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Control of evaporatively driven instabilities of thin liquid films
Roman O. Grigoriev
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
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In the process of drying, thin volatile liquid films often undergo a long-wavelength instability
leading to nonuniformities or formation of dry spots, with the strength of the instability increasing
with the volatility and temperature of the liquid. Perhaps counterintuitively, this evaporative
instability can be actively suppressed by an appropriate heating procedure. We use linear stability
analysis of the lubrication approximation to show that spatially nonuniform time-dependent
radiative heating can indeed have a stabilizing effect. Evaporation is shown to introduce several
fundamentally new aspects into the control problem for heated liquid films, compared to the
relatively well-studied case of thermal convection. The control problem becomes especially
interesting and nontrivial for mixtures and solutions with negative Marangoni numbers due to a
peculiar cancellation effect rendering the system insensitive to temperature control at a certain
wavelength. It is shown that taking the time dependence of the mean thickness of the film into
account is necessary to circumvent this insensitivity. ©2002 American Institute of Physics.
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I. INTRODUCTION

Evaporating liquid layers are found in many areas
science and technology, so their practical significance
rather high. Examples include evaporative cooling and
merous coating applications. In the latter a substrate
coated with a layer of solution which, upon the evaporat
of solvent, leaves a layer of solute on the surface of
substrate. The main difference between various coating t
niques is in the way the initial liquid coating is produced. F
instance, dip-coating technique is used for optical fib
coating,1 and ~anti!reflective optical coatings of lenses an
mirrors. Similar techniques are used to produ
hydrophobic2 and hydrophilic coatings. Spray coating is us
to produce sol-gel coatings of TV screens3 and, more rou-
tinely, for painting. Spin coating,4 which was originally de-
veloped for microelectronics applications, has also found
merous applications in the optical industry.

One of the critical issues related to the quality of pr
duced coatings is the stability of the liquid layer durin
evaporation. For instance in spin-coating applications, st
tions ~radially oriented lines of thickness variation! arise due
to the thermal and solutal effects induced by evaporatio5

These effects are also responsible for the ruptur
instability6 which results in the formation of a pattern of d
spots,7 a phenomenon often referred to as reticulation. T
ultimate fate of the linearly unstable liquid film, with o
without evaporation, is eventually determined by the prop
ties of the substrate: if it is nonwetting, the film will gene
ally rupture,8 otherwise it may remain continuous and no
uniform.

In most circumstances dewetting is a highly undesira
effect, so understanding its mechanisms and learning to
trol it is very important. The process of dewetting is intri
sically nonlinear, so it cannot be adequately described by
linear theory. This means that either numerical8,9 or approxi-
mate analytical10 solutions have to be obtained. Howeve
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neither approach is suitable for control purposes. The m
practical approach is to prevent the instability from formi
at the linear stage, rather than suppress the rupturing itse
This approach has an additional advantage that, if the liq
layer is uniform at all times during the evaporation, the p
duced coating will be uniform as well.

Several different approaches have been suggested to
force control of evaporating liquid films. All of them ar
properly classified aspassive. The examples include the us
of surfactants11 and internal~volumetric! heating of the liq-
uid layer.12,13 Albeit the passive approaches are relative
simple, their applicability is very restricted~e.g., surfactants
may contaminate the coating!. Active, or feedback, control
schemes are generally significantly more flexible and e
cient. Although none currently exist, several approaches
signed to suppress Marangoni–Be´nard convection in thin
nonvolatile films can be generalized for the case with eva
ration. The underlying idea of the latter approaches is
exploit the same physical mechanism that leads to instabi
in this case the thermocapillary effect: a spatially distribu
thermal perturbation is applied to either the bottom14 or the
top15 interface, which opposes the spontaneously produ
disturbances, an approach sometimes referred to asnoise
cancellation.

When evaporation is present, thermocapillarity rep
sents only one of several destabilizing mechanisms: va
recoil ~normal pressure on the liquid–gas interface due
nonequilibrium evaporation!, differential evaporation~de-
pendence of the evaporation rate on the thickness of the fi!
and, sometimes, solutocapillarity all contribute to the dev
opment of the interfacial instability. There might also be a
ditional destabilizing mechanisms not related to evaporat
e.g., van der Waals interactions, gravity, and curvature
fects. Since all mechanisms in the former group are eva
ratively driven, it should come as no surprise that all of the
can be altered~and hence controlled! by varying the evapo-
5 © 2002 American Institute of Physics
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ration rate, which is most easily accomplished by apply
thermal perturbations. The evaporative instability, howev
is much more complicated than the thermally driven insta
ity leading to Marangoni–Be´nard convection: the distur
bances produced by several different mechanisms canno
simultaneously canceled by applying perturbations to
single parameter of the system, such as the interfacial t
perature of the liquid layer. An additional challenge posed
the presence of evaporation is time dependence of the m
thickness of the film.

In this paper we use linear stability analysis to desig
control scheme which uses distributed thermal perturbat
to suppress the instability by exploiting acombinationof
different physical effects. The thermal perturbations will
applied by varying the intensity of electromagnetic radiat
absorbed by the liquid film and the substrate. The inten
profile will be calculated and adjusted in real time based
the measurements of either the local thickness of the liq
layer or the local interfacial temperature, which is related
the local thickness. The distributed nature of the feedb
requires sensing and thermal actuation capabilities with
spatial resolution comparable to the scale of character
disturbances, which can be rather small~e.g., submillimeter!
for thin films. Such capabilities can be implemented rat
easily using commercially available optical components s
as charged coupled device~CCD! arrays in video camera
and micro-electro-mechanical systems~MEMS! mirrors in
video projectors.

The outline of the paper is as follows. We derive t
nonlinear lubrication equations describing the dynamics
the limiting case of thin substrate and perform the line
stability analysis in Sec. II. We compare different ways
perturbing the system by radiative heating from the con
standpoint in Sec. III and derive the equations describing
effect of perturbations on the dynamics in Sec. IV. The mo
fications of these equations required by relaxing the res
tion on the thickness of substrate are discussed in Sec
Section VI contains the analysis of the feedback con
problem and discusses the new features introduced by
presence of competing destabilization mechanisms. The
tial structure of the distributed feedback is discussed in S
VII and Sec. VIII presents summary and conclusions.

II. EVOLUTION EQUATIONS

The ability to apply thermal perturbations is essential
suppression of the evaporative instability. Evaporative co
ing provides a natural way to lower the temperature of
liquid. Alternatively, the liquid can be heated by electroma
netic radiation absorbed by either the liquid itself or the s
strate. If the film is thin, it will not absorb radiation effec
tively, so it will be difficult to change its temperatur
significantly by modulating the intensity of radiation. A mo
flexible approach is to use the substrate as the absor
medium. This approach requires that heat conduction in
substrate is modeled properly. In particular, the subst
should have finite conductivity and finite thickness,hs .
Therefore, we have to consider a three-layer system depi
in Fig. 1. The liquid layer has a free upper boundary wher
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interfaces with a gas layer partially saturated with the vap
We will orient our coordinate system such that thez axis is
orthogonal to the substrate’s upper boundary, withz50 at
the bottom of the liquid layer. The initial mean height of th
liquid layer ishl , and its instantaneous height ish(x,t). ~For
simplicity of notation we ignore the variation in they
direction—y dependence can be trivially restored—so t
problem becomes two dimensional.!

The combined three-layer system is described by
Navier–Stokes equation

r l~] tv1~v"“ !v!52“p1m¹2v1r lg ~1!

augmented by the incompressibility condition“"v50, the
energy equation

r lcl~] tu l1~v"“ !u l !5k l¹
2u l , ~2!

for the liquid layer, and the heat equation for the solid lay

rscs] tus5ks¹
2us , ~3!

wherer l , k l , cl , u l and rs , ks , cs , us are the densities
thermal conductivities, heat capacities, and temperature
the liquid and solid layer, respectively,m, p, andv are the
viscosity, pressure, and velocity of the liquid, andg the
gravitational acceleration in the vertical~negativez! direc-
tion. For simplicity we assume that, if the liquid is a mixtu
or solution with two components, none of its physical pro
erties~viscosity, density, surface tension, and so on! depend
on the relative concentration of the components. This
sumption means that the solutal Marangoni effect is abs
and we do not need to include an additional evolution eq
tion for the relative concentration.8,9

The gas layer is not modeled explicitly. Instead its effe
is represented by the appropriate boundary conditions at
liquid–gas interfacez5h, which describe the exchange o
mass, momentum, and heat between the layers. We will
the simplified boundary conditions16 for the energy, stress
and mass balance,

jL 52k l]zu l , ~4!

Tnn52kis1
j 2

rg
, Tnt5~ t"“ !s, ~5!

] th52]xE
0

h

vxdz2
j

r l
, ~6!

which are valid when the density, viscosity, and thermal c
ductivity of the liquid are significantly greater than those

FIG. 1. Evaporating liquid film on a solid substrate.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1897Phys. Fluids, Vol. 14, No. 6, June 2002 Control of evaporatively driven instabilities
the vapor.L denotes the latent heat of vaporization per u
mass,rg the vapor density,s the surface tension, andki is
the curvature of the interface which can be expres
through the local thicknessh of the liquid layer,

ki5]x
2h/A11~]xh!2. ~7!

An additional boundary condition is imposed by a consti
tive relationship16 between the interfacial temperatureu i and
mass fluxj ,

K̃ j 5u i2ua , ~8!

whereua is the absolute saturation temperature, andK̃ de-
scribes the volatility of the liquid. The limit of vanishin
volatility, K̃→`, corresponds to the pure Marangon
Bénard convection.

At the liquid–solid interfacez50 we impose the no-slip
boundary condition for the velocity and conditions of con
nuity for the temperature and heat flux,

v50, ~9!

us5u l , ~10!

ks]zus5k l]zu l . ~11!

Finally, the temperature at the bottom of the solid layez
52hs is assumed constant,

us5ub . ~12!

The horizontal velocity profile needed to close the ev
lution equation~6! for the heighth can be determined by
solving the Navier–Stokes equation~1! subject to boundary
conditions ~5! and ~9!. The solution in the lubrication ap
proximation is obtained in a standard way:17

mvx5z]xs1~ 1
2 z22hz!]xp̄, ~13!

where p̄5r lgh2kis1 j 2/rg is the modified pressure. W
choose to ignore the disjoining pressure terms7,8 representing
the effect of van der Walls forces, because they are o
significant for extremely thin~submicron scale! films. These
terms can be easily included in the following analysis. Co
bining ~6! and ~13! one obtains a nonlinear evolution equ
tion

] th52
j

r l
2

1

2m
]x~h2]xs!1

r lg

3m
]x~h3]xh!

2
s

3m
]x~h3]x

3h!1
2

3mrg
]x~h3 j ]xj !. ~14!

Both the mass fluxj and the coefficient of surface ten
sion s depend on the interfacial temperatureu i , which can
be found by solving~2! and ~3! subject to the above-give
boundary conditions. In the lubrication approximation t
left-hand sides of both equations can be neglected, so th
the dimensionless coordinatesX5x/hl , Z5z/hl , T
5(k l /r lclhl

2)t, and Q5(u2ua)/Du with Du5ub2ua ,
both equations reduce to

]X
2Q1]Z

2Q50. ~15!
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~Since the mean thickness of the liquid film varies in tim
due to evaporation, we use itsinitial value hl as the length
scale.! The general solution of~15! is

Q5E @c~k!coshkZ1s~k!sinhkZ#eikXdk ~16!

and simplifies considerably in the limit of thin layers~or long
wavelength disturbance!, k!H, k!Hs , whereH5h/hl and
Hs5hs /hl are the dimensionless thicknesses of the liq
and solid layer, respectively. Expanding~16! in powers ofkZ
and retaining the two leading terms yields

Q5C~X!1S~X!Z. ~17!

Introducing the ratio of thermal resistances of the liqu
and solid layer F5hsk l /hlks , the Biot number B

5hlL/k l K̃ characterizing heat transfer at the liquid–gas
terface, and the dimensionless mass fluxJ5(hlL/k lDu) j ,
the boundary conditions~4!, ~8!, ~10!, ~11!, and~12! can also
be written in dimensionless form:

2]ZQ l~H !5J, ~18!

BQ l~H !5J, ~19!

Q l~0!5Qs~0!, ~20!

]ZQs~0!5FHs
21]ZQ l~0!, ~21!

Qs~2Hs!51. ~22!

The particular solution~17! satisfying these boundary cond
tions gives the temperature of the liquid–gas interface:

Q i5
1

11BF1BH
, ~23!

such that the height uniquely determines the interfacial te
perature and vice versa.

Assuming linear dependence of the surface tension c
ficient on temperature, upon substitution of~19! the dimen-
sionless version of~14! can be written as

]TH52EBQ i1
M

2
]X~H2]XQ i !1

G

3
]X~H3]XH !

2
1

3C
]X~H3]X

3H !1
2E2B2

3PD
]X~H3Q i]XQ i !, ~24!

where we have defined the evaporation numberE
5clDu/L, Marangoni numberM52]usDur lclhl /mk l ,
gravity number G5gr l

2clhl
3/mk l , capillary number C

5mk l /sr lclhl , Prandtl numberP5mcl /k l , and the den-
sity ratio for the liquid and its vaporD5rg /r l . This equa-
tion shows that the interfacial temperature plays a very
portant role in the dynamics of the liquid layer, entering thr
of the five terms on the right-hand side. This justifies o
control strategy: we can influence the evolution of the film
thickness by making appropriate changes to the interfa
temperature.

Substituting~23! into ~24! and linearizing with respect to
small deviations about the~time-dependent! mean height of
the film H(X,T)5H0(T)1H1(X,T) yields two equations,
one for the meanH0 ,
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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]TH052
E

K1H0
, ~25!

and one for the deviationH1 ,

]TH15
E

~K1H0!2 H12
M

2B

H0
2

~K1H0!2 ]X
2H1

2
2E2B

3PD

H0
3

~K1H0!3 ]X
2H1

1
GH0

3

3
]X

2H12
H0

3

3C
]X

4H1 , ~26!

where we have denotedK5B211F. The first equation de-
scribes the gradual reduction in the mean thickness of
liquid layer with time. It can be integrated17

H0~T!52K1A~K11!222ET ~27!

and shows that the amount of time it takes for the layer
completely evaporate is

T05
2K11

2E
. ~28!

It is conventionally called the disappearance time.
Equation~26! describes the stability of the uniform so

lution ~27!. The first term in ~26! represents differentia
evaporation and is always destabilizing. The physical mec
nism responsible for differential evaporation is simple. T
top of the liquid layer has a lower temperature than the b
tom due to evaporative cooling. In the regions where
interface is closer to the substrate the liquid is warmer
hence evaporates more rapidly than in the regions where
interface is further away. This can also be thought of a
result of the evaporation speed-up: according to~27! the in-
tensity of evaporation increases with decreasing thicknes
the layer, which is a weakly destabilizing effect. This effe
has never been properly considered in the literature, altho
it becomes dominant at very long wavelengths. The sec
term describes the effect of thermocapillarity which is des
bilizing whenever]us,0 ~i.e., for pure liquids,M.0! and
stabilizing otherwise~for some mixtures and solutions,M
,0!: when surface tension decreases with temperature
variation produces tangential stresses which draw liq
from warmer to cooler regions, amplifying the disturban
The third term represents the effect of vapor recoil16 and is
also destabilizing. Destabilization is due to larger evapo
tion rates in the warmer regions, leading to a larger num
of vapor molecules leaving the surface with a larger mom
tum ~hence quadratic dependence on the evaporation r!,
which produces increased normal stress on the interface.
fourth and fifth terms represent the effects of gravity a
surface tension, respectively, and are both stabilizing in
geometry considered here. Gravity can also play a dest
lizing role, if the liquid layer coats the bottom of the sol
layer, rather than the top.18 In cylindrical geometry, which is
appropriate, e.g., for the case of optical fiber coating,
fourth term describes the effect of curvature instead of gr
ity, with G52(hl /r 0)2C21, where r 0 is the radius of the
fiber. This geometrical effect is always destabilizing.
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As we have already mentioned, the first term domina
the evolution for the longest wavelength disturbances, so
the presence of evaporation the uniform solution~27! is al-
ways linearly unstable. In the case of pure liquids, t
asymptotic state is the same, regardless of the initial co
tions or existing spatial nonuniformities in the substrate a
so on—all liquid eventually evaporates. In the case of so
tions, however, the instability results in a nonuniform lay
of solute left on the surface of the substrate once the solv
has evaporated completely. This problem becomes e
more severe, if either additional~laterally uniform! heating
or a more volatile solvent is used to speed up the dry
process: the first three terms in~26! increase withDu, while
the third term also increases withB, i.e., with increasing
volatility.

III. RADIATIVE HEATING

Consider now what happens when the system is he
internally to enhance evaporation, e.g., through the abs
tion of electromagnetic radiation, such as microwaves,19 in-
frared, or visible light. Depending on the absorption prop
ties of the liquid and the substrate, either both layers or
one of them could be heated by the radiation. Extending
results of Oron,13 who has considered the effect ofspatially
uniform irradiation of a liquid film on a substrate ofinfinite
conductivity, we will consider different limiting cases whic
cover the spectrum of possibilities for substrates offinite
conductivity and thickness. In addition, we will allow fo
spatialandtemporalvariation of the intensity of radiation, a
prerequisite for active control. This variation will be a
sumed slow compared to the characteristic time scale, s
that ~15! is valid. Furthermore, in the next few sections w
will assume that the substrate is thin, so we can use
approximation~17! instead of the exact solution~16! for both
layers. We will lift this restriction and discuss the effect
substrate thickness in Sec. V.

Since, for a given frequency, the fraction of the absorb
radiation does not depend on its intensity, the intens
~power! of a monochromatic radiation decays exponentia
with the distance from the interface, a fact expressed
Bouguer’s law,20

q~z!5q~z0!e(z2z0)/d, ~29!

wherez0 is the position of the interface,d is the ~frequency
dependent! penetration depth, and for simplicity we assum
that there is no reflection at the interface. Given the ma
ematical structure of the lubrication approximation equatio
we expect that the sole effect of introducing an external h
source will be to change the functional dependence~23! be-
tween the thickness of the liquid layer and the temperatur
the liquid–gas interface.

A. Volumetric absorption

First, assume that the liquid is optically thin,d@hl , and
the substrate either optically transparent or reflecting. In
case the absorption and hence heating is essentially uni
across the depth of the liquid layer. Correspondingly, wh
the temperature distribution inside the substrate still ob
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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~15!, inside the liquid this equation has to be modified
including a source term with uniform densityA21Q:

]X
2Q l1]Z

2Q l52A21Q, ~30!

where Q5(hl /k lDu)q is the dimensionless power of th
incident radiation per unit area andA is the dimensionless
absorption length defined asA5d/hl for a transparent non
reflecting substrate andA5d/2hl for a reflecting substrate
~the radiation traverses the liquid layer twice in the lat
case!. The solution of~30! in the thin layer limit is

Q l5C1SZ2~2A!21QZ2, ~31!

so using the standard boundary conditions~18!–~22! we ob-
tain the temperature of the liquid–gas interface in the for

Q i5
11~2A!21Q~H212FH !

11BF1BH
. ~32!

This relation shows that the interfacial temperature is a fu
tion of the local thicknessH and local intensity Q. The
dependence onQ, however, is very weak due to the sma
ness of the coefficient (2A)21, making this a poor arrange
ment for the purpose of active control.

Interestingly, the volumetric heating by laterally unifor
radiation Q(X,T)5Q0 can stabilize the evaporating liqui
film when the heating intensity is sufficiently large. Indee
substituting ~32! into ~24! and linearizing, we obtain an
equation similar to~26!,

]TH15
Ea~H0!

~K1H0!2 H12
M

2B

a~H0!H0
2

~K1H0!2 ]X
2H1

2
2E2B

3PD

a~H0!g~H0!H0
3

~K1H0!3 ]X
2H1

1
GH0

3

3
]X

2H12
H0

3

3C
]X

4H1 , ~33!

where

a~H0!512~2A!21Q0b~H0!,

b~H0!52K~H01F !1H0
2 , ~34!

g~H0!511~2A!21Q0~H0
212FH0!.

Sinceg(H0) is positive, the effects of differential evapora
tion, thermocapillarity ~for M.0!, and vapor recoil all
change sign and become stabilizing for negative values
a(H0), i.e., when

Q0.
2A

b~H0!
. ~35!

The same conclusion has been reached by Oron,13 who ig-
nored differential evaporation and assumed that the subs
was perfectly conducting. It served as the basis for sugg
ing the use of volumetric heating for passive control.

In reality the situation is more complicated. Even thou
the radiation absorbed in the liquid layer provides a stabi
ing effect, some fraction of it will necessarily be absorbed
the substrate. As we will see in Sec. IV this has a destab
ing effect. SinceA has to be large for the absorption in th
Downloaded 08 Dec 2002 to 130.207.140.209. Redistribution subject to 
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liquid layer to be relatively uniform across its depth,Q0 will
also have to be large, so substantial power will be dissipa
in the substrate, negating the stabilizing effect of the rad
tion absorbed by the liquid layer. In other words, pass
control is likely to work only in a highly idealized situatio
with the substrate which is either almost perfectly reflect
or perfectly transparent~or perfectly conducting, as was as
sumed by Oron! and even then it will be quite inefficien
energetically.~Intense irradiation may also damage the su
strate, limiting the practically achievable values ofQ0 .!

B. Absorption at the bottom interface

The problems faced by passive control can be overco
by employing active control, which uses nonuniform heati
with intensity changing in response to the deviation of t
interface from the flat profile. The active control is mo
effective when the radiation couples strongly to the inter
cial temperature. Since many liquids are transparent i
wide range of frequencies, it is often easiest to change t
temperature indirectly by heating the substrate. This
proach has not been previously considered in the framew
of radiative heating, although the basic idea is not new: h
flux control using heaters embedded in the substrate
suggested in the context of Rayleigh–Be´nard convection by
Howle.21 Radiative heating is a vastly superior approa
which requires no preparation of the substrate, yet achie
spatial resolution several orders of magnitude higher.

To simplify the discussion, let us assume that the liqu
is completely transparent and the substrate is optically th
d!hs , such that essentially all radiation is absorbed at
liquid–solid interface~optically thin substrates produce e
sentially identical results, but are less efficient energetica
and hence will not be considered here!. The temperature dis
tribution in both layers in this limit is described by the orig
nal equation~15!, but the boundary condition~21! has to be
replaced with

]ZQs~0!5FHs
21@]ZQ l~0!1Q# ~36!

to reflect the extra heat flux. Substitution of the modifi
boundary conditions into~17! yields the interfacial tempera
ture

Q i5
11QF

11BF1BH
. ~37!

This result is very instructive from the control viewpoin
because it directly relates the effect of perturbations on
dynamics to the material properties. For instance, one
easily see that, if the substrate is a very good conductoF
!1, we have]QQ i5O(F). In other words, changes in th
intensity of the radiation have a very small effect on t
interfacial temperature, a situation one would like to avoid
the spatial variation in the intensity is to be used to alter
dynamics. In particular, in the case of a perfectly conduct
substrate, for whichF50, the interfacial temperature be
comes independent ofQ, i.e., we completely loose our abil
ity to control the dynamics. This unfavorable, from contr
perspective, effect provides additional motivation to stu
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the dynamics and stability of liquid films using a more co
plicated model which explicitly includes conduction in th
substrate.

This difficulty could have been predicted, as the pres
arrangement effectively attempts to change the tempera
of one interface of the liquid layer heating the other on
Such an arrangement becomes less efficient as the rel
heat resistance of the liquid layer~compared to the substrate!
increases and a larger fraction of the extra heat flux is
rected toward the bottom of the substrate.

C. Absorption at the top interface

To avoid this difficulty, it is preferable to direct the he
flux right at the location whose temperature we are attem
ing to change, i.e., at the liquid–gas interface. This can
achieved by choosing the frequency of the radiation at wh
the liquid is optically thick,d!hl , such that the dominan
fraction of the radiation is absorbed at the liquid–gas int
face. This case is conceptually similar to the abo
considered case of an optically thick substrate, so we proc
in the same way by replacing the boundary condition~18!
with

2]ZQ l~H !5J2Q, ~38!

while ~21! is left unchanged. Again substituting the modifie
boundary conditions into~17! we obtain

Q i5
11Q~F1H !

11BF1BH
. ~39!

The dependence of the interfacial temperatureQ i on Q in
this case indeed turns out to be very similar to~37! obtained
for absorption at the liquid–solid interface, so these t
ways of applying thermal perturbations are essentia
equivalent from the control standpoint whenF is not small.
For F!1 the latter arrangement clearly has an advantag
the thermal response of the system]QQ i5O(H) does not
vanish even for a perfectly conducting substrate.

We should contrast our approach with the one develo
by Bau,15 who suggestedtemperaturerather thanheat flux
control at the top boundary to suppress the short-wavele
instability leading to Marangoni–Be´nard convection in a liq-
uid layer on a substrate of infinite conductivity. No realis
mechanism to control the temperature directly has been
gested, however, so Bau’s approach has a rather limited p
tical significance.

Summing up, we find that in order to effectively contr
the dynamics via radiative heating, it is preferable to u
radiation with the frequency for which either the liquid or th
solid layer is optically thick~highly absorbing!, and the solid
substrate of finite~and preferably not very high! conductiv-
ity.

IV. EVOLUTION IN THE PRESENCE OF DISTRIBUTED
FEEDBACK

In the following we will assume that the radiation
absorbed at the liquid–solid interface, mainly because
will likely be the case most frequently encountered in pr
tice. This is also the case that is easiest to implemen
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experiments by, e.g., painting the substrate. The other
cases considered previously can be treated in essentially
same way. Substituting~37! into ~24! we obtain the follow-
ing nonlinear evolution equation for the heightH, where the
field Q plays a role of the distributed control parameter:

]TH52E
11QF

K1H
1

M

2B
]XS H2]X

11QF

K1H D
1

2E2

3PD
]XS H3~11QF!

K1H
]X

11QF

K1H D
1

G

3
]X~H3]XH !2

1

3C
]X~H3]X

3H !. ~40!

Linearizing this equation with respect to small deviations
the heightH(X,T)5H0(T)1H1(X,T) and radiation inten-
sity Q(X,T)5Q01Q1(X,T) in a manner similar to Sec. I
we obtain

]TH15
E~11Q0F !

~K1H0!2 H12
M

2B

~11Q0F !H0
2

~K1H0!2 ]X
2H1

2
2E2B

3PD

~11Q0F !2H0
3

~K1H0!3 ]X
2H11

GH0
3

3
]X

2H1

2
H0

3

3C
]X

4H12
EF

K1H0
Q11

MF

2B

H0
2

K1H0
]X

2Q1

1
2E2BF

3PD

~11Q0F !H0
3

~K1H0!2 ]X
2Q1 , ~41!

where the mean height decreases according to

H0~T!52K1A~K11!222E~11Q0F !T. ~42!

Since the evaporation intensity increases by a factor o
1Q0F, the amount of time it takes for the layer to com
pletely evaporate decreases by the same factor:

T05
2K11

2E~11Q0F !
. ~43!

We should comment on the physical significance of the
three terms in~41! ~the first five have been discussed in Se
II !. The first term represents the variation in the evaporat
rate produced by the variation of the interfacial temperatu
The second term represents the tangential stress produce
the thermocapillary effect, while the third term represents
normal stress due to vapor recoil. The first effect is m
effective in controlling the dynamics because it can direc
remove the elevated regions by vaporizing the excess of
liquid, rather than by redistributing the liquid inside the film

As a consequence of translational invariance of the pr
lem the evolution equation~41! is diagonalized in the Fourie
space. Using the Fourier transformsH(k,T)5F@H1(X,T)#
andQ(k,T)5F@Q1(X,T)# of the variations in the height o
the liquid layer and radiation intensity we can transform~41!
into a system of uncoupled linear ordinary differential equ
tions ~ODEs! with time-dependent coefficients

]TH~k,T!5a~k,T!H~k,T!1b~k,T!Q~k,T!. ~44!
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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In other words, the problem of determining the stability
the uniform solution of a partial differential equation~PDE!
~40! is reduced to the problem of determining the stability
a family of uncoupledODEs, which dramatically simplifies
the analysis. Both the spectrum of growth rates of the un
turbed system

a~k,T!5a1~T!1a2~T!k21a3~T!k4 ~45!

and the linear response of the system to perturbations w
describes the effect of irradiation on the growth rates of
disturbance at different wave numbers

b~k,T!5b1~T!1b2~T!k2 ~46!

are polynomials in even powers ofk with coefficients

a1~T!5
E~11Q0F !

~K1H0~T!!2 ,

a2~T!52
GH0

3~T!

3
1

M

2B

~11Q0F !H0
2~T!

~K1H0~T!!2

1
2E2B

3PD

~11Q0F !2H0
3~T!

~K1H0~T!!3 ,

a3~T!52
H0

3~T!

3C
, ~47!

b1~T!52
EF

K1H0~T!
,

b2~T!52
MF

2B

H0
2~T!

K1H0~T!
2

2E2BF

3PD

~11Q0F !H0
3~T!

~K1H0~T!!2 .

Examination of these coefficients confirms our previous
gument that laterally uniform heating tends to further des
bilize the system. Indeed, the zeroth-order coefficienta1 is
always positive and increases with increasing heating in
sity Q0 , making the system unstable toward long wavelen
disturbances. The quadratic coefficienta2 also increases with
increasingQ0 ~at least for pure liquids, for whichM.0!
extending the range of unstable wave numbers. In fact,
thin enough films~i.e., whenuGu!1! the effect of gravity
can be ignored, so thata2 can be assumed strictly positiv
for M.0.

The above-presented description includes the class
Marangoni–Be´nard convection as a special case in the lim
of vanishing evaporation~B→0, K→`!. Suppression of the
long wavelength instability leading to Marangoni–Be´nard
convection has been considered by Oret al.,14 who ignored
conduction in the substrate and instead assumed a pred
mined temperature at the liquid–solid interface in th
analysis. Evaporation introduces some nontrivial physical
fects which are absent in the case of thermal convection.
consider them next in the limits of slow and fast evaporati

A. Slow evaporation

Let us consider what happens when the evaporation
is small but not negligible. By this we mean that the dist
bances grow on a time scale much smaller than the di
pearance timeT0 , rather than that the disappearance tim
Downloaded 08 Dec 2002 to 130.207.140.209. Redistribution subject to 
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itself is large. Since the first term in~41! changes on the
same time scale as the meanH0 , this implies that eitherM
@EB ~thermocapillarity dominates! or PD(K11)!EB(1
1Q0F) ~vapor recoil dominates!. In both cases we can ig
nore the change in the heightH0(T) with time, so that~44!
reduces to a system of ODEs,

]TH~k,T!5a~k!H~k,T!1b~k!Q~k,T!, ~48!

with time-independent coefficients. The most general lin
relationship between the deviationH1(X,T) from the flat
profile and the variation in heating intensityQ1(X,T) which
leaves the system~44!, and therefore~48!, uncoupled is

Q~k,T!5r ~k,T!H~k,T!, ~49!

where the~as yet undetermined! coefficient of proportional-
ity r is called the feedback gain. In the limit of slow evap
ration both the growth rates and the response function
time-invariant, so without loss of generality the gain can
made time-invariant as well, and each of the equations~48!
can be immediately integrated to yield at timeT,

H~k,T!5H~k,0!exp@~a~k!1b~k!r ~k!!T#. ~50!

As we will see later, the control problem is crucial
affected by the structure of the response functionb(k). Sub-
stitutingH0(T)51 into ~47! one concludes thatb1 is always
negative, while the sign ofb2 depends on the sign and rela
tive magnitude ofM . For pure liquidsM is positive, sob2 is
negative andb(k) is negative-definite. However, for mix
tures and solutions it is not unusual to have the surface
sion increasewith temperature,]us.0, so thatM,0. If the
thermocapillary effect opposes, and is stronger than, the
fect of vapor recoil, we can haveb2.0. If b2 is positive,
b(k) is no longer negative-definite and will pass throu
zero at some wave number

kb5Aub1b2
21u. ~51!

At kb the effects of differential evaporation, thermocapilla
ity, and vapor recoil produced by the imposed variation
the temperature cancel each other. This phenomeno
unique to the evaporatively driven convection and has
analog in the case of thermally driven Marangoni–Be´nard
convection.

The spectrum of growth rates will also pass through z
at the marginally stable wave number

ka5A2
a2

2a3
2

1

2a3
Aa2

224a1a3, ~52!

which defines the upper limit of the band of unstable Four
modes,uku,ka . It is easy to check thatkb is always greater
than ka , so that the Fourier mode with wave numberkb is
always stable. It is interesting to note, however, thatkb'ka

in the limit when the gravity and surface tension are neg
gible, such as when the liquid film is intensively heated
radiation.

B. Fast evaporation

When the disturbances grow on the time scale com
rable to the disappearance timeT0 , the change in the mea
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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heightH0(T) cannot be ignored. However,~44! can be inte-
grated, if we again assume linear dependence~49! between
H1 and Q1 . In particular, for time-invariant feedback ga
we obtain an expression similar to~50! for the amplitude of
the Fourier mode with wave numberk at the time required
for a uniform film to completely evaporate:

H~k,T0!5H~k,0!exp@a~k!1b~k!r ~k!#. ~53!

We have to make a note regarding the validity of th
solution. Since the thickness of the liquid layer is genera
nonuniform, in certain regions the film will disappear soon
than the timeT0 is reached. This means that Eq.~41! and its
solution ~53! are uniformly valid only until the timeT08
,T0 at which the interface first touches the substrate.
cause the thickness of the film cannot become negative,~41!
has to be augmented with

]TH1~X,T!50 ~54!

for X such thatH1(X,T)<2H0(T). However, since the
limit T→T0 is nonsingular,~53! provides a good approxima
tion to the height profile at the timeT08 as long asT02T08
!T0 , i.e., in the limit of small deviation from flat profile.

Although the solution~53! is similar in form to ~50!,
a(k) and b(k) are now the integrated, rather than instan
neous, growth rates and response function. They also h
the functional form given by~45! and~46!, but with different
coefficients:

a15 ln~11K21!,

a252
G~5K14!

60E~11Q0F !
1

M

4EB
~122K12K2a1!

1
EB~11Q0F !

3PD~K11!
~123K26K216K2~K11!a1!,

a352
5K14

60EC~11Q0F !
, ~55!

b152
F

11Q0F
,

b252
MF

6EB~11Q0F !
2

EBF

9PD
~223K16K226K3a1!.

In this casea1 is again strictly positive, indicating abso
lute instability at smallk. The logarithmic dependence ofa1

on K means that differential evaporation is a very wea
destabilizing effect. Even though its physical significan
might be rather small compared to thermocapillarity and
por recoil in typical conditions, we include it because of
dominance at small wave numbers. Furthermore,a3 andb1

are always negative, while the sign ofa2 andb2 depends on
the sign of the Marangoni number,M ~all K-dependent ex-
pressions in parentheses are strictly positive!. The case of
fast evaporation is less trivial~and hence more interesting!
from the control perspective than the case of slow evap
tion, however, because nowkb can lie inside the unstabl
band uku,ka @ka and kb are still given by~52! and ~51!,
respectively#. For instance, if vapor recoil, gravity, and su
Downloaded 08 Dec 2002 to 130.207.140.209. Redistribution subject to 
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face tension are negligible compared to the thermocapil
effect, which is the case for sufficiently thin films, the rati

kb
2

ka
2 5

3

2

122K12K2 ln~11K21!

ln~11K21!
~56!

is smaller than unity for anyK ~see Fig. 2!, i.e., kb,ka .
If time-dependent feedback is chosen, the evolut

equations cannot be explicitly integrated. This does not p
any fundamental problems for the analysis, although the c
trol problem does become somewhat more complicated
particular, because the instantaneous coefficients in~47! de-
pend on time through the mean thickness of the liquid la
H0(T), the band of unstable modesuku,ka(T) will change
in time. Althoughb1(T) is negative at all times, the sign o
b2(T) in general depends on time. As a consequence,
sign of the linear responseb(k,T) can change for certain
wave numbers as the liquid layer becomes thinner due
evaporation. However, contrary to the case of time-invari
feedback gain, ifb(k,T) does change sign at some wa
numberkb(T), the corresponding Fourier mode will alway
be instantaneously stable,kb(T).ka(T), regardless of the
values of physical parameters.

V. THICK SUBSTRATE

In a typical coating application the thickness of the su
strate will be much larger than the thickness of the liqu
layer, but what is more important,Hs could be comparable
to, or even larger than, the wavelength of a characteri
unstable disturbance,l'2p/ka , where ka is determined
from ~52! and ~55!. If the thickness of the substrate is n
small compared tol, the approximation~17! does not ad-
equately describe the temperature profile in the substrate
to non-negligible heat flux in the horizontal direction. It h
to be replaced with the exact solution~16! which, when writ-
ten in the form

Qs5E @d~k!1ss~k!sinhk~Z1Hs!#e
ikXdk, ~57!

automatically satisfies the boundary condition~22!. The liq-
uid layer is still considered thin, so it is appropriate to u
~17!, which can be written in a form similar to~57!:

FIG. 2. The ratio of the wave numbers at which the integrated respo
function b(k) and spectrum of growth ratesa(k) pass through zero as a
function of parameterK in the case of dominant thermocapillarity.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Q l5E @cl~k!1sl~k!Z#eikXdk. ~58!

The boundary conditions~20! and ~21! can also be replace
with their Fourier space counterparts in a straightforw
way:

cl~k!5d~k!1ss~k!sinhkHs , ~59!

ss~k! k coshkHs5FHs
21@sl~k!1Q~k!1Q0d~k!#. ~60!

In addition to the above-mentioned boundary conditions,
solution has to satisfy conditions~18! and~19!, which can be
combined into a single equation

2]ZQ l~H !5BQ l~H !. ~61!

This boundary condition does not have a simple represe
tion in the Fourier space, because the heightH is itself a
function ofX. However, if we assume small deviations fro
a uniform height, at the leading order~61! can be written as

2sl~k!5B@cl~k!1sl~k!H0#1O~H~k!!. ~62!

Solving ~59!, ~60!, and ~62! one obtains the distribution o
the temperature at the liquid–gas interface

Q i5
11Q0F

11BH01BF

1E FQ~k!

kHs cothkHs~11BH0!1BF
eikXdk. ~63!

This expression generalizes~37! by including the effects of
spatially varying intensity of radiation, but ignoring, at th
leading order, the effects of spatially varying thickness of
liquid layer. Looking back at the structure of the evolutio
equation~41! obtained in the limit of thin substrate, we se
that it has two groups of terms. The first five terms that ma
up a(k,T) in ~44! only account for the variation inH and
ignore the variation inQ, while the last three, making u
b(k,T), ignore the variation inH and only account for the
variation inQ. This means that the evolution equation for
liquid layer on a thick substrate is identical in its structure
~44!, but the response function is now defined by

b~k,T!5
~B211F1H0~T!!~b1~T!1b2~T!k2!

kHs cothkHs~B211H0~T!!1F
~64!

rather than~46!, with the coefficientsb1(T) andb2(T) still
determined by~47!. Clearly ~64! reduces to~46! when the
thickness of the substrate is much less than the wavele
of the disturbance,kHs!1. Summing up, we see that th
magnitude of the response to spatial variation in the hea
intensity decreases with increasing thickness of the subst
However, ifb(k,T) does change sign, it will do so exactly
the wave number~51! calculated in the assumption of a th
substrate.

The result~64! is easy to interpret: high wave numbe
correspond to very dense patterns of ‘‘hot’’ and ‘‘cold’’ spo
imposed on the system. When the thickness of the solid la
is comparable to the size of such spots, the heat can ‘‘sh
circuit’’ through the substrate, washing out the resulti
variation in the temperature, compared to the thin limit ca
Downloaded 08 Dec 2002 to 130.207.140.209. Redistribution subject to 
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where essentially all heat transfer is between the top and
bottom of the solid layer. Smaller variation in the tempe
ture, in turn, leads to a weaker response of the system.

Since the structure ofb(k,T) is essentially independen
of the thicknesshs , in the remainder of the paper we will us
the simpler expression~46! which is valid in the limit of thin
substrate to simplify the algebra. Generalization to the c
of arbitrary thickness is straightforward.

VI. ACTIVE CONTROL OF INTERFACIAL
INSTABILITIES

As we saw previously, it was rather easy to predict t
effect of laterally uniform heating, described by the comp
nentQ0 , on the dynamics. However, the effect of introdu
ing spatial variationQ1(X,T) is much less obvious. In fact
the structure of the linear responseb(k) turns out to be quite
nontrivial, producing a number of unexpected results. M
significantly, nonuniform heating can produce the th
mocapillary effect opposing the effect of vapor recoil a
differential evaporation. The balance of these three effe
will determine whether, and how, the interfacial instabili
can be controlled.

The idea of active control is to choose and apply a fe
back @hereQ1(X,T)# that would stabilize the flat profile by
converting the exponentially growing modes~50! or ~53!
into exponentially decaying ones. This requires finding so
feedback gainr (k) satisfying

a~k!1b~k!r ~k!,0, ;k. ~65!

Let us study how the solutions of this inequality depend
the structure ofa(k) andb(k) in more detail. The analysis o
the control problem with time-varying feedback gain is co
ceptually similar, so we will concentrate mostly on the tim
invariant feedback in the next few sections.

A. Pure liquids

We have determined previously that for pure liquids bo
b1 andb2 are negative, sob(k) is negative-definite. In this
case we can easily see that a naive approach of heating
cooler~elevated! regions of the films and cooling the warme
~depressed! regions of the film, as suggested by Oret al.,14

successfully suppresses the interfacial instability even in
presence of evaporation. Indeed, let us apply a feedback

Q1~X,T!5rH 1~X,T!, ~66!

locally ~in real space! proportional to the deviation of the
interface from its mean position—we will refer to it as ‘‘lo
cally proportional’’ from now on.~In fact, Or et al. have
suggested the use of weakly nonlinear control, with differ
gains corresponding to the first, second, and third power
the interfacial deflection. Our linear analysis ignores t
higher order gains.! This feedback law corresponds to
wave-number-independent gainr (k)5r in Fourier space. If
the constantr is chosen large enough to satisfy~65!, we
ensure that each Fourier mode is stable, so the devia
from the flat profile decreases exponentially in time.

Sinceb(k) is negative-definite,~65! is equivalent to
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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r . f ~k![2
a~k!

b~k!
, ;k. ~67!

The maximal value off (k) immediately gives the minima
value of the feedback gain that achieves stabilization:

r .r min , ~68!

wherer min5f(kd) andkd
2 is the greater of 0 and

2
b1

b2
1

1

a3b2
Aa3

2b1
22a2a3b1b21a1a3b2

2. ~69!

It is important to note thatr is not bounded from above. Thi
choice of the feedback law is not unique~and certainly not
optimal from many perspectives!, but being extremely
simple has its advantages for experimental implementat
We will consider other possibilities in the following in th
context of mixtures.

B. Mixtures

Mixtures and solutions can have a negative Marang
number, sob2 could be positive as well as negative, whileb1

is always negative. Ifb2 is negative, the situation is identica
to the case of pure liquids. Ifb2 is positive, the situation is
much more interesting. In the latter case,~65! reduces to the
following system of inequalities:

r ~k!, f ~k!, uku,kb ,
~70!

r ~k!, f ~k!, uku.kb .

As long askb.ka ~this case is illustrated in Fig. 3! one
can show that the system can still be stabilized by choos
locally proportional feedback~66!: inequality ~65! has a
range of wave-number-independent solutions

r min,r ,r max, ~71!

wherer min5f(kd), r max5f(kc), and

kc
252

b1

b2
2

1

a3b2
Aa3

2b1
22a2a3b1b21a1a3b2

2. ~72!

This scenario describes, for example, the case of slo
evaporating thin films. As the heating intensity increas
kb→ka . As a consequencekd→kc , so the range~71! shrinks

FIG. 3. Spectrum of growth ratesa(k), linear responseb(k), and their ratio
f (k) for kb.ka .
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to a point. In this situation locally proportional feedback h
a serious downside: control becomes extremely sensitiv
intrinsic noise, modeling and measurement errors, i.e., i
not robust in the language of control theory. The reason f
this is that wave-number-independent feedback which is
bilizing for unstable modes becomes destabilizing for
stable ones due to the change in the sign of the respo
function, resulting in the amplification of small disturbanc
with wave numbers close to the marginal wave numberka .

The casekb,ka , corresponding to time-invariant feed
back control of quickly evaporating thin films, is much mo
complicated and deserves a closer look. The wave numb
which b(k) vanishes is rather special: atk56kb ~53! re-
duces to

H~k,T0!5H~k,0!exp@a~k!#, ~73!

i.e., the feedback has no effect on the dynamics. Close
6kb this effect is very small, so perturbations of very lar
magnitude,O(1/uk6kbu) to be exact, have to be applied t
produceO(1) changes in the dynamics. In the language
control theory the system becomesweakly controllablein the
vicinity of, anduncontrollableat, 6kb . This poses little dif-
ficulty whenkb lies outside the band of unstable wave nu
bers,kb.ka , but causes significant problems whenkb hap-
pens to fall inside this band. Indeed, in order to suppress
instability we only need the ability to influence theunstable
modes.~Strictly speaking, influence over a certain range
stable modes might also be necessary to deal with thecontrol
spillover effect,22 if a nonlinear control is desired. It might
also be needed in order to design linear control with cert
desired properties as we will see in Sec. VII.!

As illustrated in Fig. 4, if the uncontrollable mode lie
inside the unstable band,~65! cannot be satisfied by a feed
back gain independent of the wave number, so locally p
portional feedback fails. In principle, all unstable modes~ex-
cept k56kb , of course! can still be converted into stabl
ones at the expense of allowing the feedback gain to dep
on the wave numberk. The price one has to pay for this i
that the feedback law becomes delocalized in the real sp

FIG. 4. Spectrum of growth ratesa(k), linear responseb(k), and their ratio
f (k) for kb,ka .
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Q1~X,T!5E R~X2X8!H1~X8,T!dX8, ~74!

where according to the convolution theorem, the ker
R(X) is given by the inverse Fourier transform ofr (k):

R~X!5
1

2p E r ~k!eikXdk. ~75!

Since f (k) diverges at6kb , the time-invariant feedback
gain r (k) would have to diverge as well. The perturbatio
Q(k,T), however, is bounded~for instance, the total radia
tion intensity cannot be negative, souQ1(X,T)u,Q0).
Therefore, in a laterally unbounded system disturbances
wave numbers close tokb will grow uncontrollably and
eventually the film will rupture, producing dry spots wit
spatial periodicity 2p/kb . A laterally bounded system, o
course, might not support any modes with wave numb
close tokb , if its size is sufficiently small.

In fact, the existence of the uncontrollable mode is no
property of the system, but rather a consequence of
choice of time-invariant feedback. The above-described r
turing instability can be easily prevented, if time-varyin
rather than time-invariant, feedback gain is used. In rea
because the height of the liquid layer will be changing
time due to the evaporation, the coefficients~47! will be
changing too, so genericallykb(T) will be time-dependent.
In order to make the flat profile stable using time-varyi
feedback, one simply has to chooser (k,T) satisfying

E
T

T0
b~k,t!r ~k,t!dt,2E

T

T0
a~k,t!dt ~76!

for every 0<T,T0 instead of ~65!. The existence of
bounded solutions to~76! is guaranteed, sincekb(T)
.ka(T), as we have determined in Sec. IV. It is easiest
satisfy this inequality with a feedback gain that simp
changes sign whereverb(k,T) changes sign to ensure th
the action of the feedback is stabilizing for everyk. In fact,
~76! should have bounded solutions even ifkb(T),ka(T),
as long askb(T) is nonconstant.

VII. SPATIAL LOCALIZATION

As the analysis of Sec. VI suggests, locally proportio
feedback @which has a singularly localized kernel,R(X)
5rd(X)# is not always robust and can fail in rather harmle
situations. In this section we consider an alternative appro
of using nonlocal feedback~74! for control of interfacial in-
stabilities. We have already seen that~65! does not uniquely
determine the feedback law, it is only a necessary condit
The selection has to be made using some additional crite
It is useful to define the feedback which is optimal in som
sense. For instance, one could require that the least am
of energy be expended on stabilizing the system, or that
terminal deviation from the uniform state be minimal. Alte
natively, one could look for a feedback law that is mo
localized ~this requirement, however, still does not spec
the feedback uniquely!.

The nonlocal nature of the feedback means that the
turbation applied at some spatial locationX depends on the
Downloaded 08 Dec 2002 to 130.207.140.209. Redistribution subject to 
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state of the system at some other locationX8. It is important
to understand the degree of spatial~de!localization, i.e., how
fast the kernelR(X2X8) decays with the distanceuX
2X8u, and how this localization is related to the structure
the response functionb(k) and the choice of the criterion
used to select some particular feedback law out of all po
bilities satisfying ~65! @or ~76!#, because it determines th
complexity of our controller. For instance, it determines ho
much information has to be processed in order to calcu
the perturbation at a single spatial location.

A. Time-invariant feedback

To get an idea of what kinds of nonlocal kernels cou
arise, let us begin by restricting our attention to the tim
invariant problem which arises in the limit of slow evapor
tion. For simplicity, let us ignore the effect of surface te
sion, which is always stabilizing, and find the feedback g
that produces the same convergence ratea0 for everyk, such
that

a11a2k21~b11b2k2!r ~k!52a0 . ~77!

Clearly, this requires

r ~k!52
a2

b2
2

a01a12a2b1b2
21

b11b2k2 . ~78!

If b(k) is negative-definite (b2,0), the Fourier transform
~75! yields an exponentially decaying kernel

R~X!52
a2

b2
d~X!1

a01a12a2b1b2
21

2Ab1b2

exp~2kbuXu!.

~79!

Because of such fast~exponential! decay, in practice the ker
nel can be truncated at a distance of order few character
lengths,kb

21 , with no loss in performance.
Alternatively, if b(k) changes sign at6kb (b2.0), the

gain ~78! becomes singular at these points. One can ne
theless formally evaluate the Fourier transform using cont
integration in the complexk-plane to obtain

R~X!52
a2

b2
d~X!1

a01a12a2b1b2
21

4A2b1b2

sin~kbuXu!. ~80!

Clearly, in this case the kernel is completely delocalized
does not decrease with the distanceuXu. This complete delo-
calization is a direct consequence of the singularity, indic
ing the loss of controllability. Indeed, if a disturbance wi
wave numberkb is present, the integral~74! will diverge,
indicating that feedback of infinite magnitude is required
achieve the desired rate of decay.

More generally, one would expect that, ifkb lies in the
unstable band,kb,ka , the kernel will necessarily be com
pletely delocalized regardless of the particular choice of
feedback law. On the other hand, if the Fourier modekb is
stable, the feedback gain does not have to diverge. In f
one could always choose a wave-number-independent f
back gain, yielding a kernel localized at a single point.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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In fact, by shifting the integration contour in the com
plex k-plane it can be shown23 that, if r (k) is analytic in a
strip uI(k)u,b and bounded on the real axis,I(k)50, the
kernel can be represented in the form

R~X!5R0d~X!1R1~X!, ~81!

whereR05 limuku→`r (k) andR1(X) decays exponentially a
a rate faster than anya,b:

R1~X!eauXu→0, uXu→`. ~82!

For instance, ifb2,0, the poles ofr (k) lie on the imaginary
axis andb5uI(6 ikb)u5kb , so ~79! is seen to be just a
special case of the more general relationship~81!. Similarly,
for b2.0, the poles lie on the real axis, sob5uI(kb)u50,
and we obtain a delocalized kernel~80!, which does not de-
cay asuXu→`. @The fact thatb50 does not mean, howeve
that the kernel should becompletelydelocalized: we will see
later that, if r (k) has nopoleson the real axis,R(X) will
decay as a power ofX.#

Additional restrictions on the domain of analyticity a
imposed, ifr (k) is required to satisfy certain optimality con
ditions. For instance, practical considerations might requ
that the time-averaged and/or terminal deviation of the liq
film from the flat profile is minimized. An optimal feedbac
achieving this goal and subject to the physical constrain
finite power available for control can be obtained by mi
mizing the following cost functional:

V@r #5E
0

T0E
2`

`

@cH1
2~X,T!1Q1

2~X,T!#dX dT

1E
2`

`

fH1
2~X,T0!dX, ~83!

where c>0 and f>0 are costs associated with tim
averaged and terminal deviation from the flat profile, resp
tively, per unit cost of the applied control signal.~This mini-
mization problem corresponds to the linear-quadra
regulator problem24 of control theory.!

Conventional control theoretic approach calls for mak
the problem finite-dimensional at this stage by employing
formalism of Galerkin projection onto a finite number
Fourier modes. This involves fixing the values of all para
eters and solving the resulting optimization problem num
cally. This approach has recently been used by
Cortelezzi, and Speyer25 in the context of Rayleigh–Be´nard
convection. The most serious drawback of this approac
the lack of generality common to all numerical methods.
forcing special choices of parameters it obscures the con
tions between the geometrical structure of the problem,
optimality criteria, and the structure of the feedback.

Considerable progress can be made without resortin
numerics, if we allow our problem to remain infinite
dimensional. We can readily rewrite the functional~83! in
the Fourier space as
Downloaded 08 Dec 2002 to 130.207.140.209. Redistribution subject to 
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V@r #5E
0

T0E
2`

`

@cuH~k,T!u21uQ~k,T!u2#dk dT

1E
2`

`

fuH~k,T0!u2dk. ~84!

In the case of slow evaporation it is appropriate to takeT0

5` andf50. Minimization of the functional~84! subject to
the constraints~48! and ~49! with time-invariant feedback
results in an infinite system of scalar Riccati equations

2b2~k!p2~k!12a~k!p~k!1c50, ~85!

whose positive-definite solutions give the feedback g
r (k)52b(k)p(k) for each wave numberk:

r ~k!52
a~k!1Aa2~k!1cb2~k!

b~k!
. ~86!

When the analytic continuation ofr (k) is considered the
branch of the square root which is positive on the real a
has to be taken. Despiteb(k) appearing in the denominato
r (k) does not necessarily have poles at the zeroes ofb(k).
Close to the zeroes ofb(k) ~86! can be expanded as

r ~k!52
a~k!1Aa2~k!

b~k!
1

c

2

Aa2~k!

a2~k!
b~k!1¯ , ~87!

sor (k) has no poles, if the zeroes ofb(k) lie on the real axis
(b2.0) and the Fourier modekb is stable (kb.ka). On the
other hand,r (k) generally has four pairs of branch poin
determined by

a2~k!1cb2~k!50, ~88!

some of which can coalesce forming branch cuts, or disc
tinuities, that cross the real axis. In generalb is determined
by the imaginary part of either a pole or a branch po
closest to the real axis.

When the cost of control is finite, 0,c,`, none of the
branch points lie on the real axis, because genericallyka

Þkb . If b2 is negative, there are two poles lying on th
imaginary axis, so 0,b<kb andR(X) decays exponentially
If b2 is positive, butkb.ka , the poles disappear, soR(X)
will again decay exponentially fast. As eitherkb→ka or c
→0, several of the branch points approach the real axis
thatb→0. Forkb,ka , two poles are created on the real ax
resulting in a completely delocalized kernel.

In the limit of ‘‘expensive’’ control,c50, a couple of
branch points coalesce atka and another at2ka , producing
two discontinuities. As a result, on the real axis we have

r ~k!5H 22a~k!/b~k!, uku,ka

0, uku.ka ,
~89!

so the feedback gain vanishes for all stable modes. If
zeroes ofb(k) lie on the real axis, andkb,ka , the gain~89!
has poles at6kb , so the feedback gain diverges and w
again obtain a completely delocalized kernel. If, on the ot
hand, the zeroes ofb(k) are real but lie outside the band o
unstable modes,kb.ka , the gain has no poles, only the di
continuities crossing the real axis at6ka . In either caseb
50.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Generally, if the feedback gain is given by a sufficien
smooth even function for unstable modes, e.g.,r (k)
PC1(2ka ,ka), and vanishes for all stable modes, one c
use integration by parts to show that

R~X!5
1

p E
0

ka
r ~k!cos~kX!dk

5
r ~ka!

p

sin~kaX!

X
1

r 8~ka!

p

cos~kaX!

X2

1O~X23!, ~90!

so that the kernel will be localized, with a power law, rath
than exponential, rate of decay

R~X!uXua→0, uXu→`, ~91!

wherea,2 @we cannot havea>2 because of the inequalit
~70!, which requires that eitherr (ka)Þ0 or r 8(ka)Þ0#. In
particular, for the optimal feedback gain~89! one obtains

R~X!52
2

p

a8~ka!

b~ka!

cos~kaX!

X2 1O~X23!, ~92!

provided, of course,kb.ka .
In principle, as long askb.ka , one can always obtain

kernelR(X) exhibiting power-law decay with an arbitraril
large exponenta, even if the gainr (k) has compact support
r (k)50 for uku.ks.ka . This requires a tradeoff: the feed
back should be applied not only to the unstable modes,
also to a range of stable modes,ka,uku,ks , and it should
be sufficiently smooth in the Fourier space, i.e.,r (k)
PCn21 with n equal to the integer part ofa.

As we mentioned previously, the kernelR(X2X8) of
the spatial convolution operator determines how much in
mation from distant regionsX8 of the system we need t
have ~and use! in order to suppress the instability at an
given locationX. If the control is ‘‘cheap,’’ the kernel is very
localized, i.e., we only need local information. In oth
words, we can affordnot using information from regions tha
are far away, but instead use a ‘‘brute force’’ approach
control the dynamics with strong perturbations. In the op
site case of ‘‘expensive’’ control, small intelligently chose
perturbations are used to guide the system in the des
direction. This intelligent approach, however, requires
much more extensive knowledge of the state of the syst
As a consequence, the respective kernel has to be more
localized, extending to remote locations that are further aw
from the point where the feedback is applied.

B. Time-varying feedback

We have learned previously that time-invariant feedba
can experience serious difficulties when disturbances g
on the time scale comparable to the disappearance timeT0 .
These difficulties are easily resolved, if time-varying fee
back gain is used instead. In fact, optimal~in the sense de
fined previously! feedback will always be time-dependent
long as the spectrum of growth rates and the response f
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tion vary in time. The solution to the time-varying proble
~84! is given by a generalization of the Riccati equatio
~85!:

2 ṗ~k,T!52b2~k,T!p2~k,T!12a~k,T!p~k,T!1c,
~93!

p~k,T0!5f.

The algebraic equations are thus replaced by nonlinear o
nary differential equations. If we leaveT0 finite and setc
50, which is a natural choice for the case of fast evapo
tion, i.e., require that the terminal deviation from the fl
profile be minimal, these equations can be simplified cons
erably by using the ansatzp(k,T)51/s(k,T):

ṡ~k,T!52a~k,T!s~k,T!2b2~k,T!,
~94!

s~k,T0!5f21.

The solution of ~94! defines the feedback gainr (k,T)
52b(k,T)/s(k,T) which is both time- and wave-numbe
dependent:

r ~k,T!52
b~k,T!u2~k,T!

f211*T
T0b2~k,t!u2~k,t!dt

. ~95!

The evolution operator

u~k,T!5expF E
T

T0
a~k,t!dtG ~96!

can be explicitly evaluated and has the following structur

u~k,T!5exp@u1~T!1u2~T!k21u3~T!k4#, ~97!

where the time-dependent coefficients are given by

u1~T!5 ln~11K21H0~T!!,

u2~T!52
G~5K14H0~T!!H0

4~T!

60E~11Q0F !
1

M

4BE
~H0

2~T!

22KH0~T!12K2u1~T!!

1
EB~11Q0F !

3PD~K1H0~T!!
@H0

3~T!23KH0
2~T!

26K2H0~T!16K2~K1H0~T!!u1~T!#, ~98!

u3~T!52
~5K14H0~T!!H0

4~T!

60EC~11Q0F !
.

As expected,ui(0)5ai for i 51, 2, 3, whereai are the inte-
grated coefficients ofa(k,T) defined in~55!.

The integral in~95! cannot be evaluated explicitly. In
certain special cases~e.g., in the limit of slow evaporation!
one can obtain a good approximation using the saddle-p
method. Alternatively one can employ numerical integratio
However, even without making this last step a number
important conclusions can be drawn. First of all, the optim
feedback~95! is wave-number-dependent, so its kernel w
necessarily be nonlocal. Furthermore, its kernel will alwa
decay exponentially fast in real space, sincer (k,T) is ana-
lytic on the realk-axis. This is to be expected: we hav
determined thatkb(T).ka(T) for all T. Finally, the optimal
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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feedback gain will change sign whereverb(k,T) changes
sign, also in agreement with our expectations.

A stabilizing time-varying feedback can be easily o
tained analytically, if optimality is not required. Indeed,
order to satisfy~76! it is sufficient to choose a feedback ga
which makes the growth rate of the perturbed system ne
tive at each instant in time

a~k,T!1b~k,T!r ~k,T!,0. ~99!

This brings us back to the time-invariant problem conside
previously: most of the results obtained in the preceding s
tions can be naturally generalized by merely replac
growth ratesa(k) and the response functionb(k) with their
time-dependent counterparts. In particular, since eit
b(k,T) has no zeroes or its zeroes correspond to insta
neously stable modes, one could always choose a w
number-independent feedbackr (T) producing the kerne
R(X,T)5r (T)d(X) which is localized at a point. Ifb(k,T)
is not negative-definite, locally proportional feedback has
adverse effect on the stability of the modes with wave nu
bers uku.kb(T). To get rid of this effect it makes sense
choose the gain in the formr (k,T)52b(k,T)p(k,T) with
somep(k,t).0, such that the gain changes sign where
the linear response changes sign, so the net result is alw
stabilizing. Then anyp(k,t) that satisfies the following two
conditions

p~k,T!.
a~k,T!

b2~k,T!
, uku,ka~T!, ~100!

p~k,T!k2→const,`, uku→`, ~101!

will achieve stabilization. Such feedback will be both wav
number- and time-dependent, so its kernel will be nonlo
with exponential or power law decay, depending on
smoothness properties ofp(k,T).

VIII. SUMMARY

A few remarks concerning the problem of controlling t
evaporatively driven instability are now in order. First of a
we have determined that this type of instability could
effectively suppressed by applying distributed feedba
through thermal perturbations. Such perturbations can
easily produced by irradiating the liquid film and/or the su
strate with a spatially modulated source of visible, infrar
or microwave radiation. The frequency of radiation shou
be tuned to produce the desired absorption characteris
The sensing can also be implemented rather easily. L
interferometry or shadowgraphy can be used to measure
local thickness of the liquid film, if it is transparent. Othe
wise, thermal imaging could be employed to calculate
thickness from the surface temperature measurements~the
feedback can also be easily reformulated in terms of the
viation of the temperature from its mean value!.

The evaporation brings a new dimension into the con
problem, compared to the relatively well studied case of th
mally driven Marangoni–Be´nard convection. One of the
most important results of the above-presented analysis is
in certain cases the simple noise-cancellation approach
sulting in locally proportional time-invariant feedback do
Downloaded 08 Dec 2002 to 130.207.140.209. Redistribution subject to 
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not work well or does not work at all. In those cases we
forced to use either a more complicated nonlocal tim
invariant feedback, or switch to a time-varying feedback,
cal or nonlocal, depending on the physical parameters of
liquid. To be precise, the degree of spatial localization of
feedback law is defined by the control goals, subject to
limiting conditions imposed by the physical parameters.

Proper modeling of the system with feedback requi
using the substrate of finite conductivity and finite thickne
rather than imposing a constant temperature or constant
boundary conditions at the liquid–solid interface. Explic
modeling of the gas layer, on the other hand, appears to
unnecessary. Even with these complications, control of
long-wavelength evaporative instability represents a uni
problem from a mathematical perspective. It is sufficien
rich to produce a variety of qualitatively different regime
but at the same time simple enough to allow explicit analy
cal solutions in most cases.

Finally, although quite a few assumptions and simpl
cations were made in deriving the evolution equations a
the feedback laws, most of them were rather technical
could be relaxed at the expense of making the algebra a
more lengthy. None of the important conclusions sho
change though. One possible exception is neglecting the
fect of the composition ofn-component liquids on the physi
cal parameters~density, viscosity, and so on!. The proper
treatment of such liquids would include the evolution equ
tions for the concentration of each of the components, yie
ing a system ofn PDEs in the lubrication approximation
These PDEs will still diagonalize in the Fourier space due
the translational invariance of the system, but instead o
one-dimensional control problem we had to solve for ea
wave number, we would end up with ann-dimensional prob-
lem. Solution of matrix Riccati equations is a much le
trivial task, even in the time-invariant case. More importa
the existence of a solution is predicated on the controllabi
of all degrees of freedom: for instance, it is far from obvio
that thermal perturbations will be effective in controlling th
concentration profiles of multiple components. This proble
is the subject of further investigation.
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