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Liquid microdroplets represent a convenient system for studies of mixing by chaotic advection in
discrete microscopic volumes. The mixing properties of the flows in microdroplets are governed by
their symmetries, which give rise to invariant surfaces serving as barriers to transport. Thorough
mixing via chaotic advection requires destruction of all such invariant surfaces. To illustrate this
idea, we demonstrate that quick and thorough mixing inside a spherical microdroplet suspended in
a layer of substrate fluid can be obtained by moving the droplet along a two-dimensional path using
temperature-induced surface tension gradients. The use of flow invariants also provides a convenient
way to analyze the mixing properties of flows in many other experimental implementations. ©2005
American Institute of Physics. fDOI: 10.1063/1.1850374g

I. INTRODUCTION

Most microfluidic systems, which are being developed
into “labs-on-a-chip” that promise revolutionary applications
in biotechnology, chemistry, and medicine,1–4 require effi-
cient mixing of initially distinct fluid volumes. Liquids, how-
ever, do not mix easily at the scale of typical micro-
fluidic devices. Physically, microscale flows are character-
ized by a low Reynolds number Re;Va/n,1, whereV and
a are, respectively, a characteristic flow speed and length,
andn is the liquid’s kinematic viscosity. In this regime, flows
are laminar, and turbulence, which governs mixing rates in
macroscopic systems, cannot arise. Yet the size of typical
microfluidic devices is too large for molecular diffusion,
which usually governs mixing at smaller scales, to become
effective. Thus, efficient mixing of liquids at the microscale
requires a stirring mechanism, such as chaotic advection,5,6

that stretches and folds fluid elements throughout the entire
volume of the flow. The folding leads to a decrease in the
average distance between unmixed volumes of liquid with
different composition, while stretching sharpens the concen-
tration gradients enhancing diffusion, which acts more rap-
idly to smooth out remaining nonuniformities. For devices
based on continuous flow through microchannels, strategies
for inducing chaotic mixing by altering device geometries
have been proposed and verified experimentally.7,8

Our focus here will be on discrete volume systems4,9–11

which allow miniaturization of many standard laboratory
protocols that are difficult to realize with continuous flow.
We will concentrate primarily on spherical volumes, such as
microdroplets of one liquid suspended in another liquid, both
because such configurations are easy to implement and study
experimentally and because the flows inside spherical vol-
umes can be computed analytically due to the high symmetry
of the problem. This high symmetry, coupled with the time-
reversal invariance of the Stokesslow-Red flow, proves to be
a mixed blessing as it also makes designing a chaotic micro-

flow with good mixing properties a lot more challenging than
in the case of unbounded geometries.

The layout of the paper is as follows. Section II summa-
rizes prior theoretical and experimental developments in the
field. Section III describes the procedure for computing the
flow inside the droplet in the proposed experimental setup.
Section IV contains the analysis of the mixing properties of
the flow. Finally, the conclusions are presented in Sec. V.

II. BACKGROUND

The three most common flows that arise in spherical
microdroplets are the Hill’s spherical vortexsor “dipole”d
flow, the axisymmetric extensionalsor “quadrupole”d flow,
and the Taylorsor “rolling” d flow. Specifically, the dipole
flow sFig. 1d describes the flow inside a viscous droplet un-
dergoing translational motion due to buoyancy,12 thermocap-
illary effect,13 or nonuniform electric field.14 The corre-
sponding velocity field is givensin the frame of the dropd by

adElectronic mail: roman.grigoriev@physics.gatech.edu
FIG. 1. Streamlines of the dipole flow at the midplane of the droplet. Vector
e is in the horizontal direction.
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vd = Vdfse · r dr − s2r2 − 1deg, s1d

wheree is a unit vector defining the orientation of the axis of
the flow,Vd is the characteristic velocity, and all coordinates
have been nondimensionalized by the droplet diametera.
The quadrupole flowsFig. 2d

vq = Vqfsr2 + 2se · r d2 − 1dr − s5r2 − 3dse · r deg, s2d

with characteristic velocityVq, can be induced by placing the
droplet in an axisymmetric extensional flow15 v̂`~ r
−3se·r de, or subjecting it to a uniform electric field.16 Here
v̂` denotes the flow far from the droplet and the unit vectore
again defines the axial direction. Finally, the velocity field
obtained by placing the droplet in a shear flowv̂`

~ se1·r de2, with e1 and e2 two orthogonal unit vectors, is a
special case of the flow computed by Taylor15 and takes the
form

vt = Vtfs5r2 − 3dhse1 · r de2 + se2 · r de1j − 4se1 · r dse2 · r dr

+ 2s1 + ldse1 3 e2d 3 r g, s3d

wherel=m / m̂ is the ratio of inside to outside fluid dynamic
viscosities andVt is again the characteristic velocity of the
flow sFig. 3d. In the limit l→` this flow reduces to a rigid
body rotation of the droplet around the axise13e2.

If one neglects diffusion, the advection becomes the only
transport mechanism, so the trajectories of infinitesimal fluid
volumes with different composition are described by the flow

ṙ = vsr ,td. s4d

The mixing properties of the flow are therefore defined by
the geometrical properties of the invariant sets of the dy-
namical systems4d. The high degree of geometrical symme-
try of many typical flows leads to the existence of flow in-
variants sor actions in the language of Hamiltonian
systems17d, which are functions of coordinates that are con-
stant along streamlines of the flow. Each invariant defines,
inside the volume of droplet, surfaces on which the flow is
effectively two-dimensional. Additional invariants further re-
duce the flow dimensionality; e.g., a steady flow with two
invariants is effectively one dimensional.

Most of the theoretical progress in understanding chaotic
mixing in bounded flows has been achieved via studies of
weakly perturbedsteady integrable flows. These flows are
structurally unstable: arbitrarily small perturbations can lead
to chaos. The effect of small perturbations can be included
using standard perturbation analysis based on averaging their
contribution over a period of the unperturbed
trajectories.17–22 However, small perturbations only lead to
weak nonintegrability. For instance, perturbed two-invariant
sor action-action-angled flows, such as the axisymmetric
flows s1d and s2d, generically possess an adiabatic invariant
sAI d. The value of the AI slowly drifts due to intersection of
constant-AI tori with surfaces on which the frequency of the
angle variable vanishesse.g., separatrices of the unperturbed
flowd or satisfies a resonance condition.23 As a result, the
chaotic trajectories can explore large three-dimensional re-
gions, but only on extremely long time scales. On the other
hand, single-invariantsor action-angle-angled flows, such as
an axisymmetric flow superimposed with rotation around the
axis,20 represent motion on nested tori, with generic pertur-
bations leading to breakup of the resonant KAM-like
tori sKAM—Kolmogorov–Arnold–Moserd. Therefore, in
weakly perturbed action-angle-angle flows mixing occurs
only inside thin shells bounded by the undestroyed tori and
as such is also quite ineffective.

Time-periodic flows have received comparatively little
attention.23–25Again the progress in fundamental understand-
ing of their mixing properties is limited to perturbative and
numerical studies. As the above discussion suggests, for both
steady and time-dependent flows quick and thorough mixing
inside the droplet is expected to requirenonperturbativecor-
rectionssi.e., superposition of two or more integrable flows
with different symmetries and similar strengthd. To date, the-
oretical studies of nonperturbative effects have been limited
to numerical simulations.20,21,25,26

With a single exception provided by the recent experi-
mental investigation by Ward and Homsy,27 theoretical and
experimental research in this area have by and large been
completely disconnected. Few of the theoretical investiga-
tions mentioned above are of practical significance, as most

FIG. 2. Streamline of the quadrupole flow at the midplane of the droplet.
Vector e is in the horizontal direction.

FIG. 3. Streamlines of the Taylor flow at the midplane of the droplet. Vec-
torse1 ande2 are in the horizontal and vertical direction, respectively. In this
examplel=1.
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of the studied combinations of flows are nearly impossible to
realize experimentally. Respectively, the experimental stud-
ies of mixing in microdroplets28–33have in no way relied on
the existing theoretical results.

Although chaos can, in principle, arise in steady three
dimensional flows, all experiments, without exception, relied
on time-dependent flows to generate chaotic advection. In
one group of experiments29–32 deformedmicrodroplets con-
fined between two flat surfaces were used. Two dropletssone
dyed and one undyedd were merged and moved using
electrowetting.29–32Although detailed studies of the distribu-
tion of mixed volumes inside the droplet have not been con-
ductedsthe depth-averaged signal has been recordedd it was
determined that one dimensional “shaking” of the droplet
does not lead to mixing due to the time reversibility of the
Stokes flow—moving the droplet to the original position re-
stores the initialsunmixedd state.29 However, moving the
droplet in two dimensions, e.g., around the perimeter of a
rectangle,30,31 appears to mix the dye much better. Similarly,
the studies of liquid dropletssor “plugs”d confined by micro-
channels also found that bending the microchannels in two
dimensionssand thereby making the flow inside the droplets
time-dependentd improves mixing.33

A qualitative two-dimensional model was proposed by
Fowler et al.31 to explain mixing in droplets moved along
square pathssthe corresponding experiments were performed
with droplets compressed so strongly, they were effectively
two dimensionald. Without explicitly referencing the chaotic
advection mechanism, the authors suggested that motion in a
straight line leads to stretching of fluid volumes, while
switching the direction of motion leads to folding. This
stretching and folding repeated multiple times describes a
classical chaotic mixing mechanism leading to fractal struc-
ture of chaotic invariant sets.

Stretching and folding of fluid elements inspherical
droplets has also been demonstrated experimentally,27 sup-
porting the results of the theoretical analysis25 conducted ear-
lier. The primarysdipoled flow in the droplet was generated
due to its motion as the droplet sank to the bottom of the
container. An additional time-dependent quadrupole flow
with the same axis was superimposed by applying an alter-
nating vertical electric field. However, the limitations of the
experimental setup prevented the thorough mixing of the dye
inside the droplet. As we will show below, this is due to the
remaining axial symmetry of the flow which restricts all cha-
otic trajectories to two-dimensional surfaces.

III. FLOW MANIPULATION

As we have seen so far, chaotic advection requires a flow
with rather special properties to be induced inside the micro-
droplet. Even though any linear superposition of Stokes
flows satisfies the Stokes equation, the list of “building
blocks” is not large, regardless of what physical mechanism
is actually used to drive the flow. Detailed experimental stud-
ies of different combinations of basic flows, therefore, re-
quire considerable flexibility in the experimental setup. Elec-
trical or thermal fields provide arguably the easiest and most
flexible way for controlling the flow. Several approaches

based on applying the electric field were discussed in the
preceding section.

Here we describe an alternative approach to driving mi-
croflows based on the temperature dependence of surface
tensionsthe Marangoni or thermocapillary effectd. Manipu-
lating surface tension provides a natural approach to regulat-
ing flows at small scales because surface forces, like surface
tension, dominate when the surface-to-volume ratio is large.
The surface tension at the interface between immiscible flu-
ids can be conveniently altered by changing the temperature;
for pure fluids, the surface tension decreases as the tempera-
ture increases. The fluids move when gradients in tempera-
ture induce surface tension differences. At small scale, even
small thermal gradients can cause substantial fluid move-
ment. As a consequence, the thermocapillary effect has been
utilized successfully in prototype devices for manipulating
tiny quantities of fluid.3,4,34 In these devices, temperature
variations have been generated with heating/cooling ele-
mentsse.g., resistive heatersd placed in physical contact with
the fluids. Surface-tension gradients can also be imposed us-
ing radiative heating.35

In particular, thermocapillary effect can be used to drive
the flow inside microdroplets suspended in a layer of liquid
substratesof thicknessh, see Fig. 4d. In describing the flow
inside the droplet subjected to a nonuniform temperature
field we will make a number of simplifying assumptions to
obtain a tractable analytical model. First of all, we will as-
sume that the droplet is neutrally buoyant and floats a dis-
tanced.a below the substrate/air interface and consider the
substrate to be semi-infinitesin other words,h@ad. We will
assume the droplet to be spherical, which is a good approxi-
mation for sufficiently small droplets and the substrate/air
interface to be perfectly flat. The surface tension will be
assumed to depend linearly on temperature and be indepen-
dent of the dye concentration. Next, we will assume that the
thermal properties of the liquid inside and outside the droplet
are the samesthis assumption is nonessential and very easy
to lift d. We will also assume that the convective heat flux is
negligible, so the temperature and velocity fields can be
computed independently. Finally, the flow is assumed to be
in the Stokes regime.

Neglecting the proximity of the substrate/air interface,
the velocity inside and outside the droplet can be found by
solving the Stokes equation

FIG. 4. Microdroplet in a liquid substrate. For convenience we will choose
the z axis in the vertical direction and place the origin in the center of the
droplet.
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=p = m¹2v, = p̂ = m̂¹2v̂ s5d

in an infinite domain subject to the incompressibility condi-
tion = ·v= = ·v̂=0 and boundary conditions

t ·v = t · v̂, n ·v = n · v̂ = 0,

s6d
n · ss − ŝd · t = tsst · = Td

on the surface of the droplet. In the above expressionsp, s,
T, andts=]gs/]T,0 denote the pressure, stress tensor, tem-
perature, and temperature coefficient of the surface tension,
respectively, the hat denotes the quantities pertaining to the
outside liquid, the indexs denotes thessphericald surface of
the droplet, andn and t are unit vectors normal and tangen-
tial to the surface. The velocity field can be found by substi-
tuting Lamb’s general solution36 into s6d.

As the droplet is constrained to move in the horizontal
plane we will only consider the motion arising due to the
horizontal component of the temperature gradient. For a uni-
form gradient=T=k0e, the flow inside the droplet can be
easily found13 and is given bys1d with Vd=k0ats/ fm̂s2
+3ldg. The nonuniformity of the temperature gradient will
produce a correction to this basic dipole flow. In particular,
for a temperature profile quadratic in the distance from the
droplet center,T=T0+k1se·r d2, we find the correction given
by the quadrupole flows2d with Vq=k1a

2ts/ f5m̂s1+ldg.
The proximity of the substrate/air interface will produce

additional corrections. First of all, due to the thermocapillary
effect at that interface induced by the temperature gradient a
shear flow will be established in the liquid substrate. The
uniform temperature gradient will induce a uniformsfar from
the dropletd shear which can be found from the boundary
conditions at the substrate/air interface,

n · v̂ = 0, n · ŝ · t = tpst · = Td, s7d

where tp=]gp/]T,0 and the indexp denotes thesplaned
interface. The corresponding velocity profile in the stationary
reference frame is

v̂` =
k0tpa

m̂
sez · r de+ v̂0e. s8d

This shear flow leads to a Taylor flow corrections3d with
Vt=k0tpa/ f4m̂s1+ldg ande1=ez, e2=e. A quick comparison
of the characteristic velocitiesVd and Vt shows that the
shear-induced flow inside the droplet is of roughly the same
magnitude as the dipole flowffor l=Os1dg. The superposi-
tion of these two flows is not chaotic when the vorticity of
the shear flow far from the droplet is orthogonal to the axis
of the dipole flow, as numerical calculations of Bryden and
Brenner26 show. This is exactly the case here, as the vorticity
of the flow s8d is v= = 3 v̂`~ezÃe.

The last term ins8d describes the mean flow in the sub-
strate. For a liquid substrate of thicknessh the mean flow
leads to the overall advection of the droplet in the direction
opposite to the temperature gradient with velocity
v̂0=−sk0tp/ m̂dsh−dde, which is found using the no-slip
boundary condition at the bottom of the substrate layer. For
droplets floating near the top interface,d!h, this motion is

dominant compared with the thermocapillary migration13

with speeds2/3dVd in the opposite direction.
The proximity of the substrate/air interface will also gen-

erate smaller corrections to the flow inside and outside the
droplet. Consider, for instance, the flow outside the droplet
due to the applied uniform temperature gradient=T=k0e.
The velocity field in the unbounded substrate again follows
from the Lamb’s general solution. In the frame of the drop
one obtains

v̂d = − Vd
3se · r dr − r2e

3r5 . s9d

The solution satisfying the homogeneous version of the
boundary conditionss7d at the substrate/air interface can be
found using the method of reflections, which generates a
series expansion for the velocity field in powers ofd=a/d by
subsequent reflections of the velocity fieldv̂ about the plane
and spherical interface.37 The leading order corrections are of
order d3 and so decay very quickly with the distance from
the droplet to the interface. Here we will assume thatd is
large enough for these corrections to be neglibible. The in-
vestigation of the effect of these corrections on the mixing
properties of the flow will be reported in a separate publica-
tion.

One of the principal assumptions in our description con-
cerns the droplet shape. Its deviation from a perfect sphere
due to the imposed temperature gradient is given by the ratio
of the surface tension variation across the drop,Dg
=2k0tsa, to the mean value of the surface tensiongs. The
temperature gradientk0 produced by locally heating the sub-
strate of thicknessh to a temperatureDT above average is of
orderDT/h. Taking the values characteristic of typical fluids
and typical experimental conditions,gs=20 dyn/cm, ts

=0.1 dyn/cm K, DT=10 K, and h=0.5 cm we obtaina
!hgs/2tsDT<5 cm, so any entirely submerged droplet
would be nearly perfectly spherical. In contrast, the influence
of terrestrial gravity would be much more pronounced. Com-
paring the hydrostatic pressure drop 2aDrg with the Laplace
pressuregs/a, we obtaina!Îgs/2Drg<0.3 cm for a typi-
cal density mismatchDr=0.1 g/cm3, so only droplets with
radii of a few hundred microns or less would be spherical.

IV. TRANSPORT BARRIERS AND MIXING

Having understood the effect of imposed thermal gradi-
ents on the motion of and flows inside the droplet, we move
on to the mixing problem. The mixing properties of the flows
inside the microdroplet are governed by their symmetries,
which give rise to invariant surfaces serving as barriers to
transport. Since no streamlines of the flow can cross the in-
variant surfaces, the existence of invariants is highly unde-
sirable in the mixing problem as their presence inhibits com-
plete stirring of the full microdroplet volume by chaotic
advection. Thus, the key to achieving effective chaotic mix-
ing in a microdropletsindeed, in any laminar microflowd is to
ensure that all flow invariants are destroyed.
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In principle, the flow can also possess invariants related
to dynamical rather than geometrical symmetries.17 Such dy-
namical invariants, for instance, define the boundaries of in-
tegrable islands embedded in the chaotic sea of generic
Hamiltonian systems and are often present in multicompo-
nent chaotic flows in spherical droplets.20–23 However, the
importance of dynamical invariants is relatively small as
they can be destroyed by simply changing the relative
strength of the components of the flow. Therefore, in the
following we will concentrate on the geometrical invariants
which cannot be destroyed so easily, yet can often be found
analytically without solving the equations of motion.

To begin with, consider the flow caused by a uniform
horizontal temperature gradient for a droplet immersed in an
unbounded substrate. The temperature gradientswe will take
it to be in thex direction, see Fig. 4d will induce a dipole
flow s1d inside the droplet with the axise=ex. The poor
mixing properties of this flow can be demonstrated by fol-
lowing the motion of a small dyed fluid element inside the
microdropletfFigs. 5sad–5scdg. To determine the evolution of
the dye the flows1d is integrated forward in time starting
from an initial condition shown in Fig. 5sad. The dye is
stretched along the axis of the flow and the surface of the
droplet within a single characteristic turnover time for the
flow fFig. 5sbdg, but never spreads throughout the droplet,
even after repeated stretchingfFig. 5scdg. Poor mixing can be
expected in this case because the steady dipole flow is effec-
tively one dimensionalsand, therefore, cannot be chaoticd
because it possesses two invariants,17

Id =
z

y
, Jd = z2s1 − r2d, s10d

related to the orientation of a plane containing the streamline
and the stream function of the flow in that plane.

This result can be immediately generalized to droplets
confined by straight microchannels. Even though the droplet
in this case is not spherical, the flow is topologically identi-
cal to the dipole flow shown in Fig. 1. As a result no chaotic
advection will result from recirculation of the liquid caused
by translation of the droplet. The claims of apparent good
mixing reported for this setup28 rely on the experimental ob-
servations of thedepth-averagedconcentration which ap-
pears to be uniform, despite a strong inhomogeneity in three
dimensions.

It is easy to see that the symmetry of the flow about the
y=0 midplane of the droplet will prevent mixing between the
left sy.0d and rightsy,0d hemispheres of the droplet, even
if the corrections to the dipole flow, such as the quadrupole
flow s2d, the Taylor flows3d are included. Indeed, none of the
streamlines can cross the symmetry plane of the flow, which
serves as a barrier to transport between the left and right
hemisphere in this case. This conclusion also applies to one
dimensional motion of deformedsnonsphericald droplets
confined either by channels with symmetric cross section28,33

or by flat parallel surfaces.29,31 This transport barrier can be
broken and mixing between the two halves of the droplet
achieved, by switching the direction of the flow, as was dis-
covered by trial and error in electrowetting mixing
studies.30,31 Improved mixing in pressure-driven droplets
moving through bent microchannels33 is also due to direction
switching of the recirculation flow.

Each flow invariant defines an infinite set of invariant
surfaces, much like they=0 symmetry plane. To realize
complete mixing, all invariants of the flow must be de-
stroyed. The time dependence of the flow introduced by
switching the direction of the thermal gradient in the hori-
zontal plane destroys the invariantId of the dipole flowsbut
not Jdd. The resulting flow, therefore, becomes effectively
three dimensionalstwo space variables plus timed and so
chaotic dynamics becomes possible. Furthermore, direction
switching introduces folding; repeated stretching and folding
of the fluid elements by a time-periodic flow produces effi-
cient stirring in thez=0 midplane of the droplet, as the re-
sults of numerical integration shown in Figs. 5sad and 5sdd–
5sfd demonstrate. This time-periodic flow can be thought of
as a three dimensional version of the two dimensional Aref’s
blinking vortex.5

It is important to note that the presence of chaotic ad-
vection does not guarantee good mixing. Indeed, since the
invariantJd is not destroyed by direction switching, chaotic
streamlines are confined to two dimensional surfaces of revo-
lution defined by

x2 + y2 = 1 −z2 −
Jd

z2 , s11d

as indicated by the intersections of a representative chaotic
streamline with a fixed vertical midplane shown in Fig. 6sad.
sSince the flow is formally four dimensional, its proper

FIG. 5. Advection of dye by the dipole flow. Shown is the midplane cross
sectionsz=0d of the boundary of a dyed fluid element. Thex axis is hori-
zontal and they axis is vertical. The initial statesad and stretching in steady
dipole flow at t=6 sbd and t=24 scd. Stretching and folding in a time-
periodic flow obtained by rotating its direction by 90° in the horizontal plane
every six time units: the dyed element is shown att=12 sdd, t=18 sed, and
t=24 sfd. Time is measured in units ofa/V.
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Poincaré section will be three dimensional rather than two
dimensional.d Under the action of chaotic advection a dyed
fluid element will only spread over thin shells defined by Eq.
s11d, whereJd varies over the values corresponding to the
initially dyed region of the fluid. The same conclusions apply
if the axis of the flow is rotated in a plane by arbitrary angles
at arbitrary timessor if the axis oscillates periodically as
proposed by Angilella and Brancher24d. This result indicates
that the symmetry of the pure dipole flow is so high that
mixing will be incomplete even with the addition of time
dependence.

The symmetry of the flow can be lowered by lowering
the symmetry of the driving force, e.g., by making the tem-
perature gradient nonuniform. For instance, a quadratic non-
uniformity in the temperature field in the direction of the
primary gradient,T=T0+k0x+k1x

2, leads to a quadrupole
corrections2d to the dipole flow with the same axise=ex. In
this case the resulting steady flow is still axisymmetric and
so again possesses two invariants. The stream function of the
combined flowv=vd+vq allows us to easily find them:

I =
z

y
, J = sVd + 2Vqxdz2s1 − r2d. s12d

The addition of time dependence induced by switching the
direction of the temperature gradient in the horizontal plane
destroys both invariantss12d for almost all values ofI andJ.
As a result, chaotic streamlines are no longer constrained to
two-dimensional surfaces and thoroughly sample the droplet
volume as Fig. 6sbd illustrates. However, a surface defined
by I =J=0, namely, the midplanez=0, remains invariant
with respect to rotations in the horizontal plane and prevents
mixing between the top and bottom hemisphere of the mi-
crodroplet: the streamlines of the flow and hence the dye
particles never cross thez=0 midplane.sIf the time depen-
dence of the flow is due to a periodic modulation of the
quadrupole contribution, as is the case in the experimental
setup studied by Ward and Homsy,25 one still obtains chaotic

mixing only in two dimensions as the invariantI in s12d is
preserved.d

The final transport barrier is destroyed by the correction
to the dipole/quadrupole flow induced by the shear in the
substrate fluid. Unlike the dipole and quadrupole flows
whose streamlines do not cross the midplanez=0 ssee Figs.
1 and 2d, the streamlines of the Taylor flow do cross that
plane ssee Fig. 3d. As a result, the streamlines of the com-
bined dipole/quadrupole/Taylor flow can also cross the mid-
plane, enabling mixing between the top and bottom hemi-
sphere as Fig. 6scd illustrates.

It is important to note that the quadrupole flow contribu-
tion is essential for introducing chaotic advection in three
dimensions. This can be seen by considering the combination
of the dipole and Taylor flows alone. Since Taylor flow has
the same symmetry with respect to the planex=0 as the
dipole flow scompare Figs. 1 and 3d and both flows are time
reversiblesas is every Stokes flowd, all trajectories of the
Taylor flow are closed. This, in turn, means that Taylor flow
also possesses two invariants. These invariants, however, are
not as easy to find, since Taylor flow is not axially symmetric
and hence one cannot use the stream function of the flow.
The invariants can nevertheless be found directly from their
definition, vt ·=Jt=0. Solving the resulting partial differen-
tial equation one finds both invariants:

I t = y3s1 − r2d,

s13d
Jt = sl + 1 + 2z2 − r2d3/2s1 − r2d.

Again the first flow invariant is destroyed by rotations in the
horizontal plane, while the second invariant is preserved.
This is a consequence of a general statement which can be
easily proven: any time-reversible flowv such that

vxs− x,y,zd = vxsx,y,zd,

vys− x,y,zd = − vysx,y,zd, s14d

vzs− x,y,zd = − vzsx,y,zd

possesses at least one invariant which is preserved under
rotations in thexy plane. This statement follows directly
from the symmetry of the closed orbits of such flows about
the x=0 plane. In particular, the superposition of the dipole
and Taylor flow has an invariant which is preserved under
rotations. In the limitl→` it takes a simple form:

J = sVt − Vdzd2s1 − r2d. s15d

The corresponding time-periodic flow whose direction is
switched in the horizontal plane again has poor mixing prop-
erties: although its streamlines are chaotic, they are con-
strained to two-dimensional surfaces of revolution defined by
the remaining invariant. The cross section of such a surface
is shown in Fig. 6sdd. This result also proves the numerical
conclusion of Bryden and Brenner26 that the superposition of
the ssteadyd dipole and Taylor flow is nonchaotic when the
vorticity vector of the shear flow is orthogonal to the axis of
the dipole flow.

Summing up, we have shown that all geometrical invari-
ants of the flow inside a droplet can be broken by immersing

FIG. 6. Intersections of a chaotic streamline with thex=0 midplane of the
droplet. Thez axis is vertical. The flow is made time dependent by switching
its direction by 120° every four time units.sad Dipole flow. sbd Superposi-
tion of dipole and quadrupole flow.scd Superposition of dipole, quadrupole
and Taylor flow.sdd Superposition of dipole and Taylor flow. Parameters are
chosen such thatl=Vd=1, Vt=0.4, Vq=0.2. The total time istmax=8000
s666 periodsd.
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it in a layer of substrate fluid with a free surface and driving
it using a thermal gradient whose direction is periodically
switched in a horizontal plane. The destruction of flow in-
variants removes the transport barriers inside the droplet,
thereby facilitating quick and thorough mixing.

V. CONCLUSIONS

The analysis presented above should have broad appli-
cability. On the most general level, one concludes that the
existence and number of invariants play a crucial role in
determining the mixing properties of the flow. In particular,
in order to achieve full three dimensional mixing the flow
within the droplet should be designed to destroy all invariant
surfaces in the interior of the droplet. As the example with
the dipole/Taylor flow combination shows, destroying the
simple geometrical symmetries of the flowse.g., making the
combined flow nonaxisymmetricd might not be sufficient for
complete mixing. In this sense the flow invariants provide a
more useful way of characterizing the mixing properties of
the flow than its symmetries.

More specifically, the types of flows that we have con-
sideredsdipole, quadrupole, and Taylor flowd are the most
common types of interior flows arising inside spherical mi-
crodroplets, regardless of the nature of driving forces. That is
not surprising as they merely represent the first few terms in
the Lamb’s general solution. Therefore, many details of our
analysis should be directly applicable to situations when mi-
croflows are driven by, e.g., external shear, buoyancy, or
electrical fields. Furthermore, many of the results we have
obtained for spherical droplets should naturally generalize to
deformed shapes such as liquid plugs in microchannels with
cylindrical or rectangular cross section28,33 or droplets com-
pressed between two parallel planes.30–32 The flows inside
these shapes are topologically similar to flows in spherical
microdroplets and therefore should have similar mixing
properties, at least in steady state.

Finally, our results suggest that once the geometrical in-
variants in a nonperturbative time-dependent flow are de-
stroyed, one obtains extremely thorough mixing in the full
volume of the droplet. This is likely due to the fact that the
resulting flow is effectively four dimensional. It is also pos-
sible to obtain such thorough mixing in some nonperturba-
tive composite steady flows21,22 sin fact the steady dipole/
quadrupole/Taylor flow is also chaotic!d, however thorough
mixing requires carefully choosing the relative strength of
different components. The mixing uniformity of our time-
periodic flow is not perfect—there are shell-like regionsfsee
Figs. 6sbd and 6scdg which are visited by chaotic trajectories
less frequently. This is a generic feature observed in most
chaotic flows, steady or time periodic, and its origin is cur-
rently under investigation.
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