate buoyancy-Marangoni convection
in water-methanol mixture confined inside a sealed rectangular
cavity, which arises when a horizontal temperature gradient is
imposed. Although the numerical simulations were confined
to two spatial dimensions, their results are found to be in good
agreement with experimental observations [17].

The presence of air inside the cavity was found to have a
significant effect on the flow in both phases. When the con-
centration X̄a of air in the gas phase is high, differential phase
change is greatly suppressed, solutocapillary stresses are negli-
gible, and thermocapillarity stresses dominate. In this limit, the
binary mixture behaves like a simple fluid, with a combination
of thermocapillary stresses and buoyancy driving the flow away
from the hot end along the entire interface. At low X̄a, thermo-
capillary stresses are suppressed and solutocapillary stresses are
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enhanced. As a result, the direction of the flow along the entire
interface is reversed, with the fluid flowing towards, rather than
away from, the hot end. Buoyancy is too weak in this problem
to have much of an effect on the direction of the mean flow,
although is likely plays an important role in its stability.

Interestingly, both thermocapillary stresses and solutocapil-
lary stresses are found to be controlled by the mass transport.
In particular, the thermocapillary stresses are controlled by the
concentration of the two vapors in the gas phase (Xw and Xm).
At high X̄a, the effective diffusion coefficients Dmm and Dww are
low, which leads to a large gradient of the vapor concentrations
and, consequently, a large gradient in the interfacial tempera-
ture and large thermocapillary stresses. As X̄a decreases, so do
the vapor concentration gradients, the interfacial temperature
gradient, and the thermocapillary stresses, until they all essen-
tially disappear as X̄a → 0.

The solutocapillary stresses, in turn, are controlled by the
concentration of the two components of the liquid phase (Yw

and Ym). At high X̄a, advection in the liquid layer is strong and
the differential phase change is weak, which results in an effec-
tively uniform composition of the liquid at interface, making
solutocapillary stresses negligible. As X̄a decreases, the differ-
ential phase change becomes stronger, leading to an increase
in the interfacial concentration gradient and the associated so-
lutocapillary stresses. The interfacial concentration gradient,
and hence the solutocapillary stresses, become the largest as
X̄a → 0, when noncondensables do not impede phase change.

As Fig. 2 shows, the boundaries between different flow
regimes are shifted towards smaller values of X̄a, highlight-
ing the asymmetry between thermocapillary and solutocapillary
stresses. There are two reasons for this. Although the tempera-
ture and concentration are described by similar transport equa-
tions, the mass diffusion coefficient Dl is much lower than the
corresponding heat diffusion coefficient αl, so that advection
in the liquid layer plays a more important role in suppressing
the interfacial concentration gradient compared with the inter-
facial temperature gradient. Furthermore, phase change leads to
a large amount of heat released/absorbed at the interface, which
has a correspondingly large effect on the temperature field. The
effect of phase change on the interfacial composition of the liq-
uid is much weaker, since the density of the vapors is much
lower than the density of the liquid.

Despite its apparent complexity, the transport model can be
simplified dramatically by focusing on mass transport in the gas
phase. For cavities with reasonably high aspect ratios L/H, this
should allow one to obtain approximate analytical solutions for
the steady state interfacial temperature and concentration pro-
files (and hence thermo- and solutocapillary stresses), that can
be used to predict when the transition between thermocapillary-
and solutocapillary-dominated flows occurs as X̄a varies. Such
analysis has already been performed and discussed in a subse-
quent publication Ref. [? ].
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Appendix A. Material properties

The walls of the test cell are made of quartz (fused silica)
with thermal conductivity ks = 1.4 W/m-K and have a thickness
hs = 1.25 mm.

The material properties of methanol, water, and air are sum-
marized in Table A.2. The binary diffusion coefficients are Dl =

1.29 × 10−9 m2/s, Dmw = 1.65 × 10−5 m2/s, Dma = 1.50 × 10−5

m2/s, and Dwa = 2.50 × 10−5 m2/s. The activity coefficients γ
are calculated based on the UNIFAC (UNIQUAC Functional-
group Activity Coefficients) method [46]. For the binary water-
methanol mixture at Ym = 0.6, γm = 1.088, γw = 1.355.

The Antoine coefficients are A = 23.52, B = 3645, C =

−34.05 for methanol and A = 23.44, B = 3969, C = −40.07
for water. The empirical parameters in the expression (36) are
c1 = 0 and c2 = 0.87.
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