HTML AESTRACT * LINKEES

PHYSICS OF FLUIDS17, 033601(2005

Chaotic mixing in thermocapillary-driven microdroplets
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Liquid microdroplets represent a convenient system for studies of mixing by chaotic advection in
discrete microscopic volumes. The mixing properties of the flows in microdroplets are governed by
their symmetries, which give rise to invariant surfaces serving as barriers to transport. Thorough
mixing via chaotic advection requires destruction of all such invariant surfaces. To illustrate this
idea, we demonstrate that quick and thorough mixing inside a spherical microdroplet suspended in
a layer of substrate fluid can be obtained by moving the droplet along a two-dimensional path using
temperature-induced surface tension gradients. The use of flow invariants also provides a convenient
way to analyze the mixing properties of flows in many other experimental implementatic2@0%0
American Institute of Physic§DOI: 10.1063/1.1850374

I. INTRODUCTION flow with good mixing properties a lot more challenging than
in the case of unbounded geometries.

Most microfluidic systems, which are being developed  The layout of the paper is as follows. Section Il summa-
into “labs-on-a-chip” that promise revolutionary applicationsrizes prior theoretical and experimental developments in the
in biotechnology, chemistry, and medicihé, require effi- field. Section Ill describes the procedure for computing the
cient mixing of initially distinct fluid volumes. Liquids, how- flow inside the droplet in the proposed experimental setup.
ever, do not mix easily at the scale of typical micro- Section IV contains the analysis of the mixing properties of
fluidic devices. Physically, microscale flows are characterthe flow. Finally, the conclusions are presented in Sec. V.
ized by a low Reynolds number Reva/v<1, whereV and
a are, respectively, a characteristic flow speed and length,
andvis .the liquid’'s kinematic wscpsﬂy. In this regime, flows' L. BACKGROUND
are laminar, and turbulence, which governs mixing rates in

macroscopic systems, cannot arise. Yet the size of typical The three most common flows that arise in spherical
microfluidic devices is too large for molecular diffusion, microdroplets are the Hill's spherical vortger “dipole”)
which Usua”y governs miXing at smaller scales, to beC0m¢|0W, the axisymmetric extensioné‘br “quadrupo|ej flow,
effective. Thus, efficient mixing of liquids at the microscale gnd the Taylor(or “rolling”) flow. Specifically, the dipole
requires a stirring mechanism, such as chaotic advetfion, flow (Fig. 1) describes the flow inside a viscous droplet un-
that stretches and folds fluid elements throughout the entirgergoing translational motion due to buoyarityhermocap-
volume of the flow. The folding leads to a decrease in thellary effect!® or nonuniform electric field* The corre-
average distance between unmixed volumes of liquid withsponding velocity field is givefin the frame of the dropby
different composition, while stretching sharpens the concen-
tration gradients enhancing diffusion, which acts more rap-
idly to smooth out remaining nonuniformities. For devices
based on continuous flow through microchannels, strategies S
for inducing chaotic mixing by altering device geometries e SONONNY
have been proposed and verified experimentaily. /e > ) ANN

Our focus here will be on discrete volume systéms / [\ >~ A\
which allow miniaturization of many standard laboratory / ( ‘ ) B
protocols that are difficult to realize with continuous flow. Sl " -
We will concentrate primarily on spherical volumes, such as ) o
microdroplets of one liquid suspended in another liquid, both — —_—
because such configurations are easy to implement and study \\ 4 o - — )/
experimentally and because the flows inside spherical vol- & A I ~ ) /)/
umes can be computed analytically due to the high symmetry A e -
of the problem. This high symmetry, coupled with the time- \ X Y/
reversal invariance of the Stokédsw-Re) flow, proves to be R %/

a mixed blessing as it also makes designing a chaotic micro- T

FIG. 1. Streamlines of the dipole flow at the midplane of the droplet. Vector
dElectronic mail: roman.grigoriev@physics.gatech.edu eis in the horizontal direction.
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FIG. 2. Streamline of the quadrupole flow at the midplane of the droplet
Vector e is in the horizontal direction.

vg=V (e -r)r-(2r>-1e], (1)

wheree is a unit vector defining the orientation of the axis of
the flow, Vy is the characteristic velocity, and all coordinates
have been nondimensionalized by the droplet diamater
The quadrupole flowFig. 2)

Vg =V [(r?+2(e-r)?=1r - (5r*- 3)(e - r)e], (2)

with characteristic velocity/,, can be induced by placing the
droplet in an axisymmetric extensional flbw ¥~ ccr
-3(e-r)e, or subjecting it to a uniform electric field.Here
v~ denotes the flow far from the droplet and the unit veetor
again defines the axial direction. Finally, the velocity field
obtained by placing the droplet in a shear flowW

« (e, r)e,, with e; ande, two orthogonal unit vectors, is a
special case of the flow computed by Tayfoand takes the
form

V= V{[(5r2 = 3){(e; - r)ey + (& -1)eyt — 4(ey - 1) (e, 1)r
+2(1+N)(e; X &) Xr], (3)

whereh=u/ i is the ratio of inside to outside fluid dynamic
viscosities andv, is again the characteristic velocity of the
flow (Fig. 3). In the limit A\ — oo this flow reduces to a rigid
body rotation of the droplet around the a®sx e,.
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FIG. 3. Streamlines of the Taylor flow at the midplane of the droplet. Vec-

torse, ande, are in the horizontal and vertical direction, respectively. In this
examplex=1.

Most of the theoretical progress in understanding chaotic
mixing in bounded flows has been achieved via studies of
weakly perturbedsteady integrable flows. These flows are
structurally unstable: arbitrarily small perturbations can lead
to chaos. The effect of small perturbations can be included
using standard perturbation analysis based on averaging their
contribution over a period of the unperturbed
trajectories:’ 2> However, small perturbations only lead to
weak nonintegrability. For instance, perturbed two-invariant
(or action-action-ange flows, such as the axisymmetric
flows (1) and(2), generically possess an adiabatic invariant
(Al). The value of the Al slowly drifts due to intersection of
constant-Al tori with surfaces on which the frequency of the
angle variable vanishdg.g., separatrices of the unperturbed
flow) or satisfies a resonance conditfdnAs a result, the
chaotic trajectories can explore large three-dimensional re-
gions, but only on extremely long time scales. On the other
hand, single-invarianfor action-angle-ang)eflows, such as
an axisymmetric flow superimposed with rotation around the
axis?° represent motion on nested tori, with generic pertur-
bations leading to breakup of the resonant KAM-like
tori (KAM—Kolmogorov—Arnold—Mosey. Therefore, in
weakly perturbed action-angle-angle flows mixing occurs
only inside thin shells bounded by the undestroyed tori and

If one neglects diffusion, the advection becomes the onlyas such is also quite ineffective.

transport mechanism, so the trajectories of infinitesimal fluid

Time-periodic flows have received comparatively little

volumes with different composition are described by the flowattention®2>Again the progress in fundamental understand-

r=v(r,t).

(4)

ing of their mixing properties is limited to perturbative and
numerical studies. As the above discussion suggests, for both

The mixing properties of the flow are therefore defined bysteady and time-dependent flows quick and thorough mixing
the geometrical properties of the invariant sets of the dyinside the droplet is expected to requirenperturbativecor-

namical systent4). The high degree of geometrical symme-
try of many typical flows leads to the existence of flow in-

rections(i.e., superposition of two or more integrable flows
with different symmetries and similar strengtfio date, the-

variants (or actions in the language of Hamiltonian oretical studies of nonperturbative effects have been limited
systemd’), which are functions of coordinates that are con-to numerical simulation& 22526

stant along streamlines of the flow. Each invariant defines, With a single exception provided by the recent experi-
inside the volume of droplet, surfaces on which the flow ismental investigation by Ward and Hom257ytheoretical and
effectively two-dimensional. Additional invariants further re- experimental research in this area have by and large been
duce the flow dimensionality; e.g., a steady flow with twocompletely disconnected. Few of the theoretical investiga-
invariants is effectively one dimensional. tions mentioned above are of practical significance, as most
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of the studied combinations of flows are nearly impossible to ; zA
realize experimentally. Respectively, the experimental stud-

ies of mixing in microdroplef—>3have in no way relied on
e

the existing theoretical results.

Although chaos can, in principle, arise in steady three
dimensional flows, all experiments, without exception, relied /
on time-dependent flows to generate chaotic advection. In
one group of experimerfts ** deformedmicrodroplets con- substrate
fined between two flat surfaces were used. Two drojteis
dyed and one undyedwere merged and moved using
electrowetting?®>*?Although detailed studies of the distribu- FIG. 4. Microdroplet in a liquid substrate. For convenience we will choose
tion of mixed volumes inside the droplet have not been Con%]Ihez axis in the vertical direction and place the origin in the center of the

. . roplet.
ducted(the depth-averaged signal has been recoriteslas
determined that one dimensional “shaking” of the droplet
does not lead to mixing due to the time reversibility of the
Stokes flow—moving the droplet to the original position re- hased on applying the electric field were discussed in the
stores the initial(unmixed state’® However, moving the preceding section.
droplet in two dimensions, e.g., around the perimeter of a  Here we describe an alternative approach to driving mi-
rectangle’”* appears to mix the dye much better. Similarly, croflows based on the temperature dependence of surface
the studies of liquid droplet®r “plugs”) confined by micro-  tension(the Marangoni or thermocapillary effécManipu-
channels also found that bending the microchannels in tweating surface tension provides a natural approach to regulat-
dimensiongand thereby making the flow inside the dropletsing flows at small scales because surface forces, like surface
time-dependentimproves mixing®* tension, dominate when the surface-to-volume ratio is large.

A qualitative two-dimensional model was proposed byThe surface tension at the interface between immiscible flu-
Fowler et al** to explain mixing in droplets moved along ids can be conveniently altered by changing the temperature:
square path&he corresponding experiments were performedfor pure fluids, the surface tension decreases as the tempera-
with droplets compressed so strongly, they were effectivelyfure increases. The fluids move when gradients in tempera-
two dimensional Without explicitly referencing the chaotic ture induce surface tension differences. At small scale, even
advection mechanism, the authors suggested that motion inggnall thermal gradients can cause substantial fluid move-
straight line leads to stretching of fluid volumes, while ment. As a consequence, the thermocapillary effect has been
switching the direction of motion leads to folding. This utilized successfully in prototype devices for manipulating
stretching and folding repeated multiple times describes @ny quantities of fluid®*** In these devices, temperature
classical chaotic mixing mechanism leading to fractal strucvariations have been generated with heating/cooling ele-
ture of chaotic invariant sets. ments(e.g., resistive heatarplaced in physical contact with

Stretching and folding of fluid elements ispherical  the fluids. Surface-tension gradients can also be imposed us-
droplets has also been demonstrated experimefifaiyp-  ing radiative heating®
porting the results of the theoretical analySisonducted ear- In particular, thermocapillary effect can be used to drive
lier. The primary(dipole) flow in the droplet was generated the flow inside microdroplets suspended in a layer of liquid
due to its motion as the droplet sank to the bottom of thesybstrate(of thicknessh, see Fig. 4 In describing the flow
container. An additional time-dependent quadrupole flowinside the droplet subjected to a nonuniform temperature
with the same axis was superimposed by applying an altefield we will make a number of simplifying assumptions to
nating vertical electric field. However, the limitations of the optain a tractable analytical model. First of all, we will as-
experimental setup prevented the thorough mixing of the dygume that the droplet is neutrally buoyant and floats a dis-
inside the droplet. As we will show below, this is due to thetanced> a below the substrate/air interface and consider the
remaining axial symmetry of the flow which restricts all cha- sybstrate to be semi-infinitén other wordsh>a). We will
otic trajectories to two-dimensional surfaces. assume the droplet to be spherical, which is a good approxi-
mation for sufficiently small droplets and the substrate/air
interface to be perfectly flat. The surface tension will be
assumed to depend linearly on temperature and be indepen-

As we have seen so far, chaotic advection requires a flowlent of the dye concentration. Next, we will assume that the
with rather special properties to be induced inside the microthermal properties of the liquid inside and outside the droplet
droplet. Even though any linear superposition of Stokesre the saméthis assumption is nonessential and very easy
flows satisfies the Stokes equation, the list of “buildingto lift). We will also assume that the convective heat flux is
blocks” is not large, regardless of what physical mechanisrmegligible, so the temperature and velocity fields can be
is actually used to drive the flow. Detailed experimental studcomputed independently. Finally, the flow is assumed to be
ies of different combinations of basic flows, therefore, re-in the Stokes regime.
quire considerable flexibility in the experimental setup. Elec-  Neglecting the proximity of the substrate/air interface,
trical or thermal fields provide arguably the easiest and mosthe velocity inside and outside the droplet can be found by
flexible way for controlling the flow. Several approachessolving the Stokes equation

Ill. FLOW MANIPULATION
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Vp=puV?, Vp=ivd (5) dominant compared with the thermocapillary migratfon
with speed(2/3)Vy in the opposite direction.
in an infinite domain subject to the incompressibility condi-  The proximity of the substrate/air interface will also gen-
tion V.v=V-v=0 and boundary conditions erate smaller corrections to the flow inside and outside the

droplet. Consider, for instance, the flow outside the droplet
due to the applied uniform temperature gradi®8fi=«ge.

©) The velocity field in the unbounded substrate again follows
from the Lamb’s general solution. In the frame of the drop

on the surface of the droplet. In the above expressigng ~ On€ obtains
T, and7,=dy,/ JT <0 denote the pressure, stress tensor, tem- 3(e-r)r-r
perature, and temperature coefficient of the surface tension, Yd= _VdT- 9)
respectively, the hat denotes the quantities pertaining to the
outside liquid, the indess denotes théspherical surface of The solution satisfying the homogeneous version of the
the droplet, andh andt are unit vectors normal and tangen- boundary conditiong7) at the substrate/air interface can be
tial to the surface. The velocity field can be found by substi-found using the method of reflections, which generates a
tuting Lamb’s general solutidfinto (6). series expansion for the velocity field in powersdefa/d by

As the droplet is constrained to move in the horizontalsubsequent reflections of the velocity figlgabout the plane
plane we will only consider the motion arising due to theand spherical interfac¥.The leading order corrections are of
horizontal component of the temperature gradient. For a unierder 5° and so decay very quickly with the distance from
form gradientVT=xge, the flow inside the droplet can be the droplet to the interface. Here we will assume thds
easily found® and is given by(1) with Vy=«ear/[(2  large enough for these corrections to be neglibible. The in-
+3\)]. The nonuniformity of the temperature gradient will vestigation of the effect of these corrections on the mixing
produce a correction to this basic dipole flow. In particular,properties of the flow will be reported in a separate publica-
for a temperature profile quadratic in the distance from thdion.
droplet centerT=Ty+k,(e-r)?, we find the correction given One of the principal assumptions in our description con-
by the quadrupole flow2) with V= a7/ [5a(1+\)]. cerns the droplet shape. Its deviation from a perfect sphere

The proximity of the substrate/air interface will produce due to the imposed temperature gradient is given by the ratio
additional corrections. First of all, due to the thermocapillaryof the surface tension variation across the drapy
effect at that interface induced by the temperature gradient a2«o7sa, to the mean value of the surface tensign The
shear flow will be established in the liquid substrate. Thetemperature gradiemd, produced by locally heating the sub-
uniform temperature gradient will induce a unifotfar from  strate of thicknesh to a temperaturdT above average is of
the droplet shear which can be found from the boundaryorderAT/h. Taking the values characteristic of typical fluids

t-v=t-V, n-v=n-v=0,

n-(c-o) t=7t-VT)

conditions at the substrate/air interface, and typical experimental conditionsys=20 dyn/cm, 75
R R =0.1dyn/cmK, AT=10 K, and h=0.5cm we obtaina
n-v=0, n-o-t=rt-VT), () <hyJ27AT~5cm, so any entirely submerged droplet

would be nearly perfectly spherical. In contrast, the influence

: ; : a : f terrestrial gravity would be much more pronounced. Com-
interface. The corresponding velocity profile in the stationar ) X .
reference frame is P g P ygarmg the hydrostatic pressure dr g with the Laplace

pressurey,/a, we obtaina<\'y/2Apg=~0.3 cm for a typi-
cal density mismatcthp=0.1 g/cni, so only droplets with
radii of a few hundred microns or less would be spherical.

where 7,=dy,/JT<0 and the indexp denotes theplang

~ KoTnd ~
07 ="2(e, - r)e+ Ve (8)
M

This shear flow leads to a Taylor flow correcti@B) with

Vi=ko7pal[4u(1+)N)] ande, =g, e,=€. A quick comparison

of the characteristic VeIOCitieS/d and Vt shows that the IV. TRANSPORT BARRIERS AND MIXING

shear-induced flow inside the droplet is of roughly the same

magnitude as the dipole flojfor A=0(1)]. The superposi-

tion of these two flows is not chaotic when the vorticity of Having understood the effect of imposed thermal gradi-

the shear flow far from the droplet is orthogonal to the axisents on the motion of and flows inside the droplet, we move

of the dipole flow, as numerical calculations of Bryden andon to the mixing problem. The mixing properties of the flows

Brennef® show. This is exactly the case here, as the vorticityinside the microdroplet are governed by their symmetries,

of the flow (8) is w=V XV~ xe,Xe. which give rise to invariant surfaces serving as barriers to
The last term in(8) describes the mean flow in the sub- transport. Since no streamlines of the flow can cross the in-

strate. For a liquid substrate of thickndsgshe mean flow variant surfaces, the existence of invariants is highly unde-

leads to the overall advection of the droplet in the directionsirable in the mixing problem as their presence inhibits com-

opposite to the temperature gradient with velocityplete stirring of the full microdroplet volume by chaotic

Vo=—(ko7y/ )(h—d)e, which is found using the no-slip advection. Thus, the key to achieving effective chaotic mix-

boundary condition at the bottom of the substrate layer. Foing in a microdropletindeed, in any laminar microflows to

droplets floating near the top interfaak< h, this motion is  ensure that all flow invariants are destroyed.
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(8) : (d) I
(b) : (e) %

(o)

FIG. 5. Advection of dye by the dipole flow. Shown is the midplane cross
section(z=0) of the boundary of a dyed fluid element. Thexis is hori-
zontal and the axis is vertical. The initial staté) and stretching in steady
dipole flow att=6 (b) and t=24 (c). Stretching and folding in a time-
periodic flow obtained by rotating its direction by 90° in the horizontal plane
every six time units: the dyed element is showrt=al2 (d), t=18 (e), and
t=24 (f). Time is measured in units @/ V.
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lg==, Jg=2Z4(1-r?), (10)

y
related to the orientation of a plane containing the streamline
and the stream function of the flow in that plane.

This result can be immediately generalized to droplets
confined by straight microchannels. Even though the droplet
in this case is not spherical, the flow is topologically identi-
cal to the dipole flow shown in Fig. 1. As a result no chaotic
advection will result from recirculation of the liquid caused
by translation of the droplet. The claims of apparent good
mixing reported for this setﬁB rely on the experimental ob-
servations of thedepth-averagedtoncentration which ap-
pears to be uniform, despite a strong inhomogeneity in three
dimensions.

It is easy to see that the symmetry of the flow about the
y=0 midplane of the droplet will prevent mixing between the
left (y>0) and right(y < 0) hemispheres of the droplet, even
if the corrections to the dipole flow, such as the quadrupole
flow (2), the Taylor flow(3) are included. Indeed, none of the
streamlines can cross the symmetry plane of the flow, which
serves as a barrier to transport between the left and right
hemisphere in this case. This conclusion also applies to one
dimensional motion of deformednonspherical droplets
confined either by channels with symmetric cross setitith
or by flat parallel surfaceS** This transport barrier can be
broken and mixing between the two halves of the droplet
achieved, by switching the direction of the flow, as was dis-
covered by trial and error in electrowetting mixing
studies’®3! Improved mixing in pressure-driven droplets

In principle, the flow can also possess invariants relategnoving through bent microchann&lss also due to direction

to dynamical rather than geometrical symmettieSuch dy-

namical invariants, for instance, define the boundaries of in-

tegrable islands embedded in the chaotic sea of gener
Hamiltonian systems and are often present in multicompo
nent chaotic flows in spherical dropléts? However, the

importance of dynamical invariants is relatively small as

switching of the recirculation flow.

Each flow invariant defines an infinite set of invariant
Burfaces, much like thg=0 symmetry plane. To realize
complete mixing, all invariants of the flow must be de-
stroyed. The time dependence of the flow introduced by
switching the direction of the thermal gradient in the hori-

they can be destroyed by simply changing the relativezontal plane destroys the invaridgtof the dipole flow(but
strength of the components of the flow. Therefore, in thenot Jy). The resulting flow, therefore, becomes effectively

following we will concentrate on the geometrical invariants

three dimensionaltwo space variables plus tihe&nd so

which cannot be destroyed so easily, yet can often be foundhaotic dynamics becomes possible. Furthermore, direction

analytically without solving the equations of motion.
To begin with, consider the flow caused by a uniform

switching introduces folding; repeated stretching and folding
of the fluid elements by a time-periodic flow produces effi-

horizontal temperature gradient for a droplet immersed in awient stirring in thez=0 midplane of the droplet, as the re-

unbounded substrate. The temperature gradieatwill take

it to be in thex direction, see Fig. Awill induce a dipole
flow (1) inside the droplet with the axis=e, The poor
mixing properties of this flow can be demonstrated by fol-
lowing the motion of a small dyed fluid element inside the
microdroplet Figs. 5a)-5(c)]. To determine the evolution of
the dye the flow(1) is integrated forward in time starting
from an initial condition shown in Fig. (8). The dye is

sults of numerical integration shown in Figgaband 3d)—
5(f) demonstrate. This time-periodic flow can be thought of
as a three dimensional version of the two dimensional Aref’s
blinking vortex®

It is important to note that the presence of chaotic ad-
vection does not guarantee good mixing. Indeed, since the
invariantJy is not destroyed by direction switching, chaotic
streamlines are confined to two dimensional surfaces of revo-

stretched along the axis of the flow and the surface of théution defined by

droplet within a single characteristic turnover time for the
flow [Fig. 5(b)], but never spreads throughout the droplet,
even after repeated stretchiffgg. 5(c)]. Poor mixing can be

J
24y2=1-2-7 11
X2 +y it (11

expected in this case because the steady dipole flow is effeas indicated by the intersections of a representative chaotic

tively one dimensionaland, therefore, cannot be chagtic
because it possesses two invaridhts,

streamline with a fixed vertical midplane shown in Fi¢a)6
(Since the flow is formally four dimensional, its proper
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mixing only in two dimensions as the invariahin (12) is
preserved.

The final transport barrier is destroyed by the correction
to the dipole/quadrupole flow induced by the shear in the
substrate fluid. Unlike the dipole and quadrupole flows
whose streamlines do not cross the midplan® (see Figs.

1 and 2, the streamlines of the Taylor flow do cross that

plane (see Fig. 3. As a result, the streamlines of the com-

bined dipole/quadrupole/Taylor flow can also cross the mid-
plane, enabling mixing between the top and bottom hemi-
sphere as Fig.(6) illustrates.

It is important to note that the quadrupole flow contribu-
@ tion is essential for introducing chaotic advection in three

dimensions. This can be seen by considering the combination
FIG. 6. Intersegtic_)ns of'a chaotic strgamline vs_/ith #ve0 midplane of 'the. of the dipole and -|-ay|0r flows alone. Since -|-ay|0r flow has
fjropllet. 'I_'haams is vertical. The flow is made Flme dependent by swﬂc_hlng the same symmetry with respect to the pIaneO as the
its direction by 120° every four time unitéa) Dipole flow. (b) Superposi- . . 3
tion of dipole and quadrupole flowc) Superposition of dipole, quadrupole  dipole flow (compare Figs. 1 and)&ind both flows are time
and Taylor flow.(d) Superposition of dipole and Taylor ﬂow. Earameters are reversible(as is every Stokes flO)N all trajectories of the
Eggge”er?:g; that=Vy=1, V;=0.4, V4=0.2. The total time i€ns,=8000  Taylor flow are closed. This, in turn, means that Taylor flow
P also possesses two invariants. These invariants, however, are
not as easy to find, since Taylor flow is not axially symmetric
and hence one cannot use the stream function of the flow.
Poincaré section will be three dimensional rather than twdrhe invariants can nevertheless be found directly from their
dimensional. Under the action of chaotic advection a dyed definition, v;- VJ,=0. Solving the resulting partial differen-
fluid element will only spread over thin shells defined by Eq.tial equation one finds both invariants:
(11), where Jy varies over the values corresponding to the _.3 2
initially d i i i =y -rd,

y dyed region of the fluid. The same conclusions apply
if the axis of the flow is rotated in a plane by arbitrary angles
at arbitrary times(or if the axis oscillates periodically as 3= +1+222-r)¥F1 -1
proposed by Angilella and Branctié: This result indicates  Again the first flow invariant is destroyed by rotations in the
that the symmetry of the pure dipole flow is so high thathorizontal plane, while the second invariant is preserved.
mixing will be incomplete even with the addition of time Thjs is a consequence of a general statement which can be

dependence. easily proven: any time-reversible flowsuch that
The symmetry of the flow can be lowered by lowering

the symmetry of the driving force, e.g., by making the tem- vx(=XY,2) =vx(x,y.2),
perature gradient nonuniform. For instance, a quadratic non-

(13

uniformity in the temperature field in the direction of the  YY(™%¥:2 =~ 0y(XY,2), (14)
primary gradient,T=Ty+koX+ X%, leads to a quadrupole B
correction(2) to the dipole flow with the same axés=e,. In VA= XY,2) = ~vXY,2)

this case the resulting steady flow is still axisymmetric andyossesses at least one invariant which is preserved under
S0 again possesses two invariants. The stream function of thetations in thexy plane. This statement follows directly

combined flowv=vg4+v, allows us to easily find them: from the symmetry of the closed orbits of such flows about
7 the x=0 plane. In particular, the superposition of the dipole
==, J=(Vg+ 2V ZA(1-r?). (120 and Taylor flow has an invariant which is preserved under

y rotations. In the limit\ — « it takes a simple form:

The addition of time dependence induced by switching the
direction of the temperature gradient in the horizontal plane
destroys both invariantd 2) for almost all values of andJ.  The corresponding time-periodic flow whose direction is
As a result, chaotic streamlines are no longer constrained tewitched in the horizontal plane again has poor mixing prop-
two-dimensional surfaces and thoroughly sample the droplegrties: although its streamlines are chaotic, they are con-
volume as Fig. @) illustrates. However, a surface defined strained to two-dimensional surfaces of revolution defined by
by 1=J=0, namely, the midplang=0, remains invariant the remaining invariant. The cross section of such a surface
with respect to rotations in the horizontal plane and preventss shown in Fig. &d). This result also proves the numerical
mixing between the top and bottom hemisphere of the miconclusion of Bryden and Brenrféthat the superposition of
crodroplet: the streamlines of the flow and hence the dyehe (steady dipole and Taylor flow is nonchaotic when the
particles never cross the=0 midplane.(If the time depen- vorticity vector of the shear flow is orthogonal to the axis of
dence of the flow is due to a periodic modulation of thethe dipole flow.

quadrupole contribution, as is the case in the experimental Summing up, we have shown that all geometrical invari-
setup studied by Ward and Hom?sry;me still obtains chaotic ants of the flow inside a droplet can be broken by immersing

J=(V,-Vg23(1-r?. (15)
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