PHYSICS OF FLUIDS VOLUME 14, NUMBER 6 JUNE 2002

Control of evaporatively driven instabilities of thin liquid films
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In the process of drying, thin volatile liquid films often undergo a long-wavelength instability
leading to nonuniformities or formation of dry spots, with the strength of the instability increasing
with the volatility and temperature of the liquid. Perhaps counterintuitively, this evaporative
instability can be actively suppressed by an appropriate heating procedure. We use linear stability
analysis of the lubrication approximation to show that spatially nonuniform time-dependent
radiative heating can indeed have a stabilizing effect. Evaporation is shown to introduce several
fundamentally new aspects into the control problem for heated liquid films, compared to the
relatively well-studied case of thermal convection. The control problem becomes especially
interesting and nontrivial for mixtures and solutions with negative Marangoni numbers due to a
peculiar cancellation effect rendering the system insensitive to temperature control at a certain
wavelength. It is shown that taking the time dependence of the mean thickness of the film into
account is necessary to circumvent this insensitivity2@?2 American Institute of Physics.
[DOI: 10.1063/1.1476304

I. INTRODUCTION neither approach is suitable for control purposes. The more
. - . tical approach is to prevent the instability from forming
Evaporating liquid layers are found in many areas of° acrca S
P g d Y y .at the linear staggerather than suppress the rupturing itself.

science and technology, so their practical significance is., . o . o
rather high. Examples include evaporative cooling and nu?I’hls approach has an additional advantage that, if the liquid

merous coating applications. In the latter a substrate igayer IS umform "flt all tlm_es during the evaporation, the pro-
duced coating will be uniform as well.

coated with a layer of solution which, upon the evaporation S | diff hes h b d
of solvent, leaves a layer of solute on the surface of the everal different approaches have been suggested to en-

substrate. The main difference between various coating tecﬁQrce control QT evapora_ting liquid films. A_‘" of them are
niques is in the way the initial liquid coating is produced. ForProPerly classified apassive The examples include the use

instance, dip-coating technique is used for optical fibero! surfactants” and internal(volumetrig heating of the lig-

. 12,13 . . .
coating! and (antjreflective optical coatings of lenses and Uid layer-="* Albeit the passive approaches are relatively

mirrors.  Similar  techniques are used to producesimple, their_applicability is_ very _restricte(@.g., surfactants
hydrophobi@ and hydrophilic coatings. Spray coating is usedMay contaminate the coatingActive or feedback control
to produce sol-gel coatings of TV scredrad, more rou- sphemes are generally S|gn|f|captly more flexible and effi-
tinely, for painting. Spin coatingwhich was originally de- cient. Although none currently e3<|st, several approaches de-
veloped for microelectronics applications, has also found nusigned to suppress Marangoni—+ed convection in thin
merous applications in the optical industry. nonvolatile films can be generalized for the case with evapo-
One of the critical issues related to the quality of pro-fation. The underlying idea of the latter approaches is to
duced coatings is the stability of the liquid layer during exploit the same physical mechanism that leads to instability,
evaporation. For instance in spin-coating applications, strial this case the thermocapillary effect: a spatially distributed
tions (radially oriented lines of thickness variatjoarise due  thermal perturbation is applied to either the bottomr the
to the thermal and solutal effects induced by evaporation.top™ interface, which opposes the spontaneously produced
These effects are also responsible for the rupturinglisturbances, an approach sometimes referred tooése
instability? which results in the formation of a pattern of dry cancellation
spots’ a phenomenon often referred to as reticulation. The ~When evaporation is present, thermocapillarity repre-
ultimate fate of the linearly unstable liquid film, with or sents only one of several destabilizing mechanisms: vapor
without evaporation, is eventually determined by the proper+ecoil (normal pressure on the liquid—gas interface due to
ties of the substrate: if it is nonwetting, the film will gener- nonequilibrium evaporation differential evaporation(de-
ally rupture® otherwise it may remain continuous and non- pendence of the evaporation rate on the thickness of thg film
uniform. and, sometimes, solutocapillarity all contribute to the devel-
In most circumstances dewetting is a highly undesirablepment of the interfacial instability. There might also be ad-
effect, so understanding its mechanisms and learning to comhitional destabilizing mechanisms not related to evaporation,
trol it is very important. The process of dewetting is intrin- e.g., van der Waals interactions, gravity, and curvature ef-
sically nonlinear, so it cannot be adequately described by thiects. Since all mechanisms in the former group are evapo-
linear theory. This means that either numefidair approxi-  ratively driven, it should come as no surprise that all of them
mate analyticdP solutions have to be obtained. However, can be alteredand hence controllédy varying the evapo-
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ration rate, which is most easily accomplished by applying Gas
thermal perturbations. The evaporative instability, however,
is much more complicated than the thermally driven instabil-
ity leading to Marangoni—B®ard convection: the distur-
bances produced by several different mechanisms cannot be h, Liquid h(x,t)
simultaneously canceled by applying perturbations to a
single parameter of the system, such as the interfacial tem-
perature of the liquid layer. An additional challenge posed by ;

the presence of evaporation is time dependence of the meai Solid hs
thickness of the film.

In this paper we use linear stability analysis to design a
control scheme which uses distributed thermal perturbations
to suppress the instability by exploiting @@mbination of
different physical effects. The thermal perturbations will beinterfaces with a gas layer partially saturated with the vapor.
applied by varying the intensity of electromagnetic radiationWe will orient our coordinate system such that thaxis is
absorbed by the liquid film and the substrate. The intensityrthogonal to the substrate’s upper boundary, vzithO at
profile will be calculated and adjusted in real time based orthe bottom of the liquid layer. The initial mean height of the
the measurements of either the local thickness of the liquidiquid layer ish,, and its instantaneous heightiéx,t). (For
layer or the local interfacial temperature, which is related tosimplicity of notation we ignore the variation in the
the local thickness. The distributed nature of the feedbacklirection—y dependence can be trivially restored—so the
requires sensing and thermal actuation capabilities with thproblem becomes two dimensional.
spatial resolution comparable to the scale of characteristic The combined three-layer system is described by the
disturbances, which can be rather sntally., submillimeter  Navier—Stokes equation
for thin films. Such capabilities can be implemented rather : _ 2
easily using commercially available optical components such PV H(VVIVI== VPt uVVEpg @
as charged coupled devi¢d€CD) arrays in video cameras augmented by the incompressibility conditidrv=0, the
and micro-electro-mechanical systefdEMS) mirrors in  energy equation
video projectors. . | PICi( 30+ (v-V) 0) =K V20, @

The outline of the paper is as follows. We derive the o ) )
nonlinear lubrication equations describing the dynamics irfor the liquid layer, and the heat equation for the solid layer
the limiting case of thin substrate and perform the linear  p_c.g,6,=xkV26s, 3
stability analysis in Sec. Il. We compare different ways of .
perturbing the system by radiative heating from the control'N"€"€P1: k1. Ci. 6 andps, s, Cs, 05 are the densities,

standpoint in Sec. lll and derive the equations describing th%ﬁermal conductivities, heat capacities, and temperatures of

effect of perturbations on the dynamics in Sec. IV. The modi- € I'q_L:'d and solid Iayzr, relsp_etctlv?;tl,r,] p,l_an_c(jjv are(:jtthhe
fications of these equations required by relaxing the restricy SCOSIY, pressure, and velocily of the fiquid, agdihe
ravitational acceleration in the verticalegativez) direc-

tion on the thickness of substrate are discussed in Sec. V. R . S .
Section VI contains the analysis of the feedback controf'on' For simplicity we assume that, if the liquid is a mixture
solution with two components, none of its physical prop-

problem and discusses the new features introduced by th%rt. . itv. densit ¢ tensi 450 d q
presence of competing destabilization mechanisms. The spg-r les(viscosity, density, surface tension, and s9 dapen

tial structure of the distributed feedback is discussed in Sec" the relative concentration of the components. This as-

VIl and Sec. VIII presents summary and conclusions. sumption means that the solutal 'V'ara_f?gon' effect_ls absent
and we do not need to include an additional evolution equa-

tion for the relative concentratidi?

Il. EVOLUTION EQUATIONS The gas layer is not modeled explicitly. Instead its effect

. . . . is represented by the appropriate boundary conditions at the
The ability to apply thermal perturbations is essential forliquid—gas interfacez=h, which describe the exchange of

suppression of the evaporative instability. Evaporative cool- .
. . mass, momentum, and heat between the layers. We will use
ing provides a natural way to lower the temperature of th

liquid. Alternatively, the liquid can be heated by electromag:f[ahned Srggggﬂsgl aatz:léndary conditioHsfor the energy, stress,

netic radiation absorbed by either the liquid itself or the sub-

|

a

FIG. 1. Evaporating liquid film on a solid substrate.

strate. If the film is thin, it will not absorb radiation effec- jL=—K3,0, (4)
tively, so it will be difficult to change its temperature 2

significantly by modulating the intensity of radiation. A more Ton=—ko+ J_, To=(tV)o, (5)
flexible approach is to use the substrate as the absorbing Pg

medium. This approach requires that heat conduction in the h j

substrate is modeled properly. In particular, the substrate dh= &Xfovxdz—a, (6)

should have finite conductivity and finite thickneds,.
Therefore, we have to consider a three-layer system depicteghich are valid when the density, viscosity, and thermal con-
in Fig. 1. The liquid layer has a free upper boundary where iductivity of the liquid are significantly greater than those of
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the vapor.L denotes the latent heat of vaporization per unit(Since the mean thickness of the liquid film varies in time
mass,pq the vapor densityg the surface tension, arld is  due to evaporation, we use itsitial valueh, as the length
the curvature of the interface which can be expressedcale) The general solution ofl5) is

through the local thickneds of the liquid layer,

k= 2N/ T (G2, @ ®=J’ [c(k)coshkZ+ s(k)sinhkZ]e'**dk (16)

An additional boundary condition is imposed by a constitu-and simplifies considerably in the limit of thin lay€iar long
tive relationship® between the interfacial temperatuteand ~ Wavelength disturbangek<H, k<Hs, whereH=h/h, and

mass fluxj, H,=hs/h, are the dimensionless thicknesses of the liquid
_ and solid layer, respectively. Expandifif) in powers ofkZ
Ki=6,—10,, (8) and retaining the two leading terms yields

where 6, is the absolute saturation temperature, &nde- 0=C(X)+S8(X)Z. (17

scribes the volatility of the liquid. The limit of vanishing Introducing the ratio of thermal resistances of the liquid
volatility, K—c, corresponds to the pure Marangoni—and solid layer F=hs, /h ks, the Biot number B

Benard convection. , ~ =h|L/kK characterizing heat transfer at the liquid—gas in-
At the liquid—solid interface=0 we impose the no-slip terface, and the dimensionless mass flux(h,L/ kA 6)],

boundary condition for the velocity and conditions of conti- {4 boundary conditiong}), (8), (10), (11), and(12) can also
nuity for the temperature and heat flux, be written in dimensionless form:

v=0, 9 —d70,(H)=J, (18)
0s= 0, (10 BO|(H)=J, (19
Ks0y05= K10 . (12) 0,(0)=040), (20

Finally, the temperature at the bottom of the solid lager ,;Z@)S(O)ZFHS—laZ@l(o), (22

= —hg is assumed constant,

"o 1 O (—Hy=1. (22)

The particular solutioril7) satisfying these boundary condi-

The horizontal velocity profile needed to close the evo-jons gives the temperature of the liquid—gas interface:
lution equation(6) for the heighth can be determined by

solving the Navier—Stokes equati¢éh subject to boundary _ 1 23)
conditions(5) and (9). The solution in the lubrication ap- ' 1+BF+BH’

proximation is obtained in a standard wély: such that the height uniquely determines the interfacial tem-

(13) perature and vice versa.

Assuming linear dependence of the surface tension coef-
whereﬁzmgh—kiaﬂz/pg is the modified pressure. We ficient on temperature, upon substitution(@®) the dimen-
choose to ignore the disjoining pressure terfirepresenting  sionless version of14) can be written as
the effect of van der Walls forces, because they are only

wuy =250+ (32°—hz)o,p,

significant for extr_err_]ely thir@sgbmicron sc_abefilms. T_hese dH=—EB®;+ %aX(HZé’X@i) + gﬁx(HséxH)
terms can be easily included in the following analysis. Com-
bining (6) and (13) one obtains a nonlinear evolution equa- 1 2E2RB2
tion - ﬁax(H?*a’;‘\HH 3D Ax(H30,050,), (24
ah=— i ir?x(hzr?xaH @ax(hsﬂxh) where we have defined the evaporation numier
2u 3u =c¢Af/L, Marangoni numberM=—d,0A Op,cih,/wx,
- gravity number G=gp?c,h?/ uk,, capillary number C
- B—ax(h3¢9§h)+ 3 a(h3jayj). (14 =pxi/opcihy, Prandtl numbeP=puc /x, and the den-
M HPyg sity ratio for the liquid and its vapoD = p,/p; . This equa-

Both the mass fluj and the coefficient of surface ten- tion shows that the interfacial temperature plays a very im-
sion o depend on the interfacial temperatute which can  portant role in the dynamics of the liquid layer, entering three
be found by solving2) and (3) subject to the above-given Of the five terms on the right-hand side. This justifies our
boundary conditions. In the lubrication approximation thecontrol strategy: we can influence the evolution of the film’s
left-hand sides of both equations can be neglected, so that thickness by making appropriate changes to the interfacial
the dimensionless coordinateX=x/h;, Z=z/h;, T  temperature.

=(k//pichd)t, and O=(6—0,)/A0 with Af=6,—0,, Substituting(23) into (24) and linearizing with respect to

both equations reduce to small deviations about th@gime-dependentmean height of

5 5 the film H(X,T)=Hy(T)+H(X,T) yields two equations,
%0 +d70=0. (19 one for the mear,,

Downloaded 08 Dec 2002 to 130.207.140.209. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



1898 Phys. Fluids, Vol. 14, No. 6, June 2002 Roman O. Grigoriev

As we have already mentioned, the first term dominates

drHo=— (25 the evolution for the longest wavelength disturbances, so in
0 the presence of evaporation the uniform solut{@m) is al-
and one for the deviatiohl, ways linearly unstable. In the case of pure liquids, the
M H g ellsymptotic. s'gate is the same, _regargﬂesg of the initial condi-
ﬁTHl:(KﬁL—H)ZHl_ 2B maiHl tions or existing spatial nonuniformities in the substrate and
0 0 so on—all liquid eventually evaporates. In the case of solu-
2EB  HS X tions, however, the instability results in a nonuniform layer
~3pD male of solute left on the surface of thg substrate once the solvent
has evaporated completely. This problem becomes even
GH3 , H3 . more severe, if either additiondiaterally uniform heating
+ 3 dxH1= 35 9xHa, (26)  or a more volatile solvent is used to speed up the drying

process: the first three terms (26) increase withA 6, while

where we have denoted=B"'+F. The first equation de- the third term also increases wif, i.e., with increasing
scribes the gradual reduction in the mean thickness of thgo|atility.

liquid layer with time. It can be integratéd

Ho(T)=—K+(K+1)2—2ET (27) Il RADIATIVE HEATING
and shows that the amount of time it takes for the layer to ~ Consider now what happens when the system is heated
completely evaporate is internally to enhance evaporation, e.g., through the absorp-

tion of electromagnetic radiation, such as microwaves:

0=2K+1. (28) frared, or visible light. Depending on the absorption proper-
2E ties of the liquid and the substrate, either both layers or just
It is conventionally called the disappearance time. one of them could be heated by the radiation. Extending the

3 . .

Equation(26) describes the stability of the uniform so- "€Sults of Or.orif, who has considered the effect sipatially
lution (27). The first term in(26) represents differential uniformirradiation of a liquid film on a substrate affinite
evaporation and is always destabilizing. The physical mechaonductivity, we will consider different limiting cases which
nism responsible for differential evaporation is simple. TheCOVer the spectrum of possibilities for substratesfinite
top of the liquid layer has a lower temperature than the botconductivity and thickness. In addition, we will allow for
tom due to evaporative cooling. In the regions where thesPatialandtemporalvariation of the intensity of radiation, a
interface is closer to the substrate the liquid is warmer an®rerequisite for active control. This variation will be as-
hence evaporates more rapidly than in the regions where tiymed slow compared to the characteristic time scale, such
interface is further away. This can also be thought of as that (15) is valid. Furthermore, in the next few sections we
result of the evaporation speed-up: according2® the in- will assume that the substrate is thin, so we can use the
tensity of evaporation increases with decreasing thickness GPProximatior(17) instead of the exact solutidd6) for both
the layer, which is a weakly destabilizing effect. This effectlavers. We \{wll lift th_ls restriction and discuss the effect of
has never been properly considered in the literature, althougfHPStrate thickness in Sec. V. _
it becomes dominant at very long wavelengths. The second _SINce, for a given frequency, the fraction of the absorbed
term describes the effect of thermocapillarity which is destal2diation does not depend on its intensity, the intensity
bilizing wheneverd,o<0 (i.e., for pure liquidsM>0) and (poweb of a monochromatic _radlat|on decays exponentially
stabilizing otherwise(for some mixtures and solution® with the dlstar:)ce from the interface, a fact expressed by
<0): when surface tension decreases with temperature it80U9Uers law
variation produces tangential stresses which draw liquid q(z)=q(zy)el* %, (29)

from warmer to cooler regions, amplifying the disturbance. . . . .
g plitying wherez, is the position of the interfacel is the (frequency

The third term represents the effect of vapor ré€aind is . L
dependentpenetration depth, and for simplicity we assume

also destabilizing. Destabilization is due to larger evapora t th ! flecti { the interf Gi h i
tion rates in the warmer regions, leading to a larger numbewa ere 1S no refiection at tne interface. iven the matn-

of vapor molecules leaving the surface with a larger momen-emat'cal structure of the lubrication approximation equations

tum (hence quadratic dependence on the evaporatiop, rateVe expect that the sole effect of introducing an external heat

which produces increased normal stress on the interface. TIRource will b_e to change th_e fL_mctionaI depende(®3 be-
fourth and fifth terms represent the effects of gravity angveen the thickness of the liquid layer and the temperature at

surface tension, respectively, and are both stabilizing in thct,\he liquid—gas interface.
geometry considered here. Gravity can also play a destabk Volumetric absorntion
lizing role, if the liquid layer coats the bottom of the solid “ ™ P

layer, rather than the tod.In cylindrical geometry, which is First, assume that the liquid is optically thih>h,, and
appropriate, e.g., for the case of optical fiber coating, thehe substrate either optically transparent or reflecting. In this
fourth term describes the effect of curvature instead of gravease the absorption and hence heating is essentially uniform
ity, with G=—(h,/ry)>C~ 1, wherer, is the radius of the across the depth of the liquid layer. Correspondingly, while
fiber. This geometrical effect is always destabilizing. the temperature distribution inside the substrate still obeys
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(15), inside the liquid this equation has to be modified byliquid layer to be relatively uniform across its dep@y will
including a source term with uniform density 1Q: also have to be large, so substantial power will be dissipated

2 2 _ in the substrate, negating the stabilizing effect of the radia-

0x®+970,=—A"'Q, B0 tion absorbed by the liquid layer. In other words, passive

where Q=(h,/x;A6)q is the dimensionless power of the control is likely to work only in a highly idealized situation
incident radiation per unit area amdis the dimensionless Wwith the substrate which is either almost perfectly reflecting
absorption length defined @s=d/h, for a transparent non- or perfectly transparer(or perfectly conducting, as was as-
reflecting substrate and=d/2h, for a reflecting substrate sumed by Oropand even then it will be quite inefficient
(the radiation traverses the liquid layer twice in the latterenergetically(Intense irradiation may also damage the sub-
casg. The solution of(30) in the thin layer limit is strate, limiting the practically achievable values@j.)

0,=C+SZ—-(2A)"1QZ?, (31)

so using the standard boundary conditi¢b8)—(22) we ob- The problems faced by passive control can be overcome

tain the temperature of the liquid—gas interface in the form by employing active control, which uses nonuniform heating
1+(2A) " 1Q(H2+2FH) with intensity changing in response to the deviation of the

= 1 BETBH . (32 interface from the flat profile. The active control is most
effective when the radiation couples strongly to the interfa-
This relation shows that the interfacial temperature is a funceial temperature. Since many liquids are transparent in a
tion of the local thicknessH and local intensity Q. The  wide range of frequencies, it is often easiest to change their
dependence oQ, however, is very weak due to the small- temperature indirectly by heating the substrate. This ap-
ness of the coefficient (® ~*, making this a poor arrange- proach has not been previously considered in the framework
ment for the purpose of active control. of radiative heating, although the basic idea is not new: heat
Interestingly, the volumetric heating by laterally uniform flux control using heaters embedded in the substrate was

radiation Q(X,T)=Q, can stabilize the evaporating liquid suggested in the context of Rayleigh—Bed convection by

film when the heating intensity is sufficiently large. Indeed,Howle?! Radiative heating is a vastly superior approach

substituting (32) into (24) and linearizing, we obtain an which requires no preparation of the substrate, yet achieves

B. Absorption at the bottom interface

equation similar tq26), spatial resolution several orders of magnitude higher.
Ea(H,) M a(HO)H(Z) _ To simplify the discussion, let us assume that_ the Ilql_ud
oH=———H |~ e ———— )2( N is completely transparent and the substrate is optically thick,
0 0 <hg, such that essentially all radiation is absorbed at the
(K+Ho) 2B (K+Ho) d<h h th ially all radiation is absorbed at th
2E2B a(Hy) Y(Ho)Hg , quui(.j—so.lid in.terface(optically thin substrgtgs produce.es-
~3pD KTHo)? dxH1 sentially identical results, but are less efficient energetically
( 0 and hence will not be considered her€he temperature dis-
GHS g tribution in both layers in this limit is described by the origi-
+ T&iHl— E&;‘ng, (33 nal equation(15), but the boundary conditio(21) has to be
replaced with
where .
B d7040)=FH, [d,0,(0)+Q] (36
a(Ho)=1-(2A) 'QoB(Ho), 2 s e
Ho)=2K(Ho+F)+H2. 34 to reflect the extra heat flux. Substitution of the modified
AHo) (Ho*F) 39 boundary conditions int¢17) yields the interfacial tempera-
Y(Ho)=1+(2A)"'Qo(Hj+2FHy). ture
Since y(H,) is positive, the effects of differential evapora- 1+QF
tion, thermocapillarity (for M>0), and vapor recoil all @Zm- (37
change sign and become stabilizing for negative values of
a(Ho), i.e., when This result is very instructive from the control viewpoint,
2A because it directly relates the effect of perturbations on the
Q0>m. (35 dynamics to the material properties. For instance, one can
0

easily see that, if the substrate is a very good conduEtor,
The same conclusion has been reached by &evho ig- <1, we havedo®;=O(F). In other words, changes in the
nored differential evaporation and assumed that the substrabetensity of the radiation have a very small effect on the
was perfectly conducting. It served as the basis for suggesinterfacial temperature, a situation one would like to avoid, if
ing the use of volumetric heating for passive control. the spatial variation in the intensity is to be used to alter the
In reality the situation is more complicated. Even thoughdynamics. In particular, in the case of a perfectly conducting
the radiation absorbed in the liquid layer provides a stabilizsubstrate, for whichF=0, the interfacial temperature be-
ing effect, some fraction of it will necessarily be absorbed bycomes independent @, i.e., we completely loose our abil-
the substrate. As we will see in Sec. IV this has a destabilizity to control the dynamics. This unfavorable, from control
ing effect. SinceA has to be large for the absorption in the perspective, effect provides additional motivation to study
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the dynamics and stability of liquid films using a more com-experiments by, e.g., painting the substrate. The other two

plicated model which explicitly includes conduction in the cases considered previously can be treated in essentially the

substrate. same way. Substitutin@37) into (24) we obtain the follow-
This difficulty could have been predicted, as the presening nonlinear evolution equation for the heidtit where the

arrangement effectively attempts to change the temperatufeeld Q plays a role of the distributed control parameter:

of one interface of the liquid layer heating the other one.

Such an arrangement becomes less efficient as the relative _ _E1+QF + Ma ( 2 1+QF

heat resistance of the liquid lay@ompared to the substrate T K+H 2B°% X K+H

increases and a larger fraction of the extra heat flux is di-

rected toward the bottom of the substrate.

2E2 [H3(1+QF) 1+QF
3D T K¥H  XK+H

C. Absorption at the top interface

G 1
= 3 = 3.3
To avoid this difficulty, it is preferable to direct the heat *3 Ix(H xH) 3C Ix(H*%H). (40

flux right at the location whose temperature we are attempt- o . . ) o ]
ing to change, i.e., at the liquid—gas interface. This can bélnean.zmg this equation with respect to sma_ll Qevu'?mons in
achieved by choosing the frequency of the radiation at which® heightH(X,T)=Ho(T)+Hy(X,T) and radiation inten-
the liquid is optically thick,d<h, , such that the dominant Sity Q(X,T)=Qo+Q1(X,T) in @ manner similar to Sec. Il
fraction of the radiation is absorbed at the liquid—gas interWe obtain
face. This case is conceptually similar to the above-
considered case of an optically thick substrate, so we proceed j.H,=
in the same way by replacing the boundary condit{&8)

E(1+QgF) M (1+QoF)H5
(K+Hg)Z 17 2B (K+HgZ &M

with 2 20,3 3

_ 2E”B (1+QoF) HS o, +GH0&2H

—9;0,(H)=J-Q, (38) 3PD  (K+Hg® XHit 3 dxHi

while (21) is left unchanged. Again substituting the modified H3 EE ME H2
boundary conditions int¢17) we obtain 954N —— Qi+ —— 0 92Q
3CXT K4+Hg <t 2B K+Hg X<t
_1+Q(F+H) ” , ,
i~ 1TBELBH" (39 2E?BF (1+QoF)Hyp

. . ) 3PD (K+ HO)Z [7XQ11 (41)
The dependence of the interfacial temperat@reon Q in

this case indeed turns out to be very similak3@) obtained where the mean height decreases according to

for absorption at the liquid—solid interface, so these two

ways of applying thermal perturbations are essentially —Ho(T)=—K+(K+1)?=2E(1+QoF)T. (42

equivalent from the control standpoint whenis not small.  gj.e the evaporation intensity increases by a factor of 1
For F<1 the latter arrangement clearly has an advantage as QoF, the amount of time it takes for the layer to com-

the thermal response of the systeig®;=0(H) does not  etely evaporate decreases by the same factor:
vanish even for a perfectly conducting substrate.

We should contrast our approach with the one developed 2K+1
by Baul® who suggestedemperaturerather thanheat flux TozzE(TQOF)' (43
control at the top boundary to suppress the short-wavelength
instability leading to Marangoni—Berd convection in a lig- We should comment on the physical significance of the last
uid layer on a substrate of infinite conductivity. No realistic three terms ir(41) (the first five have been discussed in Sec.
mechanism to control the temperature directly has been sud}). The first term represents the variation in the evaporation
gested, however, so Bau’s approach has a rather limited pratate produced by the variation of the interfacial temperature.
tical significance. The second term represents the tangential stress produced by
Summing up, we find that in order to effectively control the thermocapillary effect, while the third term represents the
the dynamics via radiative heating, it is preferable to usehormal stress due to vapor recoil. The first effect is most
radiation with the frequency for which either the liquid or the effective in controlling the dynamics because it can directly
solid layer is optically thickhighly absorbing, and the solid remove the elevated regions by vaporizing the excess of the
substrate of finitgand preferably not very higtconductiv-  liquid, rather than by redistributing the liquid inside the film.
ity. As a consequence of translational invariance of the prob-
lem the evolution equatiof#1) is diagonalized in the Fourier
IV. EVOLUTION IN THE PRESENCE OF DISTRIBUTED  SPace. Using the Fourier transformg(k, T) =FH,(X,T)]
FEEDBACK and Q(k,T)=FQ(X,T)] of the variations in the height of
the liquid layer and radiation intensity we can transfd#)

In the following we will assume that the radiation iS jnto 4 system of uncoupled linear ordinary differential equa-
absorbed at the liquid—solid interface, mainly because thigyng (ODES with time-dependent coefficients
will likely be the case most frequently encountered in prac-

tice. This is also the case that is easiest to implement in  dH(k,T)=a(k, T)H(k, T)+b(k, T)Q(k,T). (44)
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In other words, the problem of determining the stability ofitself is large. Since the first term it¥1) changes on the
the uniform solution of a partial differential equatiGRDE) same time scale as the melyg, this implies that eitheM
(40) is reduced to the problem of determining the stability of >EB (thermocapillarity dominatg¢sor PD(K+ 1)<EB(1

a family of uncoupledODEs, which dramatically simplifies +QgF) (vapor recoil dominatgs In both cases we can ig-
the analysis. Both the spectrum of growth rates of the unpemore the change in the heighiy(T) with time, so that44)
turbed system reduces to a system of ODEs,

a(k,T)=a,(T)+a,(T)k*+ay(T)k* (45) drH(k, T)=a(k)H(k,T)+b(k) Q(k,T), (48)

and the linear response of the system to perturbations whiclith time-independent coefficients. The most general linear
describes the effect of irradiation on the growth rates of theelationship between the deviatida;(X,T) from the flat

disturbance at different wave numbers profile and the variation in heating intensi®; (X, T) which
b(k,T)=by(T)+ b,(T)k? (46) leaves the systerfd4), and thereford48), uncoupled is
are polynomials in even powers kfwith coefficients Ak, T)=r(k T)H(kT), (49
E(1+QoF) yvherg the(as yet undetermine)q:oefficien_t o_f proportional-
a,(T)= KTHL T2 ity r is called the feedback gain. In the limit of slow evapo-
0 ration both the growth rates and the response function are
GHg(T) M (1+QOF)H§(T) time-invariant, so without loss of generality the gain can be

made time-invariant as well, and each of the equatid®s
can be immediately integrated to yield at tiffie

2E°B (1+QoF)?Hy(T) H(k,T)=H(k,0)exd (a(k) +b(k)r (k))T]. (50)
3PD (K+Hy(T))®

()=~ 3 ¥ 58 (Kt Hy(T))?

As we will see later, the control problem is crucially

HS(T) affected by the structure of the response functi¢k). Sub-
as(M=—-—5" (47 stitutingHo(T)=1 into (47) one concludes that; is always
negative, while the sign df, depends on the sign and rela-
EF tive magnitude oM. For pure liquidsM is positive, sd, is
ba(T) =~ K+Ho(T)’ negative andb(k) is negative-definite. However, for mix-
5 ) 5 tgres_ and solu_tions it is not unusual to have the surface ten-
b, (T) = - MF Ho(T)  2E°BF (1+QoF)Ho(T) sionincreasewith temperatureg ,o>0, so thatM <O0. If the
2 2B K+Hy(T) 3PD (K+HyT))? ° thermocapillary effect opposes, and is stronger than, the ef-

N - , . fect of vapor recoil, we can have,>0. If b, is positive,
Examination of these coefficients confirms our previous ar-

. . k) is no longer n ive-defini nd will hrough

gument that laterally uniform heating tends to further desta—b( ) is no longer negative-definite and pass throug
- . zero at some wave number

bilize the system. Indeed, the zeroth-order coefficeenis

a]ways posit?ve and increases with increasing heating inten- k= «/|b1b2‘1|. (51)

sity Qqg, making the system unstable toward long wavelength . . . .

disturbances. The quadratic coefficientalso increases with \t Ko the effects of differential evaporation, thermocapillar-

increasingQ, (at least for pure liquids, for whiciM >0) ity, and vapor recoil produced by the |mp_osed variation in

extending the range of unstable wave numbers. In fact, foll® témperature cancel each other. This phenomenon is

thin enough films(i.e., when|G|<1) the effect of gravity unigue to the evaporatively driven convection and has no

can be ignored, so that, can be assumed strictly positive 21l0g in the case of thermally driven Marangoninae
for M>0. convection.

The above-presented description includes the classical 1he Spectrum of growth rates will also pass through zero

Marangoni—Beard convection as a special case in the limitat the marginally stable wave number

of vanishing evaporatiofB— 0, K— o). Suppression of the a, 1

long wavelength instability leading to Marangoni-ed Ka= \/— —— ——Ja3—4aa, (52

. . 14 . 2a3

convection has been considered by &l who ignored

conduction in the substrate and instead assumed a predeterhich defines the upper limit of the band of unstable Fourier

mined temperature at the liquid—solid interface in theirmodes,k|<k,. It is easy to check thad, is always greater

analysis. Evaporation introduces some nontrivial physical efthank,, so that the Fourier mode with wave numisgris

fects which are absent in the case of thermal convection. Walways stable. It is interesting to note, however, thatk,

consider them next in the limits of slow and fast evaporationin the limit when the gravity and surface tension are negli-
gible, such as when the liquid film is intensively heated by

A. Slow evaporation radiation.

Let us consider what happens when the evaporation ratg Fast evanoration
is small but not negligible. By this we mean that the distur-—" P
bances grow on a time scale much smaller than the disap- When the disturbances grow on the time scale compa-
pearance timeT, rather than that the disappearance timerable to the disappearance tiriig, the change in the mean
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heightHy(T) cannot be ignored. Howeve#@4) can be inte- L.5S———
grated, if we again assume linear depende@d&@ between

H, and Q. In particular, for time-invariant feedback gain

we obtain an expression similar (60) for the amplitude of

the Fourier mode with wave numbkrat the time required 1.0
for a uniform film to completely evaporate: '{v

H(Kk,To)=H(k,0exda(k) +b(k)r(k)]. (53 a4

We have to make a note regarding the validity of this
solution. Since the thickness of the liquid layer is generally
nonuniform, in certain regions the film will disappear sooner
than the timeT is reached. This means that E41) and its T
solution (53) are uniformly valid only until the timeT 0.001  0.01 0.1 1 10 100
<T, at which the interface first touches the substrate. Be- K
cause the thickness of the film cannot become nega#®, FIG. 2. The ratio of the wave numbers at which the integrated response

has to be augmented with function b(k) and spectrum of growth rates(k) pass through zero as a
function of parameteK in the case of dominant thermocapillarity.

0.5 o

face tension are negligible compared to the thermocapillary

for X such thatHy(X,T)< ~Ho(T). However, since the effect, which is the case for sufficiently thin films, the ratio

limit T—T, is nonsingular(53) provides a good approxima-

tion to the height profile at the tim&; as long asT,— T} k2 31-2K+2K2In(1+K™1)

<Ty, i.e., in the limit of small deviation from flat profile. k72 In(1+K 7 (56)
Although the solution(53) is similar in form to (50),

a(k) andb(k) are now the integrated, rather than instanta-S smaller than unity for ani (see Fig. 2, i.e.,k,<K,.

neous, growth rates and response function. They also have If time-dependent feedback is chosen, the evolution

the functional form given by45) and(46), but with different ~ €duations cannot be explicitly integrated. This does not pose

coefficients: any fundamental problems for the analysis, although the con-
trol problem does become somewhat more complicated. In
a;=In(1+K™), particular, because the instantaneous coefficientd Tn de-
G(5K+4) M pend on time through the mean thickness of tr_]e liquid layer
a,= — + (1- 2K +2K?%a,) Ho(T), the band of unstable modég <k,(T) will change
60E(1+QoF) 4EB in time. Althoughb,(T) is negative at all times, the sign of
EB(1+QgF) b?(T) in gen'eral depends on time. As a consequence, the
m(1—3K—6K2+6K2(K+ 1)a,), sign of the linear responsie(k,T) can change for certain
wave numbers as the liquid layer becomes thinner due to
5K + 4 evaporation. However, contrary to the case of time-invariant
az=— BOEC(1+QgF)’ (550  feedback gain, ifo(k,T) does change sign at some wave
0 numberk,(T), the corresponding Fourier mode will always
= be instantaneously stabli,(T)>k,(T), regardless of the
by=- W' values of physical parameters.
ME EBE V. THICK SUBSTRATE

by=— 6EB(1+ QoF) 9PD(2—3K+6K2—6K331)- In a typical coating application the thickness of the sub-
strate will be much larger than the thickness of the liquid
In this casen; is again strictly positive, indicating abso- layer, but what is more important]s could be comparable
lute instability at smalk. The logarithmic dependence af  to, or even larger than, the wavelength of a characteristic
on K means that differential evaporation is a very weaklyunstable disturbance\~2=/k,, wherek, is determined
destabilizing effect. Even though its physical significancefrom (52) and (55). If the thickness of the substrate is not
might be rather small compared to thermocapillarity and vasmall compared to\, the approximation(17) does not ad-
por recoil in typical conditions, we include it because of its equately describe the temperature profile in the substrate due
dominance at small wave numbers. Furthermageandb;  to non-negligible heat flux in the horizontal direction. It has
are always negative, while the sign@f andb, depends on to be replaced with the exact solutiét6) which, when writ-
the sign of the Marangoni numbey] (all K-dependent ex- ten in the form
pressions in parentheses are strictly posjtivihe case of
fast evaporation is less trividhnd hence more interesting @S:f [ 8(k)+sq(k)sinhk(Z+ HS)]eikXdk, (57)
from the control perspective than the case of slow evapora-
tion, however, because noly, can lie inside the unstable automatically satisfies the boundary conditi@2). The lig-
band |k| <k, [k, and k, are still given by(52) and (51), uid layer is still considered thin, so it is appropriate to use
respectively. For instance, if vapor recoil, gravity, and sur- (17), which can be written in a form similar t7):
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_ where essentially all heat transfer is between the top and the
@Ff [ci(k) +si(k)Z]e™*dk. (58 pottom of the solid layer. Smaller variation in the tempera-
ture, in turn, leads to a weaker response of the system.
The boundary conditione20) and(21) can also be replaced Since the structure di(k,T) is essentially independent
with their Fourier space counterparts in a straightforwardyf the thickness$i, in the remainder of the paper we will use
way: the simpler expressio@6) which is valid in the limit of thin
ci(K) = 8(k)+ s(k)sinhkHs, (59 substrate to simplify the algebra. Generalization to the case

of arbitrary thickness is straightforward.
sq(k) k coshkHg=FH_ [s,(k)+ Q(k)+Qy8(k)]. (60)

In addition to the above-mentioned boundary conditions, the
solution has to satisfy conditior{8) and(19), which can be ?{\IIIS?AC\:ETINEIECSONTROL OF INTERFACIAL
combined into a single equation

—9,0,(H)=B0O,(H). (62) As we saw prevjously, it was rather. easy to predict the
effect of laterally uniform heating, described by the compo-
This boundary condition does not have a simple representarentQ,, on the dynamics. However, the effect of introduc-
tion in the Fourier space, because the heights itself a  ing spatial variatiorQ,(X,T) is much less obvious. In fact,
function of X. However, if we assume small deviations from the structure of the linear resporisgk) turns out to be quite
a uniform height, at the leading ordé§1) can be written as  nontrivial, producing a number of unexpected results. Most
—5,(k)=B[c;(K)+5(K)Ho]+ O(H(K)). (62) signific_antly, nonuniform_ heating can produce the_ ther-
mocapillary effect opposing the effect of vapor recoil and
Solving (59), (60), and (62) one obtains the distribution of differential evaporation. The balance of these three effects
the temperature at the liquid—gas interface will determine whether, and how, the interfacial instability
1+ QF can be controlled.
The idea of active control is to choose and apply a feed-

=
' 1+BHo+BF back[hereQ,(X,T)] that would stabilize the flat profile by

f FO(k) o converting the exponentially growing mod€s0) or (53)
+ e"*dk. (63)  into exponentially decaying ones. This requires finding some
kHscothkH(1+BHo) +BF feedback gairr (k) satisfying

This expression generaliz€37) by including the effects of
spatially varying intensity of radiation, but ignoring, at the a(k)+b(kr(k)<0, vk (65
leading order, the effects of spatially varying thickness of theLet us study how the solutions of this inequality depend on
liquid layer. Looking back at the structure of the evolution the structure of(k) andb(k) in more detail. The analysis of
equation(41) obtained in the limit of thin substrate, we see the control problem with time-varying feedback gain is con-
that it has two groups of terms. The first five terms that makeeeptually similar, so we will concentrate mostly on the time-
up a(k,T) in (44) only account for the variation il and  invariant feedback in the next few sections.

ignore the variation inQ, while the last three, making up

b(k,T), ignore the variation irH and only account for the A. Pure liquids

variation inQ. This means that the evolution equation for &  \ye have determined previously that for pure liquids both
liquid layer on a thick substrate is identical in its structure tob1 andb, are negative, sb(k) is negative-definite. In this

(44), but the response function is now defined by case we can easily see that a naive approach of heating the

(B~ F+Ho(T))(by(T)+by(T)k?) cooler(elevated regions of the films and cooling the warmer
b(k,T)= = (64)  (depressedregions of the film, as suggested by @ral,*
kHgcothkHy(B™ 1+ Hy(T))+F ) 9 o .
successfully suppresses the interfacial instability even in the
rather than(46), with the coefficients;(T) andb,(T) still  presence of evaporation. Indeed, let us apply a feedback

determined by(47). Clearly (64) reduces to(46) when the
thickness of the substrate is much less than the wavelength QuX,T)=rH (X, T), (66
of the disturbancekHs<1. Summing up, we see that the locally (in real spacg proportional to the deviation of the
magnitude of the response to spatial variation in the heatingterface from its mean position—we will refer to it as “lo-
intensity decreases with increasing thickness of the substrateally proportional” from now on.(In fact, Or et al. have
However, ifb(k,T) does change sign, it will do so exactly at suggested the use of weakly nonlinear control, with different
the wave numbef51) calculated in the assumption of a thin gains corresponding to the first, second, and third powers of
substrate. the interfacial deflection. Our linear analysis ignores the
The result(64) is easy to interpret: high wave numbers higher order gaing.This feedback law corresponds to a
correspond to very dense patterns of “hot” and “cold” spots wave-number-independent gaitk) =r in Fourier space. If
imposed on the system. When the thickness of the solid layehe constant is chosen large enough to satisf§5), we
is comparable to the size of such spots, the heat can “shorensure that each Fourier mode is stable, so the deviation
circuit” through the substrate, washing out the resultingfrom the flat profile decreases exponentially in time.
variation in the temperature, compared to the thin limit case  Sinceb(k) is negative-definite(65) is equivalent to
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max

min

— (k)
a(k)
———b(k)

FIG. 3. Spectrum of growth rategk), linear responsb(k), and their ratio
f(k) for ky>k, .

a(k)
b(k)’

The maximal value of (k) immediately gives the minimal
value of the feedback gain that achieves stabilization:

r>f(k)=— vk. (67)

I > mins (68
wherer ,,=f(ky) and k§ is the greater of 0 and
by 1 212 2
— —+ ——Jasb?—a,azb,b,+a;a3b5. (69)

b,

It is important to note that is not bounded from above. This
choice of the feedback law is not uniqi&nd certainly not
optimal from many perspectivgs but being extremely

agh,

Roman O. Grigoriev

FIG. 4. Spectrum of growth rategk), linear responsb(k), and their ratio
f(k) for ky<k,.

to a point. In this situation locally proportional feedback has
a serious downside: control becomes extremely sensitive to
intrinsic noise, modeling and measurement errors, i.e., it is
not robustin the language of control theory. The reason for
this is that wave-number-independent feedback which is sta-
bilizing for unstable modes becomes destabilizing for the
stable ones due to the change in the sign of the response
function, resulting in the amplification of small disturbances
with wave numbers close to the marginal wave numger

The casek,<k,, corresponding to time-invariant feed-
back control of quickly evaporating thin films, is much more
complicated and deserves a closer look. The wave number at

simple has its advantages for experimental implementationVhich b(k) vanishes is rather special: kt=+k, (53) re-

We will consider other possibilities in the following in the
context of mixtures.

B. Mixtures

Mixtures and solutions can have a negative Marangon

number, sd, could be positive as well as negative, wHilg
is always negative. b, is negative, the situation is identical
to the case of pure liquids. b, is positive, the situation is
much more interesting. In the latter cag&5) reduces to the
following system of inequalities:

r(k)<f(k), [K<kp,
r(k)<f(k), |K>k.

As long ask,>k, (this case is illustrated in Fig.) ®ne

(70

duces to

H(k,To)=H(k,0exd a(k)], (73

}.e., the feedback has no effect on the dynamics. Close to
*k, this effect is very small, so perturbations of very large
magnitude,O(1/k*ky|) to be exact, have to be applied to
produceO(1) changes in the dynamics. In the language of
control theory the system becomasakly controllablén the
vicinity of, anduncontrollableat, =k, . This poses little dif-
ficulty whenk, lies outside the band of unstable wave num-
bers,k,>k,, but causes significant problems whignhap-
pens to fall inside this band. Indeed, in order to suppress the
instability we only need the ability to influence thastable
modes.(Strictly speaking, influence over a certain range of

can show that the system can still be stabilized by choosingtable modes might also be necessary to deal witedhérol

locally proportional feedback66): inequality (65 has a
range of wave-number-independent solutions

M min<I <T max: (71
Wherermin=f(kd), rmax:f(kc)' and
b 1
k2= — 2 — — [aZb’—a,agb,b,+a;azbl. (72)
b, asb,

spillover effect?? if a nonlinear control is desired. It might
also be needed in order to design linear control with certain
desired properties as we will see in Sec. VII.

As illustrated in Fig. 4, if the uncontrollable mode lies
inside the unstable ban@5) cannot be satisfied by a feed-
back gain independent of the wave number, so locally pro-
portional feedback fails. In principle, all unstable modes-
ceptk=*k,, of course can still be converted into stable

This scenario describes, for example, the case of slowlpnes at the expense of allowing the feedback gain to depend
evaporating thin films. As the heating intensity increasespn the wave numbek. The price one has to pay for this is

kp— k4. As a consequendg— K., so the rang€71) shrinks

that the feedback law becomes delocalized in the real space:
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state of the system at some other location It is important
Ql(va):f R(X—X")Hy (X", T)dX’, (74 to understand the degree of spatidlocalization, i.e., how
) . fast the kernelR(X—X’) decays with the distancéX
where according to the convolution theorem, the kemel x| ang how this localization is related to the structure of

R(X) is given by the inverse Fourier transform rtk): the response functiob(k) and the choice of the criterion
1 o used to select some particular feedback law out of all possi-
R(X)= Ef r(k)e" dk. (75 bilities satisfying(65) [or (76)], because it determines the

complexity of our controller. For instance, it determines how
Since f(k) diverges at*ky,, the time-invariant feedback much information has to be processed in order to calculate
gainr(k) would have to diverge as well. The perturbation the perturbation at a single spatial location.
Q(k,T), however, is boundedfor instance, the total radia-
tion intensity cannot be negative, s®1(X,T)|<Qq).  A. Time-invariant feedback
Therefore, in a laterally unbounded system disturbances with _ .
wave numbers close t&, will grow uncontrollably and , To getan |de_a of what -k|r.1ds of nonlocgl kernels C(.)UId
eventually the film will rupture, producing dry spots with arise, let us begin b,y rest.nctm-g our gttgnuon to the time-
spatial periodicity 2r/k,. A laterally bounded system, of invariant problem which arises in the limit of slow evapora-

course, might not support any modes with wave number%ion' For simplicity, let us ignore the effect of surface ten-
close t(,)kb if its size is sufficiently small sion, which is always stabilizing, and find the feedback gain

In fact, the existence of the uncontrollable mode is not aI[hat produces the same convergence agtior everyk, such

property of the system, but rather a consequence of thhat
choice of time-invariant feedback. The above-described rup- 2 2 _

a;+azk =+ (b +byk)r(k)=—a,. 7
turing instability can be easily prevented, if time-varying, 12 (b1 +bokr (k) 0 7
rather than time-invariant, feedback gain is used. In realityClearly, this requires
because the height of the liquid layer will be changing in

time due to the evaporation, the coefficierits) will be a, agt al—azblbz’l
changing too, so genericallg,(T) will be time-dependent. r(k)=- b_z_ b, + b,k? (78)
In order to make the flat profile stable using time-varying
feedback, one simply has to choagé,T) satisfying If b(k) is negative-definite {,<0), the Fourier transform
To To (75) yields an exponentially decaying kernel
f b(k,T)r(k,’T)dT<—j a(k,n)dr (76)
T T A ap+a;—ayb,b,* .
for every 0<T<T, instead of (65. The existence of R(X)=- b_za(XH 2./b;b, exp( — k| X]).

bounded solutions to(76) is guaranteed, sincek,(T) (79
>k,(T), as we have determined in Sec. IV. It is easiest to

satisfy this inequality with a feedback gain that simply Because of such fagéxponential decay, in practice the ker-
changes sign wherevda(k,T) changes sign to ensure that nel can be truncated at a distance of order few characteristic
the action of the feedback is stabilizing for evéryIn fact,  lengthsk,*, with no loss in performance.

(76) should have bounded solutions everkj{T)<ky(T), Alternatively, if b(k) changes sign atk;, (b,>0), the
as long ak,(T) is nonconstant. gain (78) becomes singular at these points. One can never-

theless formally evaluate the Fourier transform using contour

integration in the complek-plane to obtain
VII. SPATIAL LOCALIZATION

-1
As the analysis of Sec. VI suggests, locally proportional _ & aptay—aghib, ”
feedback[which has a singularly localized kerneR(X) ROO= b, o0+ 4\~ b,b, sintks|X]). (80)

=r8(X)] is not always robust and can fail in rather harmless

situations. In this section we consider an alternative approac@learly, in this case the kernel is completely delocalized; it

of using nonlocal feedbaci’4) for control of interfacial in-  does not decrease with the distaf&é. This complete delo-

stabilities. We have already seen t@5) does not uniquely calization is a direct consequence of the singularity, indicat-

determine the feedback law, it is only a necessary conditioning the loss of controllability. Indeed, if a disturbance with

The selection has to be made using some additional criteriavave numbelk,, is present, the integral74) will diverge,

It is useful to define the feedback which is optimal in someindicating that feedback of infinite magnitude is required to

sense. For instance, one could require that the least amouathieve the desired rate of decay.

of energy be expended on stabilizing the system, or that the More generally, one would expect that,kif lies in the

terminal deviation from the uniform state be minimal. Alter- unstable bandk,<k,, the kernel will necessarily be com-

natively, one could look for a feedback law that is mostpletely delocalized regardless of the particular choice of the

localized (this requirement, however, still does not specify feedback law. On the other hand, if the Fourier méges

the feedback uniquely stable, the feedback gain does not have to diverge. In fact,
The nonlocal nature of the feedback means that the peene could always choose a wave-number-independent feed-

turbation applied at some spatial locati¥ndepends on the back gain, yielding a kernel localized at a single point.
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In fact, by shifting the integration contour in the com-
plex k-plane it can be showfthat, if r(k) is analytic in a
strip |J(k)| < B and bounded on the real axi3(k)=0, the
kernel can be represented in the form

R(X)=Ryd(X) + Ry (X), (81

whereRy=lim,_...r (k) andR;(X) decays exponentially at
a rate faster than any<<g:

Ry (X)X =0, |X|—o. (82

For instance, ib,<0, the poles of (k) lie on the imaginary
axis and B8=1|J(*iky)|=ky, so (79 is seen to be just a
special case of the more general relationgBip. Similarly,
for b,>0, the poles lie on the real axis, $=|7(ky)|=0,
and we obtain a delocalized kern@&0), which does not de-
cay ag X|—c. [The fact tha{3=0 does not mean, however,
that the kernel should beompletelydelocalized: we will see
later that, ifr(k) has nopoleson the real axisR(X) will
decay as a power of.]

Additional restrictions on the domain of analyticity are
imposed, ifr (k) is required to satisfy certain optimality con-

ditions. For instance, practical considerations might require

Roman O. Grigoriev

Ty (=
virl= [ [ tutncT P+ @k m ek T

+f O|H(K, To)|%dk. (84)
In the case of slow evaporation it is appropriate to take
= and¢=0. Minimization of the functiona{84) subject to
the constraint448) and (49) with time-invariant feedback
results in an infinite system of scalar Riccati equations

—b?(k)p?(k) +2a(k)p(k) + ¢=0, (89

whose positive-definite solutions give the feedback gain
r(k)=—b(k)p(k) for each wave numbek:

_alk+ Va?(k) + yb?(k)

b(k)

When the analytic continuation af(k) is considered the
branch of the square root which is positive on the real axis
has to be taken. Despitg k) appearing in the denominator,
r(k) does not necessarily have poles at the zerods y.
Close to the zeroes df(k) (86) can be expanded as

S a+Va’(k) g Vai(k)

bk) 2 aZKk)

r(k)= (86)

r(k)=

b(k)+---, (87

that the time-averaged and/or terminal deviation of the "qUidsor(k) has no poles, if the zeroes bfk) lie on the real axis

film from the flat profile is minimized. An optimal feedback
achieving this goal and subject to the physical constraint o

finite power available for control can be obtained by mini-
mizing the following cost functional:

To [ 2 2
V[I’]ZJO J:oc[l//Hl(X,T)-l-Ql(X,T)]dXdT

+ Jf SHAX, To)dX, (89

where =0 and ¢=0 are costs associated with time-
averaged and terminal deviation from the flat profile, respec
tively, per unit cost of the applied control signérhis mini-
mization problem corresponds to the
regulator probler#f of control theory)
Conventional control theoretic approach calls for making
the problem finite-dimensional at this stage by employing t
formalism of Galerkin projection onto a finite number of
Fourier modes. This involves fixing the values of all param-
eters and solving the resulting optimization problem numeri

linear-quadratic

he

b,>0) andthe Fourier modd, is stable k,>k,). On the
ther handy (k) generally has four pairs of branch points
determined by

a?(k) + yb?(k)=0, (88)

some of which can coalesce forming branch cuts, or discon-
tinuities, that cross the real axis. In genegais determined

by the imaginary part of either a pole or a branch point
closest to the real axis.

When the cost of control is finite,<Q<<o°, none of the
branch points lie on the real axis, because generidglly
#k,. If b, is negative, there are two poles lying on the
imaginary axis, so & =<k, andR(X) decays exponentially.

If b, is positive, butk,>k,, the poles disappear, $(X)

will again decay exponentially fast. As eithkg—k, or

—0, several of the branch points approach the real axis, so
that 83— 0. Fork,<k,, two poles are created on the real axis
esulting in a completely delocalized kernel.

In the limit of “expensive” control, =0, a couple of
branch points coalesce laf and another at-k,, producing
two discontinuities. As a result, on the real axis we have

cally. This approach has recently been used by Or, —2a(k)/b(k), |k|<kg
Cortelezzi, and Spey®¥in the context of Rayleigh—Brrd 0, |k|>k

convection. The most serious drawback of this approach is ' a

the lack of generality common to all numerical methods. Byso the feedback gain vanishes for all stable modes. If the
forcing special choices of parameters it obscures the conneeeroes ob(k) lie on the real axis, ank,<k,, the gain(89)
tions between the geometrical structure of the problem, thbas poles at-k,, so the feedback gain diverges and we

r(k)= (89

optimality criteria, and the structure of the feedback.

Considerable progress can be made without resorting t
numerics, if we allow our problem to remain infinite-
dimensional. We can readily rewrite the functiori8B) in
the Fourier space as

again obtain a completely delocalized kernel. If, on the other
band, the zeroes df(k) are real but lie outside the band of
unstable modes,>k,, the gain has no poles, only the dis-
continuities crossing the real axis atk,. In either cases

=0.

Downloaded 08 Dec 2002 to 130.207.140.209. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 14, No. 6, June 2002 Control of evaporatively driven instabilities 1907

Generally, if the feedback gain is given by a sufficiently tion vary in time. The solution to the time-varying problem
smooth even function for unstable modes, e.g(k) (84) is given by a generalization of the Riccati equations
e CY(—k,,k,), and vanishes for all stable modes, one can(85):

use integration by parts to show that bk T)= — b2(k, T)p2(k,T) + 2a(k, T)p(k,T) + o,

1 (ka _ (93
R(X)= ;f r(k)cogkX)dk p(k.To)=¢.
° The algebraic equations are thus replaced by nonlinear ordi-
r(ky) sin(k,X) r'(ky) cogk,X) nary differential equations. If we leavg, finite and setys
- x - X2 =0, which is a natural choice for the case of fast evapora-
5 tion, i.e., require that the terminal deviation from the flat
+O(X™), (90 profile be minimal, these equations can be simplified consid-
erably by using the ansafk, T)=1/s(k,T):
so that the kernel will be localized, with a power law, rather )
than exponential, rate of decay s(k,T)=2a(k,T)s(k,T) —b=(k,T),
_ (94)
— 1
ROOIX|*—0,  [X| e, (91 stk To) =&

The solution of (94) defines the feedback gain(k,T)
wherea<2 [we cannot haver=2 because of the inequality = —p(k,T)/s(k,T) which is both time- and wave-number-
(70), which requires that either(k,) #0 orr'(ka) #0]. I dependent:
particular, for the optimal feedback gai@9) one obtains

(K T) b(k, T)u?(k,T) (95
r =— .
2 a'(k,) cogk,X ’ —14 (Top2 2
ROO=— 2 (ka) cog a )+0(x*3), @2 ¢ 1+ [1°b?(k, 1) u?(k,T)d T
7 b(ky) X :

The evolution operator

provided, of coursek,>k, . To
In principle, as long ak,>k,, one can always obtain a u(k,T)=exp{ J; a(k,ndr (96)

kernel R(X) exhibiting power-law decay with an arbitrarily
large exponent, even if the gairr (k) has compact support, can be explicitly evaluated and has the following structure:
r(k)=0 for |k|>ks>k,. This requires a tradeoff: the feed- ) 4
back should be applied not only to the unstable modes, but  U(K, T)=expluy(T)+ux(T)k*+us(T)k™], (97)
also to a range of stable modésg,<|k|<ks, and it should
be sufficiently smooth in the Fourier space, i.e(k)
e C"~* with n equal to the integer part af. U (T)=In(1+K ™ Ho(T)),
As we mentioned previously, the kernB{X—X") of

where the time-dependent coefficients are given by

G(5K+4H(T)HHYT) M

the spatial convolution operator determines how much infor- Uy(T) = — + (HX(T)
mation from distant regionX’ of the system we need to 60E(1+QoF) 4BE" °
have (and use in order to suppress the instability at any B 2
given locationX. If the control is “cheap,” the kernel is very ZKHo(T)+2Kuy(T))
localized, i.e., we only need local information. In other EB(1+QqgF) 3 )
words, we can afforchot using information from regions that + 3PD(K+Ho(T)) [H(T) —3KH(T)
are far away, but instead use a “brute force” approach to
control the dynamics with strong perturbations. In the oppo- —6K?H(T) +6K*(K+Ho(T)uy(T)], (98
site case of “expensive” control, small intelligently chosen (5K +4Ho(T))H(T)
0

perturbations are used to guide the system in the desired Ug(T)=—

direction. This intelligent approach, however, requires a 60EC(1+QoF)

much more extensive knowledge of the state of the syster(?AS expectedy;(0)=a, for i=1, 2, 3, where, are the inte-
1 1 ’ 1 Y i

iAs a:_ cogseqtuer(;(_:e, :he resr;eﬁtlvet_kernfrll klas tof bfhmore §r'ated coefficients o(k,T) defined in(55).
ocalized, extending fo remote locations that are furineraway. o integral in(95) cannot be evaluated explicitly. In

from the point where the feedback is applied. certain special casdg.g., in the limit of slow evaporation
one can obtain a good approximation using the saddle-point
method. Alternatively one can employ numerical integration.
We have learned previously that time-invariant feedbackHowever, even without making this last step a number of
can experience serious difficulties when disturbances growmportant conclusions can be drawn. First of all, the optimal
on the time scale comparable to the disappearanceTygne feedback(95) is wave-number-dependent, so its kernel will
These difficulties are easily resolved, if time-varying feed-necessarily be nonlocal. Furthermore, its kernel will always
back gain is used instead. In fact, optintal the sense de- decay exponentially fast in real space, sin¢k,T) is ana-
fined previously feedback will always be time-dependent aslytic on the realk-axis. This is to be expected: we have
long as the spectrum of growth rates and the response fundetermined thak,(T)>k,(T) for all T. Finally, the optimal

B. Time-varying feedback
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feedback gain will change sign wherevie(k,T) changes not work well or does not work at all. In those cases we are
sign, also in agreement with our expectations. forced to use either a more complicated nonlocal time-
A stabilizing time-varying feedback can be easily ob-invariant feedback, or switch to a time-varying feedback, lo-
tained analytically, if optimality is not required. Indeed, in cal or nonlocal, depending on the physical parameters of the
order to satisfy(76) it is sufficient to choose a feedback gain liquid. To be precise, the degree of spatial localization of the
which makes the growth rate of the perturbed system negdeedback law is defined by the control goals, subject to the
tive at each instant in time limiting conditions imposed by the physical parameters.
Proper modeling of the system with feedback requires
a(k, T)+b(k,Tr(k,T)<O0. (99 using the substrate of finite conductivity and finite thickness,
This brings us back to the time-invariant problem consideredather than imposing a constant temperature or constant flux
previously: most of the results obtained in the preceding sedsoundary conditions at the liquid—solid interface. Explicit
tions can be naturally generalized by merely replacingnodeling of the gas layer, on the other hand, appears to be
growth ratesa(k) and the response functido(k) with their  unnecessary. Even with these complications, control of the
time-dependent counterparts. In particular, since eithefong-wavelength evaporative instability represents a unique
b(k,T) has no zeroes or its zeroes correspond to instantgsroblem from a mathematical perspective. It is sufficiently
neously stable modes, one could always choose a waveich to produce a variety of qualitatively different regimes,
number-independent feedbacKT) producing the kernel put at the same time simple enough to allow explicit analyti-
R(X,T)=r(T)8(X) which is localized at a point. Ib(k,T) cal solutions in most cases.
is not negative-definite, locally proportional feedback has an  Finally, although quite a few assumptions and simplifi-
adverse effect on the stability of the modes with wave numcations were made in deriving the evolution equations and
bers|k|>ky(T). To get rid of this effect it makes sense to the feedback laws, most of them were rather technical and
choose the gain in the form(k,T)=—b(k,T)p(k,T) with  could be relaxed at the expense of making the algebra a bit
somep(k,t)>0, such that the gain changes sign whereveimore lengthy. None of the important conclusions should
the linear response changes sign, so the net result is alwaghange though. One possible exception is neglecting the ef-
stabilizing. Then any(k,t) that satisfies the following two fect of the composition ofi-component liquids on the physi-

conditions cal parametergdensity, viscosity, and so ¢nThe proper
a(k,T) treatment of such liquids would include the evolution equa-
p(k’T)>m’ [K|<ka(T), (100 tions for the concentration of each of the components, yield-
' ing a system ofn PDEs in the lubrication approximation.
p(k, T)k?—consk o, |k|—oo, (101  These PDEs will still diagonalize in the Fourier space due to

. . L ) the translational invariance of the system, but instead of a
will achieve stabilization. Such feedback will be both wave- gna_dimensional control problem we had to solve for each

number- and time-dependent, so its kernel will be nonlocal, .\ /e number. we would end up with ardimensional prob-

with e;(ponentlal or powekr law decay, depending on theeny sojution of matrix Riccati equations is a much less
smoothness properties p{k,T). trivial task, even in the time-invariant case. More important,
VIl SUMMARY the existence of a solution is predicated on the controllability
: of all degrees of freedom: for instance, it is far from obvious
A few remarks concerning the problem of controlling the that thermal perturbations will be effective in controlling the
evaporatively driven instability are now in order. First of all, concentration profiles of multiple components. This problem
we have determined that this type of instability could beis the subject of further investigation.
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