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Contact line instability and pattern selection in thermally driven liquid films
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Liquids spreading over a solid substrate under the action of various forces are known to exhibit a
long wavelength contact line instability. We use an example of thermally driven spreading on a
horizontal surface to study how the stability of the flow can be altered, or patterns selected, using
feedback control. We show that thermal perturbations of certain spatial structure imposed behind the
contact line and proportional to the deviation of the contact line from its mean position can
completely suppress the instability. Due to the presence of mean flow and a spatially nonuniform
nature of spreading liquid films the dynamics of disturbances is governed by a non-normal evolution
operator, opening up a possibility of transient amplification and nonlinear instabilities. We show that
in the case of thermal driving the non-normality can be significant, especially for small wavenumber
disturbances, and trace the origin of transient amplification to a close alignment of a large group of
eigenfunctions of the evolution operator. However, for values of noise likely to occur in experiments
we find that the transient amplification is not sufficiently strong to either change the predictions of
the linear stability analysis or invalidate the proposed control approacB0@ American Institute

of Physics. [DOI: 10.1063/1.1566958

I. INTRODUCTION using adaptive thermal perturbations which depend on the
. . S . . distortion of the contact lingThis type of feedback is cho-
Driven spreading of liquid films is a process which oc- o ; . ) .

. ) . ; o sen because it is easiest to implement experimentally with
curs in numerous industrial coating applications, such a$

spin-coating of hard drives, so understanding its dynamicssmtﬂment spatial ‘and  temporal - resolution via optical

. o . . means:) Although the results of the following analysis
and learning to control it is very important. For Ins'tance’should be applicable regardless of the driving force, we con-
instabilities which arise during the spreading of the liquid on pp g 9 ’

the solid substrate can lead to nonuniform coverage, adc_entrate our attention on the case of thermal driving.

; : : : The layout of the paper is as follows. The slip model of
versely affecting the quality of produced coating. Driven : L . . : .

: 2o . . hermally driven liquid films is derived in Sec. Il and its
spreading of thin films and patterning also have important. - S : -
A . e inear stability analysis is conducted in Sec. Ill. The validity
implications for microfluidics.

. . e . of linear stability analysis and transient effects are consid-
Driven spreading of liquid films under the action of : . .
12 . ) . ered in Sec. IV. Section V presents the proposed algorithm

gravity? centrifugal acceleratiohthermocapillary effects,

or a combination theredhas been extensively studied in the for feedpack control of .the contact line instability and Sec.
VI contains the conclusions.

literature. Stability analysis of such flows has attracted the
most attention and the mechanism of the linear instability is
now weII. understood. ConS|derab!e progressﬁhgs also beq,’_\ SLIP MODEL FOR THERMAL SPREADING
reached in feedback control dfat liquid layers; ™ whose
dynamics is governed by normal differential operators. At-  We consider the spreading of a thin layer of partially
tempts to influence the stability of spreading films have savetting liquid on a horizontal substratsee Fig. 1L The
far been limited to nonfeedback control achieved throughspreading process is conventionally described using the lu-
either imposing an externally generated counteflaw  brication approximatiod? with the horizontal velocity gov-
chemically patterning the substrafe'! erned by the Stokes equation

This study represents the first theoretical treatment of the _
feedback control problem for spreading films. The spatially I N=VD, @
nonuniform nature of spreading films and the presence ofvhereu is the dynamic viscosityp is the modified pressure,
mean flow make the control problem much more difficult V=(d,,d,) is the two-dimensional gradient operator, and
compared to the case of flat stationary films, because thine vertical velocity is neglected.
dynamics of disturbances in spreading films is governed by a It is well known***° that the standard no-slip boundary
non-normal evolution operator and thus requires a moreondition at the liquid—solid interface results in a stress sin-
careful analysis. For instance, liquid films flowing down angularity at the contact line. The only approach explored in
incline have been found to develop a contact line instabilitythe literature for the thermally driven case was to relieve this
when the linear analysis predicted stable evolutfowe de-  singularity by introducing a thin precursor filfrHowever, as
rive the slip model of thermally driven spreading and use itwe intend to use the position of the contact line in our con-
to show that the contact line instability can be suppressettol algorithm later, the precursor model becomes inconve-

1070-6631/2003/15(6)/1363/12/$20.00 1363 © 2003 American Institute of Physics

Downloaded 24 Jun 2003 to 130.207.165.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



1364 Phys. Fluids, Vol. 15, No. 6, June 2003 Roman O. Grigoriev

Now consider the situation which arises when the sub-
strate covered by the liquid film is subjected to a linear tem-
y Z perature gradient in thg direction. For nonvolatile liquids
such as silicone oil and micron-scale film thickness typical of
experimental conditiofs® the temperature drop across the
liquid layer is too small to cause convection. As a result, the
X dependence of the interfacial temperature on the thickness of
the film can be ignored. Assuming that the surface tension
FIG. 1. Spreading liquid film on a solid substrate. changes linearly with temperatuge

o(X)=0(0g) + X400 g0=0¢— 7X, (7)

nient. Instead we choose to specify a microscopic contac?’nd neglecting the variation i in the second term of6),

angle and relieve the stress singularity by employing a partiaClTS"S:?OEri?1 dECe?S;ldvbedgggﬁm contributisee, e.g., the dis-
slip boundary condition :

a ah==— 02— 2% 5 [ (ah+h3)(a,h+ deh)]
V= %&ZV (2) t ZM X 3/~L X XXX Xyy!
at the bottom of the liquid layer, wheteis the local thick- — ;T_an[(ah+ hs)(ﬁxxthfl?yyyh)]- (8)
y7s

ness of the film, andv is the phenomenological slip coeffi-

cient. The slip boundary conditiof2) was originally intro-  \ve can absorb most parameters into the spatial and temporal

duced by Greenspahfor modeling the unforced spreading scales by introducing the nondimensional variatlest/T,

of liquid drops and later used to model the forced spreading’ =x/X, y’=y/X, andh’=h/H. The vertical length scale

of liquid films under the action of gravity. At the free sur-  H s defined by the characteristic thickness of the film and

face the standard stress balance boundary condition sets both the horizontal length scale=[20,H%/37]"? and

3) the time scal@ =2uX/7H. After defining the dimensionless
slip coefficienta’ = a/H? and dropping the primes we ob-

applies, wherer is the surface tension coefficient. Solving tain

(1) subject to these boundary conditions we obtain the hori-

zontal velocity

1 l(a

uoN=Vao

dth= 9h?—a,[ (ah+h3) (I + dyyyh) ]

— [ (ah+h3)(dgh+dyyh)]. 9

1
v=—zVo——| = +hz— =72

ﬂ 23 52| Vp. 4

The obtained equation has the same form as the one describ-
ing gravity driven rather than temperature driven filfsse,

In order to make the phenomenological boundary conditioré.g” Eq.(33) in Ref. 17, with the exception thah? in the

(2) consistent with the physics of the flow, (#) we have first term on the right-hand side is replaced with+ h3.
dropped an unphysical termV o/3uh which diverges for  Thjs similarity of the structure of the governing equations
vanishing film thickness. This divergence is not necessarily @yggests that the feedback control problem can be treated in
cause for alarm as the continuous approximation underlyinghe same way regardless of the nature of the driving force.
the StOkeS equation |tse|f bl’eakS dOWn in th|S I|m|t The The ||qu|d Spreads in the direction opposite to the tem-
shear stress also becomes poorly defined for very thin filmserature gradient, so the motion of the contact line is most
Our choice of the functional form for the horizontal VeIOCity Convenienﬂy described in the reference frame moving with
(4), therefore, amounts to picking an appropriate phenomspeedu toward negative. In this frame the evolution equa-
enological model in the region where the continuous description possesses a transversely uniform steady state solution,
tion of the flow becomes invalid and fluctuations becomeyhich gives the asymptotic film profile for constant flux

important. boundary conditions. Substitutifgy(x,y,t) =hy(x+ ut) into
For a film which is sufficiently thin the hydrostatic pres- (9) and integrating once we obtain

sure can be ignored, so that the modified pressure is given by 5 s

the normal component of the surface tensipr — ok uhy—hg+ (aho+hg)hg =d, (10)
= — o'V 2h. Substituting(4) into the mass conservation con-
dition

where prime indicates the differentiation with respect to the
x coordinate. The constantsandd can be determined from
h the appropriate boundary conditions. Following Spaid and
ath:_J' (V-v)dz (5 Homsy’ we require that the film thickness vanish at the
0 contact line, hy(0)=0, and specify the slopé(0)=c
and integrating we obtain an evolution equation for the thick-= (X/H)tan¢, where ¢ is the microscopic dynamic contact
ness: angle in the dimensional variabldg$t should be pointed out
L L that this boundary condition does not contradict Tanner’s law
_ 2 3 2 which states that thenacroscopiacontact angle—defined as
aih= _V{ﬂh Vot ﬁ(amh WV ® e angle evaluated at an inflection point close to the
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FIG. 2. Asymptotic film profiles produced by the precursor mddej with FIG. 3. Asymptotic film profiles with a fixed height of the capillary ridge
b=0.0119 and the slip model with=0.1 andc=1.53. The parameters p__—» 75 and different values of the slip coefficient.
were chosen to produce a capillary ridge of height,=2.

the capillary ridge As Fig. 3 shows, one can change the
value of the slip coefficient by two orders of magnitude with-
out causing noticeable changes in the film prafilee contact
angle will also change in response to the changes i
ekeep the height of the capillary ridge consparthe second
parameter fine tunes the shape of the film in the immediate

edge—is velocity-dependepfurthermore, the constant flux
boundary condition at the tail of the film far away from the
contact line givesy()=1 (this choice corresponds to us-
ing the dimensional tail thickness as the vertical length scal
H) and hg(«)=0. These boundary conditions requide

=0 andu=1, and consequently vicinity of the contact line. The slip model is, therefore, not
., ho—1 only more convenient for the purpose of contivlexplicitly
hg = (11) defines the easy-to-measure position of the contac, lme

S
Mo+ a it is to some extent more flexible than the precursor model.
The solution to this equation describes the height profile of  Finally, let us explore the dependence of the film profile
the spreading film once the distance from the contact line t@n the parameters. As we have just seen, the profile is rather
the reservoir becomes sufficiently large. insensitive to the changes in the slip coefficient, so let us fix

At this point it is appropriate to make two comments it and vary the contact anglsee Fig. 4 The first important
regarding the structure of the lubrication equations producedbservation is that regardless of the magnitude of the contact
by the slip model. First of all, from a mathematical perspec-ang|e, the Capi”ary ridge never disappeéfs's turns out to
tive, introduction of partial slip at the liquid—solid interface be the case for any reasonable value of the s||p coefficient,
is equivalent to a regularization procedure for a singular difi.e., #<1). This is in contrast with the results obtained for
ferential equation. Dropping the diverging term 4) is  gravity driven films, where the capillary ridge completely
equivalent to keeping the regularization paramet@nly in  disappears at small inclination angfésSecond, the height
the terms in(6) responsible for the singular behavior of the of the ridge is a monotonically increasing functionmfnd
solution at the contact line. We could have kept all the termgecomes essentially independent of the contact angle for
in (4) and (6) just as well. NeitheK9) nor (11) would have  <0.3. The dependence on the slip coefficient is more subtle:
changed.

Second(11) is very similar to the equation produced by

the precursor model of Kataoka and Troran, P . .
py= o) 1:](3h0 2 (12 sk SN v I
0 L c=1.95
whereb is the thickness of the precursor layer. In fact, the 2F ;"/ \\\ .
solutions of the two equations are virtually indistinguishable = ; _,-"/ NN ]
(see Fig. 2 for the proper choice of parametefgrecursor e L5p ,-'"/I N\ .
thickness, slip coefficient, and contact anglehis is hardly E o NN
a surprise, as the two equations become identical in the limit 1_—;;" NN 1
b—0 anda—0, and proves that the final result is essentially i ]
independent of the regularization procedure used to get rid of ~ 0.5({ 7
the stress singularity at the contact line. i 1
The slip model has two independent parametersufd S S T
«), while the precursor model has only onk)( A closer x

@nspection ShOWS that the gross features of the slip _mOdel areiG. 4. Asymptotic film profiles for different values of the contact angle.
in fact, determined by a single parametsay, the height of The slip coefficient is held fixed at=0.01.
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the value ofa controls the minimum height of the capillary , [ 4
ridge which grows with decreasing slip coefficient. Bo(a)=d fo ho(ho—1)dx+0(q"). (21)

As this is the largest eigenvalue, its sign determines the sta-
bility of the asymptotic state. It is easy to see that, if the
Linear stability of the asymptotic solutidip(x+ut) can  asymptotic profile were monotonic,<thy<1, the integral
be determined in a standard way? Since this solution is  would be strictly negative and the system would be linearly
uniform in the transverse direction, the linearized equatiorstable with respect to long wavelength disturbances. How-
describing the dynamics of small disturbances can be paever, the presence of a capillary ridge makes the integral
tially diagonalized by Fourier transforming it in tlyedirec-  positive, showing that the increased mobility of the ridge
tion. By substituting provides the mechanism for the long wavelength instability

- iqy in the thermally driven case. This mechanism has been origi-
h(x.y,t)=he(x+ut) +eg(x+ut,t)e (3 nally conjectured by Kataoka and Troian based on the energy
into (9) and retaining terms of ordes we obtain analysis of the precursor modeEquation(21) gives an ex-
_ plicit condition on the shape of the capillary ridge which
g=L(q)g, (14 : : - 2=
determines the onset of instability, and echoes a similar result
whereL(q)=Lo+0’L;+qL; is a fourth-order differential gbtained for the case of gravity-driven flof&

IIl. CONTACT LINE INSTABILITY

operator defined via Substitutingg(x,t) = hj(x)exd Bo(a)t] into (13) we no-

Log=—[{1—2ho+(a+3h3)hytg+(ahe+hd)g"]’, tice that for small disturbances the right-hand side represents
the first two terms of the Taylor expansion of a distorted

Lig=[(a+3h3)hig] +2(ahe+h3)g", (15  asymptotic statdng(x+ &+ ut), where
L,g=—(ahy+h3)g. E(y,t) = e Folat (22)

The boundary condition og at the contact line is the deviation of the contact line from the mean. In fact, the

. , , marginal translational modg, is not the only eigenfunction

ho(0)g(0)=ho(0)g"(0) (16 of Ly. There is an infinite discrete spectrum of eigenvalues

can be obtained by requiring the perturbed solution to havé, and eigenfunctiong, . Therefore, in the presence of an
the same contact angle as the unperturbed solution. The oth@fbitrary disturbancé€22) should be replaced with
three boundary conditions can all be imposed at the tail, say,

1 * .
— _ iqy+ Bp(a)t
g(oo):gr(oo):gn(oo)zo' (17) §(y,t) C; gn(o)f_wfn(Q)eqy d dq (23)

Even though we cannot find the eigenvalues. (d) for As the asymptotic state is unstable, the amplitude of the
arbitraryq analytically, for long wavelength disturbances we gistortion will grow exponentially in time and eventually the
can use perturbation theory to get the leading of@ter”)  contact line will form equally spaced “fingers.” In order to
terms. This requires finding the eigenfunctionsLgfand its  calculate the wavenumber of the pattern we numerically
adjoint, Lj. Taking the second derivative ¢£0) we obtain  compute the eigenfunctions and eigenvalues of the evolution

Loh{=0, (18) operqtorL(q). _This is most e_asily accomp_lished by Fiis—

cretizing the eigenvalue equation on a spatially nonuniform
so thatgo=hg is an eigenfunction oL, with eigenvalue mesh to properly resolve the rapid change in the solutions
Bo=0. The adjoint operator is defined via near the contact line. As both the asymptotic stgtend the
L$f=[1—2ho+(a+3h(2))hg’]f’—[(ah0+hg)f’]’”, eigenfunctio_nsgn exponentially flatten for large, a trun-_ _
(19 cated domain can be used, so that the boundary conditions

. . . L (17) are imposed at finite distand¢g away from the contact
so its respective eigenfunction is just a constant, 83,1.  jine (we used =80 in most of the calculationsin order to

In fact, these are generic results with deep physical meani”%mpute the asymptotic state we used a shooting method on
Identical relations between the asymptotic state and the lead; , onuniform mesh with roughly $@oints. Ash=1 is an
ing eigenfunctions were obtained, e.g., for gravity driven«iable fixed point of11), numerical integratioriwe used

films using the precursor mOd@"lg The relation forgo IS the fourth-order Runge—Kutta methocannot be performed
due to the fact that equations for the asymptotic state argeyond| ~30 using double precision arithmetics. To deter-

translationally invariant in the direction of the flofthis re- | ina the solution for a longer interval we used a mefin

flects an arbitrary choice in the position of the contactline \\hich the numerical solution is extended using the analytical
while the relation forf is the consequence of the divergence g tion of(11) for h~1:

form of (5), which reflects mass conservation. _ -
According to the perturbation theory the leading eigen- ~ h(x)=1+[acogv3«x)+bsin(v3xx)je” " *+---, (24)

value has the followingl-dependence: where k=(1+a) Y92 anda, b are constants determined
JofEL,godx by a least-squares fit. The eigenvalues and eigenfunctions
Bo(q)= B3+ qzw +0(g%. (200 where then computed using a built-in functionMATLAB on
Jofogodx a 1025-point mesiffiner resolutions did not change the ei-
Using (11) this can be reduced to genvalues by more than about h%
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02— - - - - - - L(q) is non-normal, and we have to consider the possibility
that the transient dynamics associated with non-normality
could change the predictions of the linear stability theory
concerning the growth rates of disturbances. In fact, transient
effects could be quite significant. For instance, turbulence in
channel flows arises at values of the Reynolds number well
below the critical one predicted by the linear stability
analysis?* Both in the driven films and in channel flows
non-normality arises due to a significant mean flow, so it is
natural to expect that transient behavior could be important
for driven liquid films as well. Indeed, a disagreement be-
tween theoretical and experimental predictions of the most
unstable wavelength in gravity driven films at low angles of
inclination has been attributed to transient dynamfcs.

Linear stability analysis presented in Sec. lll is based on
the assumption that the nonlinear terms are negligible at all
times. If the disturbances were small and their dynamics
were governed by a normal evolution operator, this assump-
tion would have been well justified. For instance, when the
system is stable, the eigenvalues predict both the short-term
and the long-term dynamics. The situation can change dra-
matically when the evolution operator becomes non-normal,
as the eigenvalues become poor predictors of the short-term
dynamics. Inclusion of the nonlinear terms (t¥) has two
major consequences. First of all, nonlinear terms couple the

e T e e e dynamics of mpdes with different transverse \{vavenumbgers.
b) : : R : : : Second, nonlinear terms produce deviations from the
asymptotic state which can be transiently amplified due to
FIG. 5. The twelve leading eigenvalues lofq) for «=0.01 and@ c=1  the non-normality of the linearized evolution opergtoA
(Nmg,=1.93), (b) €=1.95 (ma=2.75).. In both casego(0) andfy(0) are  compination of these two effects can lead to a nonlinear in-
real, while the other ten eigenvalues come in complex conjugate pairs. . . . . . "
stability which can compete with the linear instability.
There are two scenarios which could invalidate the re-

The results of our calculations for a typical choice of Sults of linear stability analysis. In the simplégturely lin-
parameters are presented in Fig. 5. The fastest growing di§2) Scenarid®?* an initial disturbance with transverse
turbance is found to have a transverse wavenurpggly- ~ Wavenumberj, and magnitudé/g(x,0)|=¢ could be tran-
ing between 0.29 and 0.34. This wavenumber decreases wifently amplified by a facto(qp) to produce a disturbance
the increasing thickness of the capillary ridyg,, and gives ~ With magnitudey&=0(1). If this ampllflczitllon occurs on a
the characteristic wavelength of the fingering pattepp, ~ {ime scale shorter thanA4(dms) and¢é=y~ -, the transient
=27/0may, Which ranges between 18.5 and 21.7, in excellengffects will dominate and a distortion of the contact line with
agreement with the predictions of both the precursor nfodelthe wavenumbeq rather thargmay will result. =
and the experimerftd® which found the dimensionless ~ In @ more complicated scenarib?® an initial distur-
wavelength to be between 18 and 22. The growth rate of thBance is transiently amplified by the linear part of the evo-
most unstable mode increases with,,, varying between Iution operator, while the nonlinear terms produce secondary
0.12 and 0.17 for the range of contact angles consideregdlisturbances which are further transiently amplified. This
here. Brzoskat al!® have obtained an experimental value of could lead to a positive feedback loop bootstrapping a non-
about 0.15, which is also consistent with the theory. As thdinear instability, provided the secondary disturbances con-
thickness of the ridge has not been determined in experit_ain the wavenumber of the initial disturbance and have the
ments, it is impossible to make a more direct Comparisonmagnine which is'at least as Iarge. It is easy to check that
but nevertheless these results can be used to establish t#Ee nonlinear evolution operator will only contain terms qua-

ranges of parameters relevant for experimental conditions. dratic, cubic, and quartic ig(x,t) in addition to the linear
terms kept in(14). Only the cubic terms will contain the

original wavenumber, so the secondary disturbances pro-
duced by the quadratic and quartic terms will not be further
We have determined earlier that the capillary ridge istransiently amplified(Initial disturbances withgy=0 repre-
present for any reasonable choice of parameters, so theent the only exception, but they do not lead to distortion of
asymptotic state of a thermally driven film is always linearly the contact ling. An initial disturbance of magnitude,
unstable and the contact line instability will inevitably set in which is transiently amplified by a factoy, will produce a
as the asymptotic state is approached. However, as a quiglkecondary disturbance of magnitudé¢(y¢)2) via the cubic
comparison of(15) and (19) shows, the evolution operator nonlinearities. The secondary disturbance will exceed the

IV. LINEAR STABILITY AND TRANSIENT DYNAMICS
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FIG. 6. Transient amplification(q,t) as a function of time for=0.01, FIG. 7. Dependence of the maximal transient amplificatigq) on the
c=1, and different values of the wavenumber. wavenumber for=0.01 and different values of the contact angle.

primary disturbance only Wh?n7€)32 ¢ so that a self-  and quickly decreases with increasipgThe maximum tran-
sustaining nonlinear instability becomes possible #r sient amplification increases with the contact angle and can

=y % become quite significant for typical experimental parameters
The maximal transient amplification in the stable band[,(0)~70 for c=1, y(0)~100 forc=1.95]. However, the
can be defined in a conventional manfier: effective value for a finite system will likely be in the range
lg(x,b) of a few tens. The strong transient amplificatiorgat0 can
— ! — || alt H H
v(q,t)= SUp||g(x o~ le. (25)  be easily traced to a very close alignment of a large group of

9(x,0 eigenfunctiongy, throughg,;. As Fig. 8 shows, their shapes
In the unstable band the fast transient amplification will beare extremely similar. It is, therefore, appropriate to associate
followed by the slower exponential growth. Factoring out thethe transient behavior with a whole group of stable eigen-
exponential growth one obtains the following upper bound: functions. The size of the group increases vdgthincreasing
the degree of non-normality. In contrast, for channel flows
y(g,t)= supwefﬂot: He(L*BO)tH. (26) apparently only a couple of near-marginal eigenfunctions be-
la(x,0)] come closely aligned

9(x,0)
Numerical calculations show that in the unstable band |N€ transient amplification at smajl was found to de-

(q.t) is a monotonically increasing function of time, so the pend rathgr sensitively on the Igngth of the domain used in
maximum is reached fot—o. The time dependence for the numerical calculations. For instance, the valuey ob-
several values of the transverse wavenumber is shown in Fié‘.a!”ed forl,=30 were generally about a half of those ob-
6. AsL— B, andL have the same eigenfunctions, we can ained forl,=80. At aboutl,=80 the dependence leveled

easily calculate the matrix elements of the operaidt) off, and further increase ik resulted in large fluctuations in
— exd(L—Byt]: the eigenvalues due to numerical inaccuracies resulting from

strong non-normality of the matrix produced by discretizing

Unn(t)= fo fretPolg dx=elPn=Folts . 27
As only the element wittm=n=0 survives for large times, ' I ]
the maximal transient amplification is achieved for the “op- 0.8} _— Zi? E
timal” initial disturbances equal to multiples éf. The evo- 0.6E Tt n=2,.,22] ]
lution amplifies these disturbances and transforms them into
multiples of the leading eigenfunctiogy. Exponential = O

growth with rates predicted by the linear stability analysis &5
sets in rather quickly as the time scales of the exponential &
and transient growth are of the same order of magnitude.

The ultimate test of the importance of nonlinear terms
and transient dynamics is provided by a direct calculation of
the transient amplification factor 0.4

y(q)=maxy(q,t). (29
t

. . . . _FIG. 8. The eigenfunctiongy(x) throughg,,(x) for g=0, «=0.01, and
The numerical results are presented in Fig. 7. For a fixe =1. Only a portion of these eigenfunctions, computed on the interval of

contact angl?a’)’(Q) is the |ar933t_ for 2€ro wavenumber dis- |ength 1,=80, is shown. The eigenfunctions are normalized such that
turbancegwhich do not lead to distortion of the contact ljne [§|g,|?dx=1.
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' ' ' N ics of small disturbances about such states have eigenfunc-
tions whose horizontal dependence is given by Fourier
modes, which are normal to each other for any realistic
boundary conditiongin principle, one camesignthe bound-
ary conditions such that the eigenfunctions will not be nor-
mal even in this cad). Not only does it mean that all hori-
zontal modes become uncoupled, so any mode can be
controlled independently of the others, there is no non-
normality, so there are no transients and the linear stability
analysis is unconditionally valid.
| The target statb(x+ ut) in the present problem ison-
I . uniform in the direction of the flow. As a result, the differ-
60 80 ential operatolL does not fully diagonalize and the control
problem becomes vastly more complicated. Not only are all
=0.01, andc=1. The leading eigenfunctiofy(x) is constant, aside from a the modes in the system coupled, feedback applied to sup-
small region neak=1,, where it adjusts to the Dirichlet boundary condi- press one mode generally affects all other modes, so an
tion. The eigenfunctions are normalized such tFat* g,dX= S - infinite-dimensional problem has to be considered from the
outset. However, even if these problems are resolved and a
) o . feedback making the dynamics asymptotically stable is
L(q). This sensitivity can be explained by the shape of th&gyng, there is no guarantee that the transient effects will not
adjoint eigenfunctions. While the eigenfunctiogg(x) de-  yalidate the whole analysis.
cay exponentially for large, the adjointsf,(x) grow expo- Let us repeat the linear stability analysis of the spreading
nentially (see Fig. 9. As a result, small inaccuracies in the fjjm put now in the presence of feedback. First we make use
boundary conditions at the tail of the film introduced by f the simplification afforded by the uniformity of the target
truncating the computational domain can have a significangiate in the transverse direction, which allows us to partially
effect on the adjoint eigenfunctions, thus affecting the tra“'diagonalize the evolution operator. For the moment we re-
sient amplification, which depends on baif(x) andfn(X).  strict our attention to monochromatic disturbances(x
The minimal noise level required to trigger the nonlinear+ut,t)exp@qy)_ Since the flow is driven by the gradient in
instability according to the second scenario is about 0.1% oOff,¢ temperaturéand hence surface tensjorthe stability of
the total film thickness foty= 100 (the first scenario requires ine flow is most easily altered by varying the temperature
noise levels of order 196A more accurate calculation of the fia|d pehind the contact line. Suppose we modify the tem-
noise threshold is likely to raise this level much higher byperature profile by adding a perturbation
taking into account the fact thé26) determines thenaximal
amplification achieved for a specially chosen initial condi- AO(X,y,t)=— er(de0) " ts(t)w(x+ut)e'd, (29)
tion, while the secondary disturbances will generically be
amplified less strongly. As a result, one should not expect thwhere the transverse wavelengglis the same as that of the
nonlinear instability to occur for typical experimental condi- disturbance and(t) andw(x) are some functions determin-
tions. The published experimental datdagree with the pre- ing the temporal and spatial profile of the perturbation,
dictions of the linear theory rather well, supporting the con-which will be determined later. Consequently) and hence
clusion that the transient effects are relatively weak and(14) will be modified to account for the variation in the sur-
therefore, the modal linear stability analysis of Sec. lll accuface tension transversely to, as well as along, the direction of

I ()l

FIG. 9. The adjoint eigenfunction$y(x) through f,4(x) for q=0, «

rately describes the dynamics. the flow. At ordere instead of(14) we obtain
V. FEEDBACK CONTROL OF THE CONTACT LINE 319=Log+S[N1(hg)w+ Ny(hg)w']’
INSTABILITY +q2[L19- sNy(ho)W]+qLog, (30

Now that we understand the limits of the linear stability ) )
analysis let us consider the control problem. Can the contac¥here the influence functions
line instability be suppressed, or alternatively, can a pattern
with a desired wavelength be imposed by applying feed-  Ni(ho)=3(hi—ho),
back? In principle, the answer seems to be clear, as feasibil- (3
ity of feedback control of several other types of instability Nz(ho)=h§+ 2(ahg+ hg)hg
(buoyancy thermocapillary, evaporativé) in liquid layers
has been demonstrated. Although one might hope that th@etermine the effect of the imposed thermal perturbation.
developed control methods could be adapted for suppressing To get a sense of the dynamics of different modes in the
the contact line instability, in reality the spreading films turn presence of feedback, we expand the disturbance in the basis

out to be dramatically different. formed by the eigenfunctions af;,

The existing control methods have been developed for
stabilizing flat films with no mean flow, |.es,te_a(_1ly uniform g(x,t)=2 Gr(1)gm(X), (32)
target states. The evolution operators describing the dynam- m
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and make the strength of the applied perturbation propor- 50
tional to the magnitude of the distortion of the contact line
(with a proportionality constark, called thegain, to be de-
termined latey,

0t) k
S(t):kg(T):EEm: Grn(t)9m(0). (33

(=]
L T L
1

£,

Multiplying (30) by f;; and integrating from O tec we obtain -50_— I
an infinite system of ordinary differential equations describ- I T
ing the dynamics of individual modes: L

Gn=pBGn+ 2 (Aumt @’Bomt 4'Com)Grm, (349 T

where (assuming that all adjoint eigenfunctions are normal-FIG. 10. The adjoint eigenfunctiorfg(x) andf,(x) for =0, «=0.01, and
ized such thaf® f*q..dx= & c=1. Qualitatively similar profiles are obtained for other values of the con-
fo n9m ”m) tact angle. A portion of the eigenvalues computed on the interval of length
Im(0)

I,=80 is shown.
Anm=k =

fowfﬁ [N1(ho)w+Na(hg)w']"dx,

o gn(0) = The first condition is satisfied for any feedback localized
Bnmzf f:ngmdx—k—f f2>Ny(hg)wdx, (35) near the contact line, because in this cAgg=0, while the
0 ¢ 0 second condition can always be satisfied with the proper
w choice of the gairk. The third condition is clearly satisfied
CanJ’ frLogmdx. as well. Sinceg(34) is valid for all values ofg for which the
0 governing equatioif9) is valid and the choice df in (37) is
As Fig. 5 shows, the uncontrolled system possesses i@dependent ofg, we can immediately generalize to non-
single unstable eigenvalue well separated from the rest of th@onochromatic disturbances by integrating overgalsuch
spectrum. One can, therefore, expect that the dynamics é¢hat the feedback will be given by
small disturbr?mces shogld be well described by a single AB(X,Y, 1) = —Kr(9,0) ~ w(x+Uut) &y, t), (39)
mode truncation of(34) in the absence of feedback. The
same is not generally true when the feedback is applied. A4here &(y,t) is the instantaneous deviation of the contact
all modes are coupled, the feedback designed to suppress thae from its mean position.
leading mode will always affect, and can potentially destabi- ~HOW can we choose the heating profile in the flow direc-
lize, the subleading modes. As our numerical calculationdion which will stabilize the unstable mode without destabi-
show, such destabilization does indeed occur, unless the splizing any of the initially stable modes? As Fig. 8 shows, the
tial profile w(x) of the thermal perturbation is chosen care-!€ading mode is localized under the capillary ridge. There-
fully to avoid this. Had the evolution operator beeormal ~ fore, to suppress the instability one has to apply a perturba-
we could have always chosen the feedback in such a walon w_hlch will be IS|m|IarIy challzed_ to within the region
that different modes became uncoupled, so only the stabilitfccupied by the ridge. The inspection of matrix elements
of a few independent unstable modes had to be consideretBd shows that such a localized perturbation will affect all
The problem of controlling the contact line instability turns Modes whose adjoint eigenfunctions are not small in that
out to be quite delicate in comparison. region. According to Fig. 9 botli, andf, are of the same
Assuming thatw(x) is chosen such that all subleading order of magnitude there, while the other subleading modes
modes remain stable, we can truncate the sys@h by  are several orders of magnitude smaller. As a result, only the
discarding all modes except the leading one. The stability oftability of the leading and the first subleading mode may

the single-mode truncation change in response to feedback. The numerically computed
. spectra of the controlled system support this conclusion.
Go=(Ago+ 9%Boo+ 4*Coo) Go (36 The stability of the two leading modes is determined by

. . . he signs and magni f the matrix elem n
is a necessary condition for the stability of the full systemt e signs and magnitudes of the matrix elemokig, and

. _ B,m With n,m=0,1. A few general comments about these
(34)anhe truncatetq ?yzt.em Is stable when the following thre‘?natrix elements can be made based on the structure of the
conditions are satished. eigenfunctions. As Fig. 10 showk; andf, are both nearly

Ago=kw' (22)=<0, constant under the ridge and have opposite signs, while

0o(0) andg4(0) have the same sign. As a result, a decrease

_ (" . e < in Byg is necessarily accompanied by a commensurate in-
Boo fo Mo(ho—1)dx kfo Na(ho)wdx<0, 37) crease inB;. Furthermore, sincd, is constant, we have

Aon=0 for anyn, so atq=0 the eigenvalues of the con-
trolled system areg;(0)=0 and B1(0)~B1(0)+A;;. The
matrix elementA,, is generally nonzero and changes in re-

1+2«
COOZ - 4 <0.
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sponse to the strength of the applied feedback. An inappro- T
priate choice of the profilev(x) or the gain constarit can -

makeA, large enough to cause destabilization at long wave-
lengths. However, even whew(x) is chosen such tha#;, is
negative (but smal), destabilization of then=1 mode at
short wavelengths can occur due to the increag |n if the
feedback gain is too large.

Additional insights can be gained by considering the ef-
fect of feedback from the physical point of view. The action
of feedback in the direction transverse to the flow is de-
scribed by the influence functiod,(hy). The first and sec-
ond terms of this function describe the motion of the liquid N A L L
under the action of, respectively, surface forces and pressure 0 5 10 15
produced by the local gradients in the surface tension. For a
convex region of the film, wherd(<O0, these two effects 02— - - L
will compete with each other. For instance, a local maximum L —uncontrolled
of surface tension will induce the flow along the surface 0.1
toward that location and the flow in the interior of the liquid
layer away from that location. The first effect will dominate
for low capillary ridges(small contact anglgsthe second en
one for high capillary ridgeglarge contact angles =

As the instability is caused by the increased mobility of 0.1
the capillary ridge, one might envision enforcing control by
changing the thickness of the film. The local thickness of the 02
capillary ridge could, in principle, be modified by locally
heating or cooling it to redistribute the liquid in such a way 03l , , , , , \
as to decrease the thickness, and hence the mobility, Whereb) Y 6r 02 03 04 05 06 07
we need to slow down the motion of the contact line and
increase the thickness and mobility, where we need to speeriG. 11. Stabilization of a thermally driven film with a low capillary ridge,
it up to compensate for the deviation. This can be achievefma=163 (¢=0.1andc=1). (8 The asymptotic state,, influence func-
by choosingw(x), which is localized under the ridge and t'OI” NZ(hf")r'] a”d.therlmal dpe”“rbal‘lt'%" profile. ;(:ZlThe two leading eigen-
does not change sign. For instance, one could pick a Gauss: > ° the original and controlied system '
ian profile representing the effect of thermal spreading in the
solid substrate

— By
= N, (hyx))
— w(x)

0

h

before the high wavenumbers are stabilized for any choice of
the widthAx of the thermal perturbation.

’ (39 We are thus forced to look for an alternative solution.
Changing the overall thickness of the capillary ridge, even
locally, is a rather ineffective procedure, especially for small

wherex, andAx are chosen such that(x) is centered under d, as the liquid has to be redistributed over large distances in

the capillary ridge and has a comparable width. A sampléhe transverse direction. One could instead apply a local
profile is shown in Fig. 1(a) for a special choice of param- force to the ridge, redistributing the liquid between its front
eters. The numerically computed spectrum, Figbjldem- and back. For instance, by heating the front of the ridge and
onstrates that the stabilization can indeed be achieved by th@®oling its back one creates the pressure gradient enhancing

method for driven films with a relatively low capillary ridge. the flow. Reversing the sign of the applied perturbation im-

This simple approach, however, does not always achieveedes the flow, directly affecting the propagation velocity.
the desired result. In fact, it only succeeds when the largesthe corresponding thermal perturbation should have a profile
growth rate Bo(dma) in the uncontrolled system is small W(x) which changes the sign near the highest point of the
compared to|3,(0)|, i.e., when the feedback required to ridge. For instance, if one chooses the profile to be anti-
stabilize then=0 mode is too weak to destabilize the=1 symmetric
mode. One can already notice the sign of approaching (X—Xg)?
trouble by looking at Fig. 1b): the eigenvalue of the w(x)z(x—xo)ex;{—w
=1 mode atg=0 starts to creep upward due to the increase

in the matrix elemenA ;. If this approach is used to stabi- the matrix elemenf; can be made large and negative, so

lize a flow with Bo(qmay) cOmparable tdB3,(0)|, the feed- the n=0 mode can be stabilized without destabilizing the

back required to suppress tlme=0 mode becomes strong n=1 mode. Figure 1@&) shows that such a thermal pertur-
enough to destabilize the=1 mode at low wavenumbers. bation with the positiorx, and widthAx tuned to be roughly

The numerically computed spectra for higher capillary ridgegshe same as those of the capillary ridge, should have the

(hmax>1.7) show that the low wavenumbers are destabilizedargest effect orByq. Indeed, the influence functidd,(hg),

_ (X—Xo)?
w(X)=expg — W

: (40
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FIG. 12. Stabilization of a thermally driven film with a high capillary ridge, FIG. 13. Stabilization of a thermally driven film with a medium height
hma=2.75 (@=0.01 andc=1.95). () The asymptotic stath,, influence capillary ridge,h,5,=1.93 (@=0.01 andc=1). (a) The asymptotic state
function N,(hg), and thermal perturbation profile. (b) The two leading hy, influence functiorN,(h,), and thermal perturbation profile. (b) The
eigenvalues of the original and controlled systemifer4. Then=1 mode two leading eigenvalues of the original and controlled systenkfod. The

is strongly suppressed by feedback, the respective eigenvalue lies outsitgle=1 mode is strongly suppressed by feedback, the respective eigenvalue
the graph. lies outside the graph.

dominated for high capillary ridges by its second term, alsdt/€ments(35) show, feedback affects different modes in a

changes sign near the highest point of the capillary rid(\:]ec_jifferent way, and small changes in the eigenvalues can have

The numerically computed spectrum, Fig.(H2 shows that & large effect on the transient amplification. For instance,
one can again successfully suppress the instability. thermal perturbations with an anti-symmetric profile, such as

Another alternative is to exploit the narrow concave re_(40), can decrease the transient amp_lification_ at small wave-
gion of the film near the contact line. One can again use th8UMbers by almost an order of magnitudee Fig. 14 Gen-
Gaussian thermal profil@9) centered at the contact lifisee
Fig. 13a)]. Heating this region and thus lowering the surface 100

K T T T T T T T T T

tension one produces gradients in both the pressure and sur- AN
face tension, which induce the secondary flow away from the A ~~~ uncontrolled) 3
I 1

contact line. Cooling this region draws the liquid toward it,

providing a direct way to locally control the propagation

speed of the film. Making the amount of heating or cooling
proportional to the displacement of the contact line again
allows one to suppress the contact line instability. The nu-
merically computed spectrum of the system with and without
feedback is shown in Fig. 18).

Finally, let us look at the transient amplification of dis-
turbances in the presence of feedback. It is uncéepriori
what effect the control would have on the transient dynam-
ics. Numerical calculations show that, depending on the
choice of the thermal profile/(x), feedback C_an_elther n- G. 14. The transient amplification with and without control far
crease or decrease the degree of non-normality in the syStemO.Ol, c¢=1.95, k=4, and the anti-symmetric thermal perturbation profile
This observation is consistent with the theory. As the matrix40).

max, Y(q.t)
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erally, direct control of the propagation velocity via longitu- Marangoni number iM = d,0A 0,H/k7~2x10"2, much

dinal surface tension gradients leads to a decrease in ttemaller than the critical valué1.~80 necessary to drive
transient amplification, while indirect control via transverseconvection. We have further assumed that the surface tension
surface tension gradients affecting the mobility increases thearies linearly with temperature and the viscosity is
transient amplification for long wavelength disturbancestemperature-independent. The temperature drop across the
which is also consistent with naive expectations. characteristic scale of the capillary ridge is of ordeé,

We can thus conclude that an appropriately chosen feed= dy0x.L~1 K, wherex,~5 is the dimensionless width of
back can make the dynamics asymptotically stable withouthe ridge, so the characteristic temperature variation in any of
increasing the transient amplification of disturbances, suckhe three directions is small enough for the above-mentioned
that the contact line instability is suppressed in the presencassumptions to be satisfied for silicone oil. We have also
of noise characteristic of typical experimental conditions.assumed that the temperature field inside the liquid layer is
Moreover, the feedback is capable of reducing the transiergstablished on the time scale short compared to the charac-
amplification as well, so we can expect that feedback contrdleristic time scaldl. This assumption can be quickly verified
can be effective in suppressing the contact line instabilitypy computing the Peclet number PeH/x~7x10" >,
even when it is caused by the nonlinear effects. Finally, onc&hich gives the ratio of the two time scales.
the instability is suppressed, selective patterning can be More generally, as the proposed approach employs tem-
achieved by removing feedback and/or introducing addifperature dependence of the surface tension, we would expect
tional forcing at a wavenumber corresponding to a desiredt to work, perhaps with slight modifications, for any simple
pattern. nonvolatile liquid, whose surface tension varies approxi-

The proposed control algorithm has been verified experimately linearly with temperature in the range used to drive
mentally. Although no systematic investigation of differentthe primary flow.
thermal perturbation profiles has been attempted so far, the
proof-of-principle experiments have shown that by heatin
the advanced regions of the film and cooling the retarde
regions one can completely suppress the contact line insta- To summarize our results, we have determined that the
bility. It has also been shown that transversely modulate@volution operator governing the dynamics of spontaneous
thermal perturbations applied near the contact line can bdisturbances for thermally driven films, both with and with-
used to achieve selective patterning, producing perfectly pesut feedback, is significantly non-normal and can transiently
riodic patterns of rivulets. Full details of the experiments will amplify those disturbances. The strongest transient amplifi-
be presented in a separate publicatibh Garnier, R. O. cation occurs for the zero wavenumber which does not lead
Grigoriev, and M. F. Schatz, “Optical manipulation of mi- to contact line instability. However, even for nonzero wave-
croscale fluid flow,” submitted to Phys. Rev. Lett. numbers transient amplification is unlikely to produce an in-

Some details of these experiments however are worthgtability for levels of noise characteristic of typical experi-
of being quoted here to get a sense of the order of magnitudaental conditions. Therefore, linear stability analysis
of different physical quantities, which will allow us to verify accurately describes both the controlled and the uncontrolled
some of the assumptions made in the theoretical analysis. dynamics. In contrast, for gravity driven films at small incli-
silicone oil film (dynamic viscosityn~0.7 g/(cms), ther- nation angles the transient amplification could be much
mal diffusivity «~10 3cnP/s, surface tension o  stronger, with the maximum achieved at a nonzero
~20 dyn/cm, thermal coefficient of surface tensiopr  wavenumbet? providing an alternative mechanism for insta-
~7x10 2 dyn/(cmK)) of thickness H~2x10 *cm bility.
spreading on the glass substrate (xincm) under the ac- We have also shown that the contact line instability in
tion of the imposed thermal gradieat6~ 30 K/cm has the thermally driven films can be effectively suppressed by lo-
horizontal length scaleX~6x10 2 cm, time scaleT  cally heating or cooling the liquid behind the contact line.
~20s, and velocityp=X/T~3Xx10 % cm/s. The corre- Such thermal perturbation can be easily imposed experimen-
sponding wavelength of the fingering pattern s  tally with sufficient spatial and temporal resolution by radia-
=27L/qmax=0.1 cm, so in order to suppress a distortion oftively heating the substraté This approach offers significant
the contact line of amplitudé=0.1\ one needs to apply a advantages in controlling the dynamics of microflows com-
thermal perturbation of amplitud& 6, =kd,océ~1K, if the  pared to the one based on chemical patterning of the
feedback gain is set to=4. This perturbation is small com- substraté®*! First of all, no preparation of the substrate is
pared to the temperature differen@9 K) used to drive the needed, while the patterns can be dynamically reconfigured,
primary flow, despite the fact that the distortion of the con-offering potential for a significant increase in flexibility. Sec-
tact line is quite significante.g., it is outside the region of ond, feedback control can be used to achieve extremely
validity of linear approximation small feature size, if high intensity radiation is used to drive

Evaporation effects can be ignored for silicone oil heatedhe flow on a thin substrate with moderate thermal
to 30 K above room temperature, so although the temperasonductivity® opening up new prospects for microfluidics
ture drop across the liquid layer was not measured, it can band microfabrication applications. Finally, feedback control
quickly estimated using thermal diffusivities of the liquid provides a unique opportunity for studying the dynamics of
and the surrounding air to be at most of ordef,~1 K for ~ subdominant modes and even unstable states of the system.
a film with the above-given thickness. The corresponding~or instance, it can be used to experimentally measure the

I. DISCUSSION
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