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Contact line instability and pattern selection in thermally driven liquid films
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Liquids spreading over a solid substrate under the action of various forces are known to exhibit a
long wavelength contact line instability. We use an example of thermally driven spreading on a
horizontal surface to study how the stability of the flow can be altered, or patterns selected, using
feedback control. We show that thermal perturbations of certain spatial structure imposed behind the
contact line and proportional to the deviation of the contact line from its mean position can
completely suppress the instability. Due to the presence of mean flow and a spatially nonuniform
nature of spreading liquid films the dynamics of disturbances is governed by a non-normal evolution
operator, opening up a possibility of transient amplification and nonlinear instabilities. We show that
in the case of thermal driving the non-normality can be significant, especially for small wavenumber
disturbances, and trace the origin of transient amplification to a close alignment of a large group of
eigenfunctions of the evolution operator. However, for values of noise likely to occur in experiments
we find that the transient amplification is not sufficiently strong to either change the predictions of
the linear stability analysis or invalidate the proposed control approach. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1566958#
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I. INTRODUCTION

Driven spreading of liquid films is a process which o
curs in numerous industrial coating applications, such
spin-coating of hard drives, so understanding its dynam
and learning to control it is very important. For instanc
instabilities which arise during the spreading of the liquid
the solid substrate can lead to nonuniform coverage,
versely affecting the quality of produced coating. Driv
spreading of thin films and patterning also have import
implications for microfluidics.

Driven spreading of liquid films under the action
gravity,1,2 centrifugal acceleration,3 thermocapillary effects,4

or a combination thereof5 has been extensively studied in th
literature. Stability analysis of such flows has attracted
most attention and the mechanism of the linear instability
now well understood. Considerable progress has also b
reached in feedback control offlat liquid layers,6–8 whose
dynamics is governed by normal differential operators.
tempts to influence the stability of spreading films have
far been limited to nonfeedback control achieved throu
either imposing an externally generated counterflow9 or
chemically patterning the substrate.10,11

This study represents the first theoretical treatment of
feedback control problem for spreading films. The spatia
nonuniform nature of spreading films and the presence
mean flow make the control problem much more diffic
compared to the case of flat stationary films, because
dynamics of disturbances in spreading films is governed b
non-normal evolution operator and thus requires a m
careful analysis. For instance, liquid films flowing down
incline have been found to develop a contact line instabi
when the linear analysis predicted stable evolution.12 We de-
rive the slip model of thermally driven spreading and use
to show that the contact line instability can be suppres
1361070-6631/2003/15(6)/1363/12/$20.00
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using adaptive thermal perturbations which depend on
distortion of the contact line.~This type of feedback is cho
sen because it is easiest to implement experimentally w
sufficient spatial and temporal resolution via optic
means.13! Although the results of the following analysi
should be applicable regardless of the driving force, we c
centrate our attention on the case of thermal driving.

The layout of the paper is as follows. The slip model
thermally driven liquid films is derived in Sec. II and it
linear stability analysis is conducted in Sec. III. The valid
of linear stability analysis and transient effects are cons
ered in Sec. IV. Section V presents the proposed algori
for feedback control of the contact line instability and Se
VI contains the conclusions.

II. SLIP MODEL FOR THERMAL SPREADING

We consider the spreading of a thin layer of partia
wetting liquid on a horizontal substrate~see Fig. 1!. The
spreading process is conventionally described using the
brication approximation,14 with the horizontal velocity gov-
erned by the Stokes equation

m]zzv5“ p̄, ~1!

wherem is the dynamic viscosity,p̄ is the modified pressure
“5(]x ,]y) is the two-dimensional gradient operator, a
the vertical velocity is neglected.

It is well known14,15 that the standard no-slip bounda
condition at the liquid–solid interface results in a stress s
gularity at the contact line. The only approach explored
the literature for the thermally driven case was to relieve t
singularity by introducing a thin precursor film.5 However, as
we intend to use the position of the contact line in our co
trol algorithm later, the precursor model becomes incon
3 © 2003 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1364 Phys. Fluids, Vol. 15, No. 6, June 2003 Roman O. Grigoriev
nient. Instead we choose to specify a microscopic con
angle and relieve the stress singularity by employing a pa
slip boundary condition

v5
a

3h
]zv ~2!

at the bottom of the liquid layer, whereh is the local thick-
ness of the film, anda is the phenomenological slip coeffi
cient. The slip boundary condition~2! was originally intro-
duced by Greenspan16 for modeling the unforced spreadin
of liquid drops and later used to model the forced spread
of liquid films under the action of gravity.17 At the free sur-
face the standard stress balance boundary condition

m]zv5“s ~3!

applies, wheres is the surface tension coefficient. Solvin
~1! subject to these boundary conditions we obtain the h
zontal velocity

v5
1

m
z“s2

1

m S a

3
1hz2

1

2
z2D“ p̄. ~4!

In order to make the phenomenological boundary condit
~2! consistent with the physics of the flow, in~4! we have
dropped an unphysical terma“s/3mh which diverges for
vanishing film thickness. This divergence is not necessari
cause for alarm as the continuous approximation underly
the Stokes equation itself breaks down in this limit. T
shear stress also becomes poorly defined for very thin fil
Our choice of the functional form for the horizontal veloci
~4!, therefore, amounts to picking an appropriate pheno
enological model in the region where the continuous desc
tion of the flow becomes invalid and fluctuations beco
important.

For a film which is sufficiently thin the hydrostatic pre
sure can be ignored, so that the modified pressure is give
the normal component of the surface tensionp̄52sk
52s“2h. Substituting~4! into the mass conservation con
dition

] th52E
0

h

~“"v!dz ~5!

and integrating we obtain an evolution equation for the thi
ness:

] th52“"F 1

2m
h2
“s1

1

3m
~ah1h3!“~s“2h!G . ~6!

FIG. 1. Spreading liquid film on a solid substrate.
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Now consider the situation which arises when the s
strate covered by the liquid film is subjected to a linear te
perature gradient in thex direction. For nonvolatile liquids
such as silicone oil and micron-scale film thickness typica
experimental conditions4,18 the temperature drop across th
liquid layer is too small to cause convection. As a result,
dependence of the interfacial temperature on the thicknes
the film can be ignored. Assuming that the surface tens
changes linearly with temperatureu,

s~x!5s~u0!1x]xu]us[s02tx, ~7!

and neglecting the variation ins in the second term of~6!,
which produces subdominant contribution~see, e.g., the dis
cussion in Ref. 5!, we obtain

] th5
t

2m
]xh

22
s0

3m
]x@~ah1h3!~]xxxh1]xyyh!#

2
s0

3m
]y@~ah1h3!~]xxyh1]yyyh!#. ~8!

We can absorb most parameters into the spatial and temp
scales by introducing the nondimensional variablest85t/T,
x85x/X, y85y/X, andh85h/H. The vertical length scale
H is defined by the characteristic thickness of the film a
sets both the horizontal length scaleX5@2s0H2/3t#1/3 and
the time scaleT52mX/tH. After defining the dimensionles
slip coefficienta85a/H2 and dropping the primes we ob
tain

] th5]xh
22]x@~ah1h3!~]xxxh1]xyyh!#

2]y@~ah1h3!~]xxyh1]yyyh!#. ~9!

The obtained equation has the same form as the one des
ing gravity driven rather than temperature driven films@see,
e.g., Eq.~33! in Ref. 17#, with the exception thath2 in the
first term on the right-hand side is replaced withah1h3.
This similarity of the structure of the governing equatio
suggests that the feedback control problem can be treate
the same way regardless of the nature of the driving forc

The liquid spreads in the direction opposite to the te
perature gradient, so the motion of the contact line is m
conveniently described in the reference frame moving w
speedu toward negativex. In this frame the evolution equa
tion possesses a transversely uniform steady state solu
which gives the asymptotic film profile for constant flu
boundary conditions. Substitutingh(x,y,t)5h0(x1ut) into
~9! and integrating once we obtain

uh02h0
21~ah01h0

3!h0-5d, ~10!

where prime indicates the differentiation with respect to
x coordinate. The constantsu andd can be determined from
the appropriate boundary conditions. Following Spaid a
Homsy17 we require that the film thickness vanish at t
contact line, h0(0)50, and specify the slopeh08(0)5c
[(X/H)tanf, wheref is the microscopic dynamic contac
angle in the dimensional variables.~It should be pointed out
that this boundary condition does not contradict Tanner’s
which states that themacroscopiccontact angle—defined a
the angle evaluated at an inflection point close to
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1365Phys. Fluids, Vol. 15, No. 6, June 2003 Contact line instability and pattern selection
edge—is velocity-dependent.! Furthermore, the constant flu
boundary condition at the tail of the film far away from th
contact line givesh0(`)51 ~this choice corresponds to us
ing the dimensional tail thickness as the vertical length sc
H) and h0-(`)50. These boundary conditions required
50 andu51, and consequently

h0-5
h021

h0
21a

. ~11!

The solution to this equation describes the height profile
the spreading film once the distance from the contact line
the reservoir becomes sufficiently large.

At this point it is appropriate to make two commen
regarding the structure of the lubrication equations produ
by the slip model. First of all, from a mathematical persp
tive, introduction of partial slip at the liquid–solid interfac
is equivalent to a regularization procedure for a singular
ferential equation. Dropping the diverging term in~4! is
equivalent to keeping the regularization parametera only in
the terms in~6! responsible for the singular behavior of th
solution at the contact line. We could have kept all the ter
in ~4! and ~6! just as well. Neither~9! nor ~11! would have
changed.

Second,~11! is very similar to the equation produced b
the precursor model of Kataoka and Troian,5

h0-5
~h021!~h02b!

h0
3 , ~12!

whereb is the thickness of the precursor layer. In fact, t
solutions of the two equations are virtually indistinguisha
~see Fig. 2! for the proper choice of parameters~precursor
thickness, slip coefficient, and contact angle!. This is hardly
a surprise, as the two equations become identical in the l
b→0 anda→0, and proves that the final result is essentia
independent of the regularization procedure used to get ri
the stress singularity at the contact line.

The slip model has two independent parameters (c and
a!, while the precursor model has only one (b). A closer
inspection shows that the gross features of the slip model
in fact, determined by a single parameter~say, the height of

FIG. 2. Asymptotic film profiles produced by the precursor model~12! with
b50.0119 and the slip model witha50.1 andc51.53. The parameters
were chosen to produce a capillary ridge of heighthmax52.
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the capillary ridge!. As Fig. 3 shows, one can change th
value of the slip coefficient by two orders of magnitude wit
out causing noticeable changes in the film profile~the contact
angle will also change in response to the changes ina to
keep the height of the capillary ridge constant!. The second
parameter fine tunes the shape of the film in the immed
vicinity of the contact line. The slip model is, therefore, n
only more convenient for the purpose of control~it explicitly
defines the easy-to-measure position of the contact line!, but
it is to some extent more flexible than the precursor mod

Finally, let us explore the dependence of the film profi
on the parameters. As we have just seen, the profile is ra
insensitive to the changes in the slip coefficient, so let us
it and vary the contact angle~see Fig. 4!. The first important
observation is that regardless of the magnitude of the con
angle, the capillary ridge never disappears~this turns out to
be the case for any reasonable value of the slip coeffici
i.e., a,1). This is in contrast with the results obtained f
gravity driven films, where the capillary ridge complete
disappears at small inclination angles.12 Second, the heigh
of the ridge is a monotonically increasing function ofc and
becomes essentially independent of the contact angle fc
,0.3. The dependence on the slip coefficient is more sub

FIG. 3. Asymptotic film profiles with a fixed height of the capillary ridg
hmax52.75 and different values of the slip coefficient.

FIG. 4. Asymptotic film profiles for different values of the contact ang
The slip coefficient is held fixed ata50.01.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the value ofa controls the minimum height of the capillar
ridge which grows with decreasing slip coefficient.

III. CONTACT LINE INSTABILITY

Linear stability of the asymptotic solutionh0(x1ut) can
be determined in a standard way.2,5,12 Since this solution is
uniform in the transverse direction, the linearized equat
describing the dynamics of small disturbances can be
tially diagonalized by Fourier transforming it in they direc-
tion. By substituting

h~x,y,t !5h0~x1ut!1eg~x1ut,t !eiqy ~13!

into ~9! and retaining terms of ordere, we obtain

] tg5L~q!g, ~14!

whereL(q)5L01q2L11q4L2 is a fourth-order differential
operator defined via

L0g52@$122h01~a13h0
2!h0-%g1~ah01h0

3!g-#8,

L1g5@~a13h0
2!h08g#812~ah01h0

3!g9, ~15!

L2g52~ah01h0
3!g.

The boundary condition ong at the contact line

h09~0!g~0!5h08~0!g8~0! ~16!

can be obtained by requiring the perturbed solution to h
the same contact angle as the unperturbed solution. The o
three boundary conditions can all be imposed at the tail,

g~`!5g8~`!5g9~`!50. ~17!

Even though we cannot find the eigenvalues ofL(q) for
arbitraryq analytically, for long wavelength disturbances w
can use perturbation theory to get the leading order~in q2)
terms. This requires finding the eigenfunctions ofL0 and its
adjoint,L0

† . Taking the second derivative of~10! we obtain

L0h0850, ~18!

so thatg05h08 is an eigenfunction ofL0 with eigenvalue
b0

050. The adjoint operator is defined via

L0
†f 5@122h01~a13h0

2!h0-# f 82@~ah01h0
3! f 8#-,

~19!

so its respective eigenfunction is just a constant, say,f 051.
In fact, these are generic results with deep physical mean
Identical relations between the asymptotic state and the l
ing eigenfunctions were obtained, e.g., for gravity driv
films using the precursor model.12,19 The relation forg0 is
due to the fact that equations for the asymptotic state
translationally invariant in the direction of the flow~this re-
flects an arbitrary choice in the position of the contact lin!,
while the relation forf 0 is the consequence of the divergen
form of ~5!, which reflects mass conservation.

According to the perturbation theory the leading eige
value has the followingq-dependence:

b0~q!5b0
01q2

*0
` f 0* L1g0dx

*0
` f 0* g0dx

1O~q4!. ~20!

Using ~11! this can be reduced to
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n
r-

e
her
y,

g.
d-

re

-

b0~q!5q2E
0

`

h0~h021!dx1O~q4!. ~21!

As this is the largest eigenvalue, its sign determines the
bility of the asymptotic state. It is easy to see that, if t
asymptotic profile were monotonic, 0,h0,1, the integral
would be strictly negative and the system would be linea
stable with respect to long wavelength disturbances. Ho
ever, the presence of a capillary ridge makes the inte
positive, showing that the increased mobility of the rid
provides the mechanism for the long wavelength instabi
in the thermally driven case. This mechanism has been o
nally conjectured by Kataoka and Troian based on the ene
analysis of the precursor model.5 Equation~21! gives an ex-
plicit condition on the shape of the capillary ridge whic
determines the onset of instability, and echoes a similar re
obtained for the case of gravity-driven flows.2,12

Substitutingg(x,t)5h08(x)exp@b0(q)t# into ~13! we no-
tice that for small disturbances the right-hand side repres
the first two terms of the Taylor expansion of a distort
asymptotic stateh0(x1j1ut), where

j~y,t !5eeiqy1b0(q)t ~22!

is the deviation of the contact line from the mean. In fact,
marginal translational modeg0 is not the only eigenfunction
of L0 . There is an infinite discrete spectrum of eigenvalu
bn and eigenfunctionsgn . Therefore, in the presence of a
arbitrary disturbance~22! should be replaced with

j~y,t !5
1

c (
n

gn~0!E
2`

`

en~q!eiqy1bn(q)tdq. ~23!

As the asymptotic state is unstable, the amplitude of
distortion will grow exponentially in time and eventually th
contact line will form equally spaced ‘‘fingers.’’ In order t
calculate the wavenumber of the pattern we numerica
compute the eigenfunctions and eigenvalues of the evolu
operatorL(q). This is most easily accomplished by di
cretizing the eigenvalue equation on a spatially nonunifo
mesh to properly resolve the rapid change in the soluti
near the contact line. As both the asymptotic stateh0 and the
eigenfunctionsgn exponentially flatten for largex, a trun-
cated domain can be used, so that the boundary condit
~17! are imposed at finite distancel x away from the contact
line ~we usedl x580 in most of the calculations!. In order to
compute the asymptotic state we used a shooting metho
a nonuniform mesh with roughly 104 points. Ash51 is an
unstable fixed point of~11!, numerical integration~we used
the fourth-order Runge–Kutta method! cannot be performed
beyondl x'30 using double precision arithmetics. To dete
mine the solution for a longer interval we used a method20 in
which the numerical solution is extended using the analyt
solution of ~11! for h'1:

h~x!511@a cos~)kx!1b sin~)kx!#e2kx1¯ , ~24!

wherek5(11a)21/3/2 anda, b are constants determine
by a least-squares fit. The eigenvalues and eigenfunct
where then computed using a built-in function inMATLAB on
a 1025-point mesh~finer resolutions did not change the e
genvalues by more than about 5%!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The results of our calculations for a typical choice
parameters are presented in Fig. 5. The fastest growing
turbance is found to have a transverse wavenumberqmax ly-
ing between 0.29 and 0.34. This wavenumber decreases
the increasing thickness of the capillary ridgehmax and gives
the characteristic wavelength of the fingering patternlmax

52p/qmax, which ranges between 18.5 and 21.7, in excell
agreement with the predictions of both the precursor mo5

and the experiments4,18 which found the dimensionles
wavelength to be between 18 and 22. The growth rate of
most unstable mode increases withhmax, varying between
0.12 and 0.17 for the range of contact angles conside
here. Brzoskaet al.18 have obtained an experimental value
about 0.15, which is also consistent with the theory. As
thickness of the ridge has not been determined in exp
ments, it is impossible to make a more direct comparis
but nevertheless these results can be used to establis
ranges of parameters relevant for experimental condition

IV. LINEAR STABILITY AND TRANSIENT DYNAMICS

We have determined earlier that the capillary ridge
present for any reasonable choice of parameters, so
asymptotic state of a thermally driven film is always linea
unstable and the contact line instability will inevitably set
as the asymptotic state is approached. However, as a q
comparison of~15! and ~19! shows, the evolution operato

FIG. 5. The twelve leading eigenvalues ofL(q) for a50.01 and~a! c51
(hmax51.93), ~b! c51.95 (hmax52.75). In both casesb0(0) andb1(0) are
real, while the other ten eigenvalues come in complex conjugate pairs
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L(q) is non-normal, and we have to consider the possibi
that the transient dynamics associated with non-norma
could change the predictions of the linear stability theo
concerning the growth rates of disturbances. In fact, trans
effects could be quite significant. For instance, turbulence
channel flows arises at values of the Reynolds number w
below the critical one predicted by the linear stabili
analysis.21 Both in the driven films and in channel flow
non-normality arises due to a significant mean flow, so i
natural to expect that transient behavior could be import
for driven liquid films as well. Indeed, a disagreement b
tween theoretical and experimental predictions of the m
unstable wavelength in gravity driven films at low angles
inclination has been attributed to transient dynamics.12

Linear stability analysis presented in Sec. III is based
the assumption that the nonlinear terms are negligible a
times. If the disturbances were small and their dynam
were governed by a normal evolution operator, this assu
tion would have been well justified. For instance, when
system is stable, the eigenvalues predict both the short-t
and the long-term dynamics. The situation can change
matically when the evolution operator becomes non-norm
as the eigenvalues become poor predictors of the short-
dynamics. Inclusion of the nonlinear terms in~14! has two
major consequences. First of all, nonlinear terms couple
dynamics of modes with different transverse wavenumber18

Second, nonlinear terms produce deviations from
asymptotic state which can be transiently amplified due
the non-normality of the linearized evolution operator.21 A
combination of these two effects can lead to a nonlinear
stability which can compete with the linear instability.

There are two scenarios which could invalidate the
sults of linear stability analysis. In the simplest~purely lin-
ear! scenario,12,22 an initial disturbance with transvers
wavenumberq0 and magnitudeig(x,0)i5j could be tran-
siently amplified by a factorg(q0) to produce a disturbanc
with magnitudegj5O(1). If this amplification occurs on a
time scale shorter than 1/b0(qmax) andj*g21, the transient
effects will dominate and a distortion of the contact line w
the wavenumberq0 rather thanqmax will result.

In a more complicated scenario,21,23 an initial distur-
bance is transiently amplified by the linear part of the ev
lution operator, while the nonlinear terms produce second
disturbances which are further transiently amplified. T
could lead to a positive feedback loop bootstrapping a n
linear instability, provided the secondary disturbances c
tain the wavenumber of the initial disturbance and have
magnitude which is at least as large. It is easy to check
the nonlinear evolution operator will only contain terms qu
dratic, cubic, and quartic ing(x,t) in addition to the linear
terms kept in~14!. Only the cubic terms will contain the
original wavenumber, so the secondary disturbances
duced by the quadratic and quartic terms will not be furth
transiently amplified.~Initial disturbances withq050 repre-
sent the only exception, but they do not lead to distortion
the contact line.! An initial disturbance of magnitudej,
which is transiently amplified by a factorg, will produce a
secondary disturbance of magnitudeO((gj)3) via the cubic
nonlinearities. The secondary disturbance will exceed
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1368 Phys. Fluids, Vol. 15, No. 6, June 2003 Roman O. Grigoriev
primary disturbance only when (gj)3*j, so that a self-
sustaining nonlinear instability becomes possible forj
*g23/2.

The maximal transient amplification in the stable ba
can be defined in a conventional manner:23

g~q,t !5 sup
g~x,0!

ig~x,t !i
ig~x,0!i 5ieLti . ~25!

In the unstable band the fast transient amplification will
followed by the slower exponential growth. Factoring out t
exponential growth one obtains the following upper boun

g~q,t !5 sup
g~x,0!

ig~x,t !i
ig~x,0!i e2b0t5ie(L2b0)ti . ~26!

Numerical calculations show that in the unstable ba
g(q,t) is a monotonically increasing function of time, so th
maximum is reached fort→`. The time dependence fo
several values of the transverse wavenumber is shown in
6. As L2b0 and L have the same eigenfunctions, we c
easily calculate the matrix elements of the operatorU(t)
5exp@(L2b0)t#:

Umn~ t !5E
0

`

f m* e(L2b0)tgndx5e(bn2b0)tdmn . ~27!

As only the element withm5n50 survives for large times
the maximal transient amplification is achieved for the ‘‘o
timal’’ initial disturbances equal to multiples off 0 . The evo-
lution amplifies these disturbances and transforms them
multiples of the leading eigenfunctiong0 . Exponential
growth with rates predicted by the linear stability analy
sets in rather quickly as the time scales of the exponen
and transient growth are of the same order of magnitude

The ultimate test of the importance of nonlinear ter
and transient dynamics is provided by a direct calculation
the transient amplification factor

g~q!5max
t

g~q,t !. ~28!

The numerical results are presented in Fig. 7. For a fi
contact angle,g(q) is the largest for zero wavenumber di
turbances~which do not lead to distortion of the contact lin!

FIG. 6. Transient amplificationg(q,t) as a function of time fora50.01,
c51, and different values of the wavenumber.
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and quickly decreases with increasingq. The maximum tran-
sient amplification increases with the contact angle and
become quite significant for typical experimental paramet
@g(0)'70 for c51, g(0)'100 for c51.95]. However, the
effective value for a finite system will likely be in the rang
of a few tens. The strong transient amplification atq50 can
be easily traced to a very close alignment of a large group
eigenfunctionsg2 throughg21. As Fig. 8 shows, their shape
are extremely similar. It is, therefore, appropriate to assoc
the transient behavior with a whole group of stable eig
functions. The size of the group increases withc, increasing
the degree of non-normality. In contrast, for channel flo
apparently only a couple of near-marginal eigenfunctions
come closely aligned.21

The transient amplification at smallq was found to de-
pend rather sensitively on the length of the domain used
the numerical calculations. For instance, the values ofg ob-
tained for l x530 were generally about a half of those o
tained for l x580. At aboutl x580 the dependence levele
off, and further increase inl x resulted in large fluctuations in
the eigenvalues due to numerical inaccuracies resulting f
strong non-normality of the matrix produced by discretizi

FIG. 7. Dependence of the maximal transient amplificationg(q) on the
wavenumber fora50.01 and different values of the contact angle.

FIG. 8. The eigenfunctionsg0(x) throughg21(x) for q50, a50.01, and
c51. Only a portion of these eigenfunctions, computed on the interva
length l x580, is shown. The eigenfunctions are normalized such t
*0

`ugnu2dx51.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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L(q). This sensitivity can be explained by the shape of
adjoint eigenfunctions. While the eigenfunctionsgn(x) de-
cay exponentially for largex, the adjointsf n(x) grow expo-
nentially ~see Fig. 9!. As a result, small inaccuracies in th
boundary conditions at the tail of the film introduced
truncating the computational domain can have a signific
effect on the adjoint eigenfunctions, thus affecting the tr
sient amplification, which depends on bothgn(x) and f n(x).

The minimal noise level required to trigger the nonline
instability according to the second scenario is about 0.1%
the total film thickness forg5100~the first scenario require
noise levels of order 1%!. A more accurate calculation of th
noise threshold is likely to raise this level much higher
taking into account the fact that~26! determines themaximal
amplification achieved for a specially chosen initial con
tion, while the secondary disturbances will generically
amplified less strongly. As a result, one should not expect
nonlinear instability to occur for typical experimental cond
tions. The published experimental data4,18 agree with the pre-
dictions of the linear theory rather well, supporting the co
clusion that the transient effects are relatively weak a
therefore, the modal linear stability analysis of Sec. III ac
rately describes the dynamics.

V. FEEDBACK CONTROL OF THE CONTACT LINE
INSTABILITY

Now that we understand the limits of the linear stabil
analysis let us consider the control problem. Can the con
line instability be suppressed, or alternatively, can a pat
with a desired wavelength be imposed by applying fe
back? In principle, the answer seems to be clear, as feas
ity of feedback control of several other types of instabil
~buoyancy,6 thermocapillary,7 evaporative8! in liquid layers
has been demonstrated. Although one might hope that
developed control methods could be adapted for suppres
the contact line instability, in reality the spreading films tu
out to be dramatically different.

The existing control methods have been developed
stabilizing flat films with no mean flow, i.e.,steady, uniform
target states. The evolution operators describing the dyn

FIG. 9. The adjoint eigenfunctionsf 0(x) through f 11(x) for q50, a
50.01, andc51. The leading eigenfunctionf 0(x) is constant, aside from a
small region nearx5 l x , where it adjusts to the Dirichlet boundary cond
tion. The eigenfunctions are normalized such that*0

` f n* gmdx5dnm .
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ics of small disturbances about such states have eigenf
tions whose horizontal dependence is given by Fou
modes, which are normal to each other for any realis
boundary conditions~in principle, one candesignthe bound-
ary conditions such that the eigenfunctions will not be n
mal even in this case24!. Not only does it mean that all hori
zontal modes become uncoupled, so any mode can
controlled independently of the others, there is no no
normality, so there are no transients and the linear stab
analysis is unconditionally valid.

The target stateh0(x1ut) in the present problem isnon-
uniform in the direction of the flow. As a result, the differ
ential operatorL does not fully diagonalize and the contr
problem becomes vastly more complicated. Not only are
the modes in the system coupled, feedback applied to s
press one mode generally affects all other modes, so
infinite-dimensional problem has to be considered from
outset. However, even if these problems are resolved an
feedback making the dynamics asymptotically stable
found, there is no guarantee that the transient effects will
invalidate the whole analysis.

Let us repeat the linear stability analysis of the spread
film, but now in the presence of feedback. First we make
of the simplification afforded by the uniformity of the targ
state in the transverse direction, which allows us to partia
diagonalize the evolution operator. For the moment we
strict our attention to monochromatic disturbanceseg(x
1ut,t)exp(iqy). Since the flow is driven by the gradient i
the temperature~and hence surface tension!, the stability of
the flow is most easily altered by varying the temperat
field behind the contact line. Suppose we modify the te
perature profile by adding a perturbation

Du~x,y,t !52et~]us!21s~ t !w~x1ut!eiqy, ~29!

where the transverse wavelengthq is the same as that of th
disturbance ands(t) andw(x) are some functions determin
ing the temporal and spatial profile of the perturbatio
which will be determined later. Consequently,~7! and hence
~14! will be modified to account for the variation in the su
face tension transversely to, as well as along, the directio
the flow. At ordere instead of~14! we obtain

] tg5L0g1s@N1~h0!w1N2~h0!w8#8

1q2@L1g2sN2~h0!w#1q4L2g, ~30!

where the influence functions

N1~h0!5 2
3 ~h0

22h0!,

~31!
N2~h0!5h0

21 2
3 ~ah01h0

3!h09

determine the effect of the imposed thermal perturbation
To get a sense of the dynamics of different modes in

presence of feedback, we expand the disturbance in the b
formed by the eigenfunctions ofL0 ,

g~x,t !5(
m

Gm~ t !gm~x!, ~32!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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and make the strength of the applied perturbation prop
tional to the magnitude of the distortion of the contact li
~with a proportionality constantk, called thegain, to be de-
termined later!,

s~ t !5k
g~0,t !

c
5

k

c (
m

Gm~ t !gm~0!. ~33!

Multiplying ~30! by f n* and integrating from 0 tò we obtain
an infinite system of ordinary differential equations descr
ing the dynamics of individual modes:

Ġn5bn
0Gn1(

m
~Anm1q2Bnm1q4Cnm!Gm , ~34!

where~assuming that all adjoint eigenfunctions are norm
ized such that*0

` f n* gmdx5dnm)

Anm5k
gm~0!

c E
0

`

f n* @N1~h0!w1N2~h0!w8#8dx,

Bnm5E
0

`

f n* L1gmdx2k
gm~0!

c E
0

`

f n* N2~h0!wdx, ~35!

Cnm5E
0

`

f n* L2gmdx.

As Fig. 5 shows, the uncontrolled system possesse
single unstable eigenvalue well separated from the rest o
spectrum. One can, therefore, expect that the dynamic
small disturbances should be well described by a sin
mode truncation of~34! in the absence of feedback. Th
same is not generally true when the feedback is applied
all modes are coupled, the feedback designed to suppres
leading mode will always affect, and can potentially desta
lize, the subleading modes. As our numerical calculati
show, such destabilization does indeed occur, unless the
tial profile w(x) of the thermal perturbation is chosen car
fully to avoid this. Had the evolution operator beennormal,
we could have always chosen the feedback in such a
that different modes became uncoupled, so only the stab
of a few independent unstable modes had to be conside
The problem of controlling the contact line instability turn
out to be quite delicate in comparison.

Assuming thatw(x) is chosen such that all subleadin
modes remain stable, we can truncate the system~34! by
discarding all modes except the leading one. The stability
the single-mode truncation

Ġ05~A001q2B001q4C00!G0 ~36!

is a necessary condition for the stability of the full syste
~34!. The truncated system is stable when the following th
conditions are satisfied:

A005kw8~`!<0,

B005E
0

`

h0~h021!dx2kE
0

`

N2~h0!wdx<0, ~37!

C0052
112a

4
<0.
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The first condition is satisfied for any feedback localiz
near the contact line, because in this caseA0050, while the
second condition can always be satisfied with the pro
choice of the gaink. The third condition is clearly satisfied
as well. Since~34! is valid for all values ofq for which the
governing equation~9! is valid and the choice ofk in ~37! is
independent ofq, we can immediately generalize to non
monochromatic disturbances by integrating over allq, such
that the feedback will be given by

Du~x,y,t !52kt~]us!21w~x1ut!j~y,t !, ~38!

where j(y,t) is the instantaneous deviation of the conta
line from its mean position.

How can we choose the heating profile in the flow dire
tion which will stabilize the unstable mode without desta
lizing any of the initially stable modes? As Fig. 8 shows, t
leading mode is localized under the capillary ridge. The
fore, to suppress the instability one has to apply a pertur
tion which will be similarly localized to within the region
occupied by the ridge. The inspection of matrix eleme
~35! shows that such a localized perturbation will affect
modes whose adjoint eigenfunctions are not small in t
region. According to Fig. 9 bothf 0 and f 1 are of the same
order of magnitude there, while the other subleading mo
are several orders of magnitude smaller. As a result, only
stability of the leading and the first subleading mode m
change in response to feedback. The numerically compu
spectra of the controlled system support this conclusion.

The stability of the two leading modes is determined
the signs and magnitudes of the matrix elementsAnm and
Bnm with n,m50,1. A few general comments about the
matrix elements can be made based on the structure o
eigenfunctions. As Fig. 10 shows,f 0 and f 1 are both nearly
constant under the ridge and have opposite signs, w
g0(0) andg1(0) have the same sign. As a result, a decre
in B00 is necessarily accompanied by a commensurate
crease inB11. Furthermore, sincef 0 is constant, we have
A0n50 for any n, so atq50 the eigenvalues of the con
trolled system areb08(0)50 andb18(0)'b1(0)1A11. The
matrix elementA11 is generally nonzero and changes in r

FIG. 10. The adjoint eigenfunctionsf 0(x) and f 1(x) for q50, a50.01, and
c51. Qualitatively similar profiles are obtained for other values of the c
tact angle. A portion of the eigenvalues computed on the interval of len
l x580 is shown.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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sponse to the strength of the applied feedback. An inap
priate choice of the profilew(x) or the gain constantk can
makeA11 large enough to cause destabilization at long wa
lengths. However, even whenw(x) is chosen such thatA11 is
negative ~but small!, destabilization of then51 mode at
short wavelengths can occur due to the increase inB11, if the
feedback gain is too large.

Additional insights can be gained by considering the
fect of feedback from the physical point of view. The acti
of feedback in the direction transverse to the flow is d
scribed by the influence functionN2(h0). The first and sec-
ond terms of this function describe the motion of the liqu
under the action of, respectively, surface forces and pres
produced by the local gradients in the surface tension. F
convex region of the film, whereh09,0, these two effects
will compete with each other. For instance, a local maxim
of surface tension will induce the flow along the surfa
toward that location and the flow in the interior of the liqu
layer away from that location. The first effect will domina
for low capillary ridges~small contact angles!, the second
one for high capillary ridges~large contact angles!.

As the instability is caused by the increased mobility
the capillary ridge, one might envision enforcing control
changing the thickness of the film. The local thickness of
capillary ridge could, in principle, be modified by local
heating or cooling it to redistribute the liquid in such a w
as to decrease the thickness, and hence the mobility, w
we need to slow down the motion of the contact line a
increase the thickness and mobility, where we need to sp
it up to compensate for the deviation. This can be achie
by choosingw(x), which is localized under the ridge an
does not change sign. For instance, one could pick a Ga
ian profile representing the effect of thermal spreading in
solid substrate

w~x!5expF2
~x2x0!2

2Dx2 G , ~39!

wherex0 andDx are chosen such thatw(x) is centered unde
the capillary ridge and has a comparable width. A sam
profile is shown in Fig. 11~a! for a special choice of param
eters. The numerically computed spectrum, Fig. 11~b!, dem-
onstrates that the stabilization can indeed be achieved by
method for driven films with a relatively low capillary ridge

This simple approach, however, does not always ach
the desired result. In fact, it only succeeds when the larg
growth rateb0(qmax) in the uncontrolled system is sma
compared toub1(0)u, i.e., when the feedback required
stabilize then50 mode is too weak to destabilize then51
mode. One can already notice the sign of approach
trouble by looking at Fig. 11~b!: the eigenvalue of then
51 mode atq50 starts to creep upward due to the increa
in the matrix elementA11. If this approach is used to stab
lize a flow with b0(qmax) comparable toub1(0)u, the feed-
back required to suppress then50 mode becomes stron
enough to destabilize then51 mode at low wavenumbers
The numerically computed spectra for higher capillary ridg
(hmax.1.7) show that the low wavenumbers are destabiliz
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before the high wavenumbers are stabilized for any choic
the widthDx of the thermal perturbation.

We are thus forced to look for an alternative solutio
Changing the overall thickness of the capillary ridge, ev
locally, is a rather ineffective procedure, especially for sm
q, as the liquid has to be redistributed over large distance
the transverse direction. One could instead apply a lo
force to the ridge, redistributing the liquid between its fro
and back. For instance, by heating the front of the ridge
cooling its back one creates the pressure gradient enhan
the flow. Reversing the sign of the applied perturbation i
pedes the flow, directly affecting the propagation veloc
The corresponding thermal perturbation should have a pro
w(x) which changes the sign near the highest point of
ridge. For instance, if one chooses the profile to be a
symmetric

w~x!5~x2x0!expF2
~x2x0!2

2Dx2 G , ~40!

the matrix elementA11 can be made large and negative,
the n50 mode can be stabilized without destabilizing t
n51 mode. Figure 12~a! shows that such a thermal pertu
bation with the positionx0 and widthDx tuned to be roughly
the same as those of the capillary ridge, should have
largest effect onB00. Indeed, the influence functionN2(h0),

FIG. 11. Stabilization of a thermally driven film with a low capillary ridge
hmax51.63 (a50.1 andc51). ~a! The asymptotic stateh0 , influence func-
tion N2(h0), and thermal perturbation profilew. ~b! The two leading eigen-
values of the original and controlled system fork51.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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dominated for high capillary ridges by its second term, a
changes sign near the highest point of the capillary rid
The numerically computed spectrum, Fig. 12~b!, shows that
one can again successfully suppress the instability.

Another alternative is to exploit the narrow concave
gion of the film near the contact line. One can again use
Gaussian thermal profile~39! centered at the contact line@see
Fig. 13~a!#. Heating this region and thus lowering the surfa
tension one produces gradients in both the pressure and
face tension, which induce the secondary flow away from
contact line. Cooling this region draws the liquid toward
providing a direct way to locally control the propagatio
speed of the film. Making the amount of heating or cooli
proportional to the displacement of the contact line ag
allows one to suppress the contact line instability. The
merically computed spectrum of the system with and with
feedback is shown in Fig. 13~b!.

Finally, let us look at the transient amplification of di
turbances in the presence of feedback. It is uncleara priori
what effect the control would have on the transient dyna
ics. Numerical calculations show that, depending on
choice of the thermal profilew(x), feedback can either in
crease or decrease the degree of non-normality in the sys
This observation is consistent with the theory. As the ma

FIG. 12. Stabilization of a thermally driven film with a high capillary ridg
hmax52.75 (a50.01 andc51.95). ~a! The asymptotic stateh0 , influence
function N2(h0), and thermal perturbation profilew. ~b! The two leading
eigenvalues of the original and controlled system fork54. Then51 mode
is strongly suppressed by feedback, the respective eigenvalue lies ou
the graph.
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elements~35! show, feedback affects different modes in
different way, and small changes in the eigenvalues can h
a large effect on the transient amplification. For instan
thermal perturbations with an anti-symmetric profile, such
~40!, can decrease the transient amplification at small wa
numbers by almost an order of magnitude~see Fig. 14!. Gen-

ide

FIG. 13. Stabilization of a thermally driven film with a medium heig
capillary ridge,hmax51.93 (a50.01 andc51). ~a! The asymptotic state
h0 , influence functionN2(h0), and thermal perturbation profilew. ~b! The
two leading eigenvalues of the original and controlled system fork54. The
n51 mode is strongly suppressed by feedback, the respective eigen
lies outside the graph.

FIG. 14. The transient amplification with and without control fora
50.01, c51.95, k54, and the anti-symmetric thermal perturbation profi
~40!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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erally, direct control of the propagation velocity via longit
dinal surface tension gradients leads to a decrease in
transient amplification, while indirect control via transver
surface tension gradients affecting the mobility increases
transient amplification for long wavelength disturbanc
which is also consistent with naive expectations.

We can thus conclude that an appropriately chosen fe
back can make the dynamics asymptotically stable with
increasing the transient amplification of disturbances, s
that the contact line instability is suppressed in the prese
of noise characteristic of typical experimental condition
Moreover, the feedback is capable of reducing the trans
amplification as well, so we can expect that feedback con
can be effective in suppressing the contact line instab
even when it is caused by the nonlinear effects. Finally, o
the instability is suppressed, selective patterning can
achieved by removing feedback and/or introducing ad
tional forcing at a wavenumber corresponding to a des
pattern.

The proposed control algorithm has been verified exp
mentally. Although no systematic investigation of differe
thermal perturbation profiles has been attempted so far,
proof-of-principle experiments have shown that by heat
the advanced regions of the film and cooling the retar
regions one can completely suppress the contact line in
bility. It has also been shown that transversely modula
thermal perturbations applied near the contact line can
used to achieve selective patterning, producing perfectly
riodic patterns of rivulets. Full details of the experiments w
be presented in a separate publication~N. Garnier, R. O.
Grigoriev, and M. F. Schatz, ‘‘Optical manipulation of m
croscale fluid flow,’’ submitted to Phys. Rev. Lett.!.

Some details of these experiments however are wo
of being quoted here to get a sense of the order of magni
of different physical quantities, which will allow us to verif
some of the assumptions made in the theoretical analys
silicone oil film ~dynamic viscosityh'0.7 g/(cm s), ther-
mal diffusivity k'1023 cm2/s, surface tension s
'20 dyn/cm, thermal coefficient of surface tension]us
'731022 dyn/(cm K)) of thickness H'231024 cm
spreading on the glass substrate (1 cm31 cm) under the ac-
tion of the imposed thermal gradient]xu'30 K/cm has the
horizontal length scaleX'631023 cm, time scale T
'20 s, and velocityv5X/T'331024 cm/s. The corre-
sponding wavelength of the fingering pattern isl
52pL/qmax'0.1 cm, so in order to suppress a distortion
the contact line of amplitudej50.1l one needs to apply a
thermal perturbation of amplitudeDuy5k]xsj'1 K, if the
feedback gain is set tok54. This perturbation is small com
pared to the temperature difference~30 K! used to drive the
primary flow, despite the fact that the distortion of the co
tact line is quite significant~e.g., it is outside the region o
validity of linear approximation!.

Evaporation effects can be ignored for silicone oil hea
to 30 K above room temperature, so although the temp
ture drop across the liquid layer was not measured, it can
quickly estimated using thermal diffusivities of the liqu
and the surrounding air to be at most of orderDuz;1 K for
a film with the above-given thickness. The correspond
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Marangoni number isM5]usDuzH/kh;231022, much
smaller than the critical valueMc'80 necessary to drive
convection. We have further assumed that the surface ten
varies linearly with temperature and the viscosity
temperature-independent. The temperature drop across
characteristic scale of the capillary ridge is of orderDux

5]xuxcL'1 K, wherexc'5 is the dimensionless width o
the ridge, so the characteristic temperature variation in an
the three directions is small enough for the above-mentio
assumptions to be satisfied for silicone oil. We have a
assumed that the temperature field inside the liquid laye
established on the time scale short compared to the cha
teristic time scaleT. This assumption can be quickly verifie
by computing the Peclet number Pe5vH/k'731025,
which gives the ratio of the two time scales.

More generally, as the proposed approach employs t
perature dependence of the surface tension, we would ex
it to work, perhaps with slight modifications, for any simp
nonvolatile liquid, whose surface tension varies appro
mately linearly with temperature in the range used to dr
the primary flow.

VI. DISCUSSION

To summarize our results, we have determined that
evolution operator governing the dynamics of spontane
disturbances for thermally driven films, both with and wit
out feedback, is significantly non-normal and can transien
amplify those disturbances. The strongest transient amp
cation occurs for the zero wavenumber which does not l
to contact line instability. However, even for nonzero wav
numbers transient amplification is unlikely to produce an
stability for levels of noise characteristic of typical expe
mental conditions. Therefore, linear stability analys
accurately describes both the controlled and the uncontro
dynamics. In contrast, for gravity driven films at small inc
nation angles the transient amplification could be mu
stronger, with the maximum achieved at a nonze
wavenumber,12 providing an alternative mechanism for inst
bility.

We have also shown that the contact line instability
thermally driven films can be effectively suppressed by
cally heating or cooling the liquid behind the contact lin
Such thermal perturbation can be easily imposed experim
tally with sufficient spatial and temporal resolution by rad
tively heating the substrate.13 This approach offers significan
advantages in controlling the dynamics of microflows co
pared to the one based on chemical patterning of
substrate.10,11 First of all, no preparation of the substrate
needed, while the patterns can be dynamically reconfigu
offering potential for a significant increase in flexibility. Se
ond, feedback control can be used to achieve extrem
small feature size, if high intensity radiation is used to dri
the flow on a thin substrate with moderate therm
conductivity,8 opening up new prospects for microfluidic
and microfabrication applications. Finally, feedback cont
provides a unique opportunity for studying the dynamics
subdominant modes and even unstable states of the sys
For instance, it can be used to experimentally measure
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1374 Phys. Fluids, Vol. 15, No. 6, June 2003 Roman O. Grigoriev
growth ~or decay! rates of monochromatic disturbances w
wavenumbersq0Þqmax by using a wavenumber-depende
gain to suppress the disturbances which would otherwise
scure the dynamics of the mode of interest.

We also expect that feedback control can be equally
fective in suppressing nonlinear instabilities such as th
occurring in gravity driven spreading at small inclinatio
angles. Indeed, we have seen that the profile of the the
perturbations can be tuned to decrease the degree of
normality. Therefore, by suppressing the transient gro
feedback can also quench the bootstrapping mechanism
ing to a nonlinear instability. However, because small dist
bances at the contact line could be transiently amplified
produce O(1) changes in the thickness of the capilla
ridge,12 it is possible that the control algorithm will have t
use direct measurements of the thickness rather than
much easier to monitor position of the contact line.
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