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We study the thermocapillary driven motion of a droplet suspended at an interface of two fluid
layers subjected to an imposed temperature gradient parallel to the interface. We compute the
temperature and velocity fields inside and outside of the droplet using a boundary collocation
numerical scheme in the limit of small capillary and thermal Péclet numbers and compare the results
with the classical problem of thermocapillary migration of a droplet in the bulk. In particular, we
find that, for typical values of parameters, interfacial droplets migrate in the direction opposite to the
temperature gradient, while in the classical problem migration is always in the direction of the
gradient. Furthermore, we find that a rich variety of flow structures can emerge inside interfacial
droplets. We also confirm that for parameters matching a recent experimental study of mixing inside
interfacial microdroplets [R. O. Grigoriev, V. Sharma, and M. F. Schatz, Lab Chip 6, 1369 (2006)]
the interior flow can be approximated with reasonable accuracy by assuming the droplet to be

completely submerged in the bottom layer. © 2009 American Institute of Physics.

[DOL: 10.1063/1.3112777]

I. INTRODUCTION

The first published investigation of thermocapillary mi-
gration dates back almost 50 years to the work by Young
et al.,1 who observed and analyzed the motion of air bubbles
in silicon oil in response to the imposed temperature gradi-
ent. The migration velocity was found to depend linearly on
both the bubble radius and the temperature gradient. It was
also demonstrated that by aligning the temperature gradient
with gravity, the migration of the bubbles could be arrested
or even reversed. In addition to these observations, a steady-
state analytical solution was computed for the velocity field
and migration velocity in the limit of small Reynolds, capil-
lary, and thermal Péclet numbers. This solution was found to
be in good agreement with the experimental observations of
a gas bubble. The analytical result was later shown, experi-
mentally, to also accurately describe the thermocapillary mi-
gration of immiscible liquid droplets.2

More recent studies have concentrated on the experi-
mental verification of the predicted migration velocity for a
droplet in a low gravity environment,”™® where thermocapil-
lary migration becomes a more efficient mechanism for re-
moving bubbles from liquids due to the weakness of buoy-
ancy. Changes in the migration velocity due to neighboring
bubbles or dropsgf]2 and solid or free boundaries*™" have
also been extensively studied. For a comprehensive review
of these topics, the interested reader is referred to the excel-
lent book by Subramanian and Balasubramanian.'®

The current interest in the dynamics of interfacial drop-
lets is primarily driven by applications to digital microfluidic
devices, such as the one investigated by Grigoriev et al.,”
who demonstrated experimentally that thermal gradients
could be used for both transport and mixing inside droplets
suspended on an immiscible liquid substrate and ranging
from millimeters to microns in size. Detailing the dynamics
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of interfacial droplets, subjected to an external temperature
gradient, is considerably more complicated. First, the shape
of interfacial droplets is generally not spherical and must be
determined using the surface tensions at three different inter-
faces. Second, the presence of a contact line (i.e., the line
where the three fluids contact each other) both affects the
total force on the droplet and places additional constraints on
the velocity field. Last, but certainly not least, the problem is
further complicated by the fact that an interfacial droplet is
in contact with not one, but two exterior fluids with different
physical properties (surface tension, viscosity, etc.), so that
the usual top-bottom symmetry of the solution is broken.

All these factors have likely contributed to a much more
limited understanding of the dynamics of interfacial droplets,
regardless of the physical mechanism driving the flow. To
our knowledge, there are very few published results concern-
ing the motion of interfacial drops in the presence of a tem-
perature gradient. Besides the previously mentioned study by
Grigoriev et al.,” Rybalko et al.” investigated experimen-
tally the motion of an interfacial droplet directly heated with
a laser beam. A coarse image of the velocity field inside the
droplet was reconstructed using particle-image velocimetry,
and the velocity of thermocapillary migration was measured
as a function of the laser power. The direction of the droplet
motion was shown to reverse when the heating was switched
from the top of the droplet to the bottom.

The dynamics of, and mixing inside, thermocapillary
driven interfacial droplets was investigated theoretically by
Grigoriev21 for a time-dependent thermal gradient and more
recently by Vainchtein et al.** for a time-independent thermal
gradient. Both of these studies considered a highly simplified
model (based on Lamb’s general solution™) of a spherical
droplet completely submerged in the substrate fluid and the
theoretical results were found to be in qualitative agreement
with the experimental observations.

© 2009 American Institute of Physics
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We should also note two other studies which investi-
gated the flows in interfacial droplets driven by mechanisms
other than thermocapillarity. Smith et al. # numerically com-
puted the flow inside a two-dimensional (2D) interfacial drop
subjected to an imposed simple shear flow in the substrate
fluid. They discovered that the interior flow pattern inside the
droplet was topologically similar to that of a spherical drop-
let in an unbounded sheared fluid.”> In addition, the droplet
was observed to pinch off from the confining interface for
large shear rates. Craster and Matar’® investigated the shape
dynamics of a droplet spreading out over the supporting in-
terface due to the action of surface tension forces. Their
analysis of slender droplets used the lubrication approxima-
tion to derive a set of differential equations for the time
evolution of the droplet shape.

While a relatively crude model might be sufficient for
describing the overall motion of an interfacial droplet, a
quantitative description of mixing requires an accurate
knowledge of the flow field inside the droplet. Even though
approximate analytical methods can provide valuable in-
sights in certain limiting cases (e.g., lubrication analysis for
very slender droplets or Lamb’s expansion for nearly spheri-
cal drops), the solution for a general case can only be ob-
tained numerically. Our goal in this paper, therefore, will be
to obtain such numerical solutions for the flow field inside
and outside the interfacial droplet subjected to an imposed
temperature gradient in the substrate. The exterior solution
will determine the thermocapillary migration speed relative
to the bottom of the substrate. Computing the interior flow
will allow us to quantify mixing inside the droplet and, in
particular, gauge the accuracy of the simplified model.!

We begin in Sec. II by introducing the governing
equations. The numerical boundary collocation scheme
used to obtain the solution is described in Sec. III. The re-
sults are summarized in Sec. IV. Finally, Sec. V contains our
conclusions.

Il. PROBLEM DESCRIPTION

Consider a droplet (fluid 3) suspended at the interface
), between a substrate fluid (fluid 2) and a covering fluid
(fluid 1), as illustrated in Fig. 1. The substrate layer of thick-
ness H and width L is supported by a flat horizontal solid
surface below, while the covering fluid is assumed to be
unbounded above. The droplet is bounded above by the in-
terface 9€),; with the covering fluid and below by the inter-
face 0(),; with the substrate fluid. The origin for the coordi-
nate system is chosen, unless specified otherwise, at the
center of mass of the droplet.

A. Governing equations

Since this work is mainly motivated by its applications
to microfluidics, we will assume the velocities to be small
enough for convective momentum and energy transport to be
negligible and ignore gravity. We will also restrict our atten-
tion to the steady flows. In the limit of the vanishing Rey-
nolds number, Re=0, the velocity fields in all three fluids are
governed by the Stokes equation subject to the incompress-
ibility condition
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FIG. 1. A view of the interfacial drop in the (x,z) plane (not to scale). We
take the z axis to be vertical and the x axis to point in the direction of the
imposed temperature gradient. The droplet is symmetric with respect to
rotation about the z axis (see Sec. II D).

V.V,=0, (1a)

wV?V;=Vp,, (1b)

where u; is the dynamic viscosity of fluid i, V;, and p; are the
corresponding velocity and pressure. In the limit of vanish-
ing thermal Péclet number, Pe=0, the temperature field in
each fluid must satisfy the Laplace equation

V3T, =0. (2)

The boundary conditions for the temperature field at a
fluid-fluid interface ();; require the continuity of the tem-
perature field and the heat flux

(TJ - Tl)|dﬂz,] = 0, (33)

(k; VT = ki V T)) - |0, =0, (3b)

where k; is the thermal conductivity of fluid i and the normal
vector A points from fluid i into fluid j. Furthermore, at d(;;
the normal component of the velocity must vanish and the
tangential component of the velocity must be continuous

Vj'ﬁ|(9ﬂl.j=Vi'ﬁ|aQU=O’ (4a)

(Vj -V, X ﬁ|&Qij =0, (4b)

where the position of the interface is assumed stationary.
Finally, the jump in the tangential and normal components of
the stress tensor % must balance the surface tension stresses
at the interface

8 (3= %) i, == (8 X V)ory, (52)

ﬁ(E]_El)ﬁL;Q”: O-UV ﬁ (Sb)

All physical properties of the fluids, excluding surface
tension, are assumed to be independent of temperature. Sur-
face tension is assumed to vary linearly with temperature
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U'ij(T)=5'ij+ U{j(T_TO)’ (6)

where d;; is the value of the surface tension at the interface
between fluids i and j at the reference temperature 7|, (de-
fined as the temperature at the origin) and a'i’j is the corre-
sponding temperature coefficient.

Since we are interested in small droplets, it is safe to
assume the temperature variation to be small near the droplet
(where the curvature V-1 is large), so that we can rewrite the
stress boundary conditions (5) as

ﬁ(zj_zl)ﬁL;QU:a'le ﬁ (7b)

B. External flow and temperature fields
far from the droplet

Additional boundary conditions for fluids 1 and 2 should
be satisfied far from the droplet (e.g., at the sidewalls, top,
and bottom of the container). To get an analytically tractable
solution, we will assume that the temperature gradient is
generated by maintaining the sidewalls of the container at

different, fixed temperatures
Te1p=Ty Tlepn=T, (8)

The vertical component of the heat flux at the top and bottom
of the container is assumed negligible,

9,7

z=d-H = aZT|Z*>OC =0, (9)

where, without loss of generality, we chose to place the ori-
gin symmetrically between the side walls, a distance H—d
above the bottom of the container. Furthermore, a no-slip
boundary condition is assumed at the bottom of the container

V].eyu=0 (10)

and a stress-free, no-flux boundary condition is assumed at
the top

V]w=0, (3,V,+3,V)|, =0. (11)

The extent of the fluids in the y-direction (out of the
page in Fig. 1) is taken to be sufficiently large, such that far
from the droplet the flow can be considered 2D. Further-
more, the thickness H of the substrate layer is taken to be
much smaller than its width L and the temperature of the
right sidewall T, is assumed greater than the temperature of
the left sidewall 7). The difference in temperatures of the two
sidewalls is assumed sufficiently small to allow the tempera-
ture and velocity fields in the substrate to reach a steady
state. Finally, the droplet is assumed to be sufficiently small,
so its presence does not significantly affect the temperature
and velocity in the fluids far away.

Under these conditions, in the limit of the vanishing
droplet size (such that the interface (), coincides with the
plane z=d), the steady-state solution for the temperature and
velocity fields in the substrate and the covering fluid can
be computed using perturbation theory, where the small pa-
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rameter is the aspect ratio H/L, following Levich®’ and
Subramanian and Balasubramanian.'® Using our notations,
the temperature and velocity fields are

Ty=T5=Ty+Ox, (12a)
' HO

P Ty (12b)
du,
O[3 H

ng% (—(z—d)2+z—d+—>)2, (12¢)
,LL2 4H 4

where the superscript is used to designate these fields as
asymptotic, and
T.-T,
-

0= (13)

The characteristic length scale on which the surface ten-
sion o ,[T(x)] varies is given by

O

B |Uiz|®’

ly (14)

where the absolute value reflects the fact that typically
0/;<0. Strictly speaking, linear approximation (6), and
hence solution (12), is only valid at length scales of order [,
or smaller. The introduction of a droplet of characteristic size
ro small compared to both this length scale and the depth of
the substrate H will distort solution (12) only near the drop-
let, while far from the droplet (i.e., for ry<|x|=<1[,) we can
expect it to remain accurate. Similarly, the substrate’s free
surface (), will generally be curved near the droplet and
approach the horizontal plane z=d far from the droplet. Fi-
nally, although solution (12) does not satisfy a no-slip bound-
ary condition at the side walls, the region where it is inaccu-
rate only extends an O(H) distance from the sidewalls.

In the following it will be convenient to choose the ref-
erence frame in which the droplet is stationary. The symme-
try of the problem implies that the droplet moves along the x
axis. Switching to a reference frame moving with velocity
Uyp=U,X, the following asymptotic boundary conditions on
the velocity and temperature fields are obtained:

V;,— V =U,, (15a)

x| — =,

T,—T;, [x|—, (15b)
for i=1,2. In this reference frame all fluid-fluid interfaces

dQ); are stationary and boundary condition (4) applies.

C. Nondimensional parameters

Solution (12) is valid in the limit of small Reynolds and
thermal Péclet numbers. There are, however, several differ-
ent length and velocity scales in this problem. For the flow
far from the droplet the characteristic scales are /,=l,=H
and v;=v,=V]. Near the droplet the scales are l3=r, and
v3=v(, Where
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|0'é3|r0
vo=—2-0 (16)
M

is the characteristic velocity of thermocapillary driven flow
inside the droplet. Using these scales we can define the
Reynolds numbers

— lvip;

Re; (17)
Mi
and the thermal Péclet numbers
lvipiCy,
Pe, = %L (18)

2

for each of the three fluids, using the respective values of the
densities p;, viscosities w;, thermal conductivities k;, and heat
capacities C), ;.

The differences in the length and velocity scales mean
that the Reynolds and Péclet numbers for different fluids can
differ by orders of magnitude. For instance, even assuming
all the material parameters are comparable, we find

Rey 1pyuslop|H>  H? (19)
Res 4psmoloty| rg 1y’
a ratio exceeding 100 in experiments.19 However, both v,
and V7, and with them Re; and Pe; for each fluid, can be
made arbitrarily small by reducing the imposed temperature
gradient 0.

In addition to the Reynolds and Péclet numbers, it will
be convenient to introduce the capillary and Bond numbers.
In particular, the capillary numbers can be defined for each
fluid as

0;3, i= 1,2,

_ Yo = =
= , O;=
l=3,

Ca; _
g; 023,

(20)
and are all of the same order of magnitude in the typical case
when the surface tensions and viscosities of all three fluids
are comparable. The condition of the smallness of the capil-
lary numbers is equivalent to the condition /y>r,. For in-
stance, for the substrate fluid we have

_ mavo _|oslGiarg

Cayy=——=—""= . (21)
023 |‘712| 023 lo ly
The Bond numbers are defined as
2
;i T,
Bo, = 2870, (22)
g

where g is the gravitational acceleration and &; is defined in
Eq. (20). The three Bond numbers are, again, all of the same
order of magnitude for fluids with comparable densities and
surface tensions. For typical fluids they quickly become very
small as the droplet size decreases (e.g., one finds Bo~0.1
already for a 1 mm water droplet). We, therefore, restrict our
attention to the limit of small Bond numbers, where the ef-
fects of gravity can be ignored.

To reduce the number of parameters describing the prob-
lem to a minimum, we nondimensionalize our governing
equations and boundary conditions by rescaling all dimen-
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TABLE I. Dimensionless parameters describing thermocapillary migration
of an interfacial droplet.

Fluid 1 Fluid 2 Fluid 3
Viscosity o= “ a,=1 = =
Mo M2
.. ky ks
Thermal conductivity Bi=— Br=1 3=
ky ky
. J12 g13
Surface tension Y=T" Yi3=— Ya=1
023 023
- o 13
Temperature coefficient =" 3=, T3=1
023 023

sional variables. We scale all lengths by r,. Temperature is
scaled by first subtracting 7, and then dividing by the char-
acteristic temperature scale O@r,. All velocities are scaled by
the characteristic velocity v . All stresses, including pressure,
are scaled by the typical viscous stress 3=|055|®. The vis-
cosities, thermal conductivities, reference surface tensions,
and temperature coefficients of surface tension are scaled by
Mo, ky, T3, and o7, respectively. The corresponding nondi-
mensional quantities are summarized in Table I. In addition
to these eight O(1) parameters we find two large parameters,
the nondimensional temperature length scale A=[y/r, and
substrate depth x=H/ry,.

D. Droplet shape

The shape of the free interfaces determining both the
droplet shape and the shape of the surface of the substrate
fluid which is generally deformed by the droplet, are found
by solving the normal stress balance equation (7b). In the
limit Bo=Ca=0 considered here, the normal component of
the stress reduces to a constant pressure. Consequently, all
three interfaces are surfaces of constant curvature. Since
), is flat far from the droplet, it has to coincide with the
horizontal flat plane z=d everywhere. Similarly, the top and
bottom surfaces of the droplet, d€);; and )y, will be
spherical caps of constant curvature.

We define 0, and 6, to be the contact angles that the
interfaces 9€),5 and )3, respectively, make with €, (see
Fig. 1). These angles can be determined from a simple force
balance at the contact line

6'12 = 5’13 COos 91 + 0_'23 Cos 02, (233)

0= 0_'13 sin 01 - 5'23 sin 02. (23b)

The radii of curvature, R; and R,, of the top and bottom
caps of the interfacial drop, are determined by solving the
Young-Laplace equation obtained from Eq. (7b)

=, (24)

subject to the condition that the droplet volume is equal to
that of a sphere with radius r,
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=
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FIG. 2. Interfacial droplet shape dependence on surface tensions. A y=0

cross section is shown for (a) y,,=0.25 and 7y;3=1, (b) y,=1.8 and
vi3=1, (c) 7,=0.80 and y,3=0.47, and (d) y;»=1 and y,3=2.

4ry=R}(2-3 cos 6, +cos® 6))
+R3(2-3 cos 6+ cos® 6,). (25)

With the origin of the coordinate system placed at the drop-
let’s center of mass we find the submersion length

1
d= —3[R]‘(cos 6, +3)(cos 6, — 1)
16r,
- R;‘(cos 6, +3)(cos 6, —1)]. (26)

All three interfaces possess axial symmetry with respect to
the z axis, so in spherical polar coordinates, the top cap d{)3
can be parameterized as

r1(0) == hy cos O+ VRI — h? sin® 6, (27a)

hlERl COS ﬁl—d, (27b)
and the bottom cap d(),3 as

ry(0) == hy cos O+ VR3 — h3 sin® 6, (28a)

hy,=-R,cos 6,—d. (28b)

We should note that, for certain values of parameters, it may
be more convenient to place the origin in the plane of the
interface (1, i.e., set d=0.

The contact line I', defined as the intersection of the
hemispheres ()3 and d€),3, is a circle with polar coordi-
nates r=r. and =46, such that r.=r;(0,)=ry(6.). Alterna-
tively, I', can be described as a circle of radius r, sin 6, that
lies in the plane z=d=r.. cos 6,.

One of the important differences between interfacial and
fully submerged droplets is that the latter are spherical (in the
limit Bo=Ca=0) while the former are generally not. Some
representative examples of interfacial droplet shapes are
shown in Fig. 2. As the force balance conditions (27) and
(28) show, the interfacial droplet can be spherical only in the
limit of vanishing nondimensional surface tension 7, at the
substrate surface. As vy;, increases from zero, the width-to-
height aspect ratio of the droplet also increases, with the
droplet stretched by the surface tension at d€),, [compare
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Figs. 2(a) and 2(b)]. There is no steady-state solution for the
droplet shape for y;, > 1+ 7y,3; over time the droplet becomes
thinner and thinner. In this limit, at long times, the solution is
well described by the lubrication approximation.26

The nondimensional surface tension 7,5 at the upper sur-
face of the droplet controls the degree of submersion of the
droplet. Interfacial droplets in steady-state will exist for
[1— 15| < v13<1+7,, with y;3=1 corresponding to the
droplet being symmetric with respect to the substrate surface
[see Fig. 2(b)]. Decreasing ;5 below unity forces the droplet
to be expelled by the substrate fluid [see Fig. 2(c)],
while increasing ;3 above unity increases the submersion of
the droplet into the substrate fluid, with y;3=1+7v,
corresponding to complete encapsulation [see Fig. 2(d)] and
¥13=|1—=y1,]—complete expulsion. (In these two limits the
droplet also becomes spherical.)

E. Thermocapillary migration speed

Our assumption that the droplet is stationary in the cho-
sen reference frame requires that the total force on the drop-
let vanish

f= fbody + fourace + fiine = 0. (29)

In the Bo=0 limit the body force f;,,qy is absent. The surface
force is given by

f

surface =

El-ndS+

043 PO

3,-nds. (30)

The line force exerted on the droplet by the surface tension at
the interface d€);,,

fline:f Ulzdsxi, (31)
r

c

does not vanish due to the variation in the surface tension
along the contact line. Because the surface tension is larger
where the fluid is cooler, the contact line force pulls the drop
in the direction opposite to that of the imposed temperature
gradient.

The contour integral (31) can be evaluated by writing
ds=r, sin 6,d¢d, where ¢ is the unit vector corresponding
to the azimuthal angle ¢ of the spherical polar coordinate
system (r, 6, ¢). Using Eq. (6) we find
2

fline = O]orc sin Gcﬁf T cos ¢pddp. (32)

0

The force constraint (29) closes our system of equations
for the velocity fields, allowing the computation of the speed
U, of the droplet relative to the bottom of the substrate fluid
layer.

lll. NUMERICAL METHOD
A. Temperature and velocity fields

The temperature and velocity fields in each fluid can be
found by solving Egs. (1) and (2) subject to the boundary
conditions stated previously. The general solution for the
temperature field can be expressed in terms of spherical har-

Downloaded 23 Apr 2009 to 130.207.50.192. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



042105-6 E. F. Greco and R. O. Grigoriev

monics. The interior temperature must be bounded at the
origin and the exterior temperature must satisfy Eq. (15b) far
from the droplet. The temperature field must also be symmet-
ric in y and antisymmetric in x. Since both the Laplace equa-
tion (2) and the boundary conditions (3) are linear, these
constraints yield the following general solution for the non-
dimensional temperature field:

©

1
T,=rsin 6 cos ¢+ >, D"

i rn+1

P,ll(cos O)cos p, i=1,2,

n=1

(33a)

T;= > Dg‘r”P,L(cos O)cos ¢, (33b)
n=1

where D7 are the unknown coefficients for the temperature
field expansion for the ith fluid and the P,l,(-)’s are the nor-
malized associated Legendre functions.

The general solution to the Stokes equation (1) in spheri-
cal coordinates is known as Lamb’s solution and is based on
the spherical harmonic expansion for the pressure field. Em-
ploying the requirements on the asymptotics (15a), bounded-
ness, and symmetry analogous to the temperature field al-
lows us to reduce Lamb’s solution to

_ Vi, = Ugsin #cos ¢

Vir
Vo
. n+1 n+1
+ A" _B" —np! ’
g( 2a;2n-1) " )” , COS ¢
(34a)
Vig— U cos 6 cos ¢
Vie=
Vo
S 2-n_dpP,  1dP,
+ E <A7—n_n n 7_2_"
n=1 2(117’!(2}1— ]) do 2 de
1
Frsin 0),_n cos ¢ (34b)
Vig+ Uy sin &
Vi¢=
Vo
- n-2)P P!
+E<A? : )n. - ?2.’1
n=1 2a,n(2n —1)sin 6 2 sin 6
JLdPy\
BT (34c)
pi= 2 AP cos ¢, (34d)

n=1

for the nondimensional exterior velocity and pressure fields,
i=1, 2, and

o0

VSrZE A

( M + B”z>r”P1 cos(¢) (35a)
S\ P2a52n43) " ’
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y % (A" n+3 dpl  1dpP!
= —+ —_
WA\ 205+ 1)2n+3) d6 O r db
p!
+C— )r" cos(), (35b)
sin 6
- - (n+3)rP. P!
Vig= > | A 1 _ gt
3¢ 2:1 ( 32a3n(2n +3)(n+1)sin @ >rsin @
et int (350)
o sin(¢), c
21’0 . npl
p3= + ALP, 1" cos(o) (35d)
RyCay 5

for the nondimensional interior velocity and pressure fields,
where A}, BY, and C! are the unknown expansion coeffi-
cients. For brevity, the cos 6 dependence of the associated
Legendre functions was omitted.

Note that these general solutions automatically satisfy
the boundary conditions at the walls of the container, but not
at the fluid-fluid interfaces d();;. In particular, Eq. (34) satis-
fies the no-slip boundary condition at the solid bottom
boundary in the limit ry<< H considered here. In this limit we
also have |d| < H, so that near the droplet the asymptotic flow
field (12c¢) in the substrate simplifies to

! @
7129 (z—d+g)§. (36)
M2 4

OO_
5=

B. Force on the droplet

The force on the droplet is linear in the velocity and
temperature fields and hence can be represented as a linear
function of the expansion coefficients. The contact line force
(32) can be computed analytically by substituting the expan-
sion for the temperature field at the contact line and evaluat-
ing the integral. Due to the continuity of the temperature
field, any one of the three expansions (33) can be used. For
simplicity we have chosen to use the interior field (33b):

N
flipe = — 71, Sin GCE Dg’r;’P,lL(cos 0,)%. (37)

n=1

The surface force (30) can be broken up into two contri-
butions: the force due to the asymptotic velocity field V* and
the force due to the correction V*=V -V arising due to the
presence of the droplet. The first contribution can again be
computed analytically:

£ o .= 77(r, sin 6,)’%. (38)

surface —

If the interface d€);, is chosen to coincide with the plane z
=0 (i.e., if d=0), the second contribution can also be com-
puted analytically using the property of Stokes flow that its
stress tensor has zero divergence. Applying the Stokes theo-
rem to transform the integral over the drop surface (30) to an
integral over two hemispheres at infinity and the z=0 plane,
we find
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N 1
3 dP
f;'kurface = 77\“"3(141 +Aé) + 2 ,n.r;n+l !
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If the interface €2, does not lie in the z=0 plane, £, ;.
has to be computed differently. Integration over ¢ can still be
carried out analytically. The integration over the # domain
cannot and is done numerically using an adaptive recursive
Simpson’s rule scheme. Evaluation of the numerical prefac-
tors for each of the unknown expansion coefficients in
Lamb’s solution, above and below the drop, requires 6N in-
tegrals to be evaluated, which becomes the costliest compo-

nent of the numerical procedure.

C. Numerical solution

Since the shape of all the free interfaces is already de-
termined, we do not need to satisfy the normal stress balance
boundary condition (7b) at every point on every interface.
Therefore, the unknown coefficients A7, B}, C?, D!, and U,
can be determined by substituting expansions (33)—(35) into
boundary conditions (3), (4), and (7a), and imposing the zero
force constraint (29). Our method for solving the resulting
system of equations is based on the boundary collocation
procedure of Hassonjee et al.,”® which is itself a develop-
ment of the approach proposed by Ganatos et al.”® The ex-
pansions for the temperature and velocity fields are first trun-
cated to N terms. The resulting equations are linear in either
sin ¢ or cos ¢, so that the ¢-dependence can be immediately
factored out. This results in a system of equations that de-
pend only on 6. Each equation is then evaluated on a grid of
0 values, referred to as collocation rings. We choose a total
of M collocation rings covering all three fluid-fluid inter-
faces. Since (), is unbounded, the largest ring is placed at
a finite distance s,,,, from the z axis.

The zero force constraint together with the boundary
conditions evaluated on the collocation rings defines a sys-
tem of linear equations with constant coefficients. Given N,
we choose M large enough to make the system overdeter-
mined, so that the number of equations (8M + 1) exceeds the
number of unknowns (12N+1). The resulting system is
solved in a least-squares sense using MATLAB’s implementa-
tion of LAPACK which utilizes householder reflections for
computing an orthogonal-triangular factorization.

To gauge the accuracy of our boundary collocation
scheme we define the residual of our system of equations
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FIG. 3. The dependence of the residual E; (a) and condition number (b)
on the truncation order N without preconditioning (filled circles) and with
preconditioning (open circles). The dimensionless parameters of Table I are
all set to one except y;,=0.5 (the corresponding droplet shape is shown in
Fig. 7).

12
Er=|f+2 |AuldSy | . (40)

ik J a0,

where dSj; is the area element of the interface d€);. A,y is
the error in the ith boundary condition at the interface {2
and f is the total force on the droplet, each evaluated using
our truncated solutions for the temperature and velocity
fields.

For a given set of dimensionless parameters, our numeri-
cal solution can depend on the choice of N, M, and s,,,,, as
well as on the distribution of the collocation rings. However,
for sufficiently large N, we expect the numerical solution to
converge to the exact one, with the residual approaching
zero. We chose to use the minimum values for N, M, and
Smax that minimize E7. For a generic choice of dimensionless
parameters, we found that using values of N=50, M=675,
and s,,,=9 decreases the residual by two orders of magni-
tude compared to that for N=1 (with the same values of M
and s.,,,,) as Fig. 3(a) illustrates. These are the default values
used in all of the calculations reported here, unless specified
otherwise.
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Several different distributions for the collocation rings
were tested. Ultimately a distribution with equal spacing in 6
for 90),5 and J€),; was chosen. For the rings on the interface
0, equal distance spacing was used. It was found that this
distribution has a slight advantage in terms of the residuals
and conditioning over other distributions (such as the ab-
scissa for a Gauss—Legendre quadrature rule or equal area
spacing).

The major difference between the implementation of the
boundary collocation method presented here and the one de-
veloped by Ganatos et al. * is the total number of collocation
rings M used when finding a solution. Recall that the collo-
cation rings correspond to discrete values of 6. Any function
expanded in powers of cos 6 (e.g., spherical harmonics), will
possess multiple values of € that result in identical function
values. To obtain the number of equations equal to the num-
ber of unknowns, Ganatos et al. invested considerable effort
in determining which values of 6, for given M and N, would
result in a degenerate system and consequently should be
avoided. For large values of N this task becomes impractical.

In our approach, the difficulties in constructing a square
system are sidestepped by generously overdetermining the
system of equations. For example, for the default choice of N
and M there are nearly seven equations for every unknown in
the linear system. The trade-off is that solving such a large
system is computationally more expensive, although still
well within the capabilities of a modern desktop computer.

The limit to the accuracy of the boundary collocation
scheme was found to be set by the poor conditioning of the
system at very large truncation orders. The condition number
(the ratio of the largest singular value to the smallest) deter-
mines the stability of the system with respect to inversion
(i.e., computing the inverse of the linear system). Typically,
one finds a nearly exponential growth of the condition num-
ber of the coefficient matrix with N, as Fig. 3(b) shows for a
near-spherical symmetric droplet.

The most fundamental reason for the poor conditioning
is the loss of orthogonality of the discretized associated
Legendre functions, used as basis functions, at large N.
Sneeuw™ demonstrated that orthogonality can be restored by
multiplying each P;'(x;) by a unique weight associated with
each x;. Sneeuw found that this significantly improved the
condition number and allowed for a much larger truncation
order than was previously possible in similar problems.

In an attempt to correct for the lost orthogonality of the
Legendre functions, preconditioning of the coefficient matrix
and a rescaling of the unknowns was tested. Direct imple-
mentation of Sneeuw’s method to our numerical procedure is
impossible: Sneeuw was fitting collocation points with asso-
ciated Legendre functions alone. The basis functions (i.e.,
Lamb’s solution) used in our collocation scheme are com-
prised of associated Legendre functions and their derivatives.
This prevents us from determining a unique weight associ-
ated with each term in Lamb’s solution. Instead we devel-
oped a preconditioning scheme that would weigh each row
and column of our linear system with a unique weight de-
fined in a manner analogous to Sneeuw’s method.

As Fig. 3(b) illustrates, preconditioning reduces the con-
dition number by many orders of magnitude. However, it
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FIG. 4. The dependence of the residual E; (a) and condition number (b) on
the droplet aspect ratio (y;,=0 corresponds to spherical droplet and y,,=2
to a slender film).

was also found that preconditioning leads to a dramatic in-
crease in the residual and an early loss of convergence in N,
as Fig. 3(a) illustrates. Preconditioning of the linear system
was therefore not implemented. On the other hand, it was
found that placing the origin at the center of mass of the
droplet always resulted in the lowest possible condition num-
ber. Hence, this choice was used in all the calculations re-
ported in this paper.

Not surprisingly, it was found that conditioning is also
substantially affected by the shape of the droplet. In part, this
is due to the evaluation of interior and exterior fields at the
interfaces d€};3 and d€),3, characterized by a varying dis-
tance from the origin. Since the highest order terms in the
expansions for the inner fields scale as 7V and those for the
exterior fields scale as r~V, the entries of the coefficient ma-
trix vary by O[(Fmax/ Fmin)"J-

As Fig. 4(b) illustrates, the condition number becomes
very large for slender droplets, like that shown in Fig. 2(b).
As a result, the boundary collocation scheme fails to produce
an accurate solution at high truncation orders for slender
droplets, as Figs. 4(a) and 5(a) show. Furthermore, Fig. 5(a)
shows that our boundary collocation scheme also has diffi-
culties at higher truncation orders for highly asymmetric
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TABLE II. The coefficients of Lamb’s expansions (34) and (35) of the
interior and exterior flow field for thermocapillary migration of a completely
submerged droplet for az=1, B3=1 (all nonzero coefficients are shown).
The column labeled “theory” corresponds to the analytical solution (41) and
the column labeled “error” shows the difference between the analytical and
the numerical solution.
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FIG. 5. The dependence of the residual E; (a) and condition number (b) on
the truncation order. Filled circles correspond to a slender symmetrical drop-
let shown in Fig. 2(b). Open circles correspond to a strongly asymmetric
droplet shown in Fig. 2(c).

droplets such as that shown in Fig. 2(c) (although N=20
already produces a solution with an acceptably small
residual).

In either case, the reason for the increase in the residual
can be traced to the poor conditioning of the linear system
[see Figs. 4(b) and 5(b)], such that increasing a truncation
order N beyond a certain limit reduces, rather than improves,
the accuracy of the numerical solution. The underlying rea-
son is that, although Lamb’s solution is based on a complete
set of basis functions, it is ill suited for geometries deviating
significantly from spherical.

D. Code validation

To test our boundary collocation scheme, we solved the
linear system with parameters chosen to represent a spherical
drop immersed in an infinite layer of fluid with an imposed
constant temperature gradient. This is achieved by setting
Y12=T12=0 and a;=8;=v;3=73=1. The problem has a
well-known analytical solution,”” with the corresponding ve-
locity field (in the reference frame moving with the droplet)
known as Hill’s spherical vortex

Coefficient Theory Error
A{ 0.000 000e+00 3.050 723e—-15
B{ 7.698 004¢-02 6.208 527e—11
C} 0.000 000e+00 4.976 496¢—11
A; 0.000 000e+00 4.298 810e—15
B; 7.698 004¢-02 6.212 796e—11
C; 0.000 000e+00 4976 601e—11
A_L 2.309 401¢+00 1.465 494¢—14
B_L —3.849 002¢-01 2.164 935¢—15
Cy 0.000 000e+00 4.312 644e—12
sin(@)cos()(r? = 1
V=3 (6)cos(P)( ), (41a)
(Baz+2)(B3+2)
—1+2r%)cos(6)cos
N Jeos(B)eos( ) ah)
(Baz+2)(B3+2)
—1+2/%)sin
o Jsin(). o)
(Baz+2)(B3+2)
and
’% .
r° —1)sin(6)cos
Vy 21y = - o= sinOcos(d) i)
(ﬁ:}, + 2)(3&3 + 2)}"
(273 + 1)cos()cos(¢p)
Vie=Vap=— e (41e)
(ﬂ3 + 2)(3&3 + 2)7’
(277 + 1)sin(¢)
V|¢= V2¢= (41f)

PBay+2)(B;+2)

The computed numerical solutions for the temperature and
velocity fields for different values of the two remaining di-
mensionless parameters, viscosity ratio az and thermal con-
ductivity ratio B3, show excellent agreement with this ana-
lytical solution (see, e.g., Table II).

To further illustrate the agreement between the numeri-
cal and analytical solutions we compare the thermocapillary
migration velocity obtained numerically with the analytical
result originally derived by Young et al." which, in dimen-
sional units, is

2rok,05,0
UYGB == e (42)
2y +33) (2ky + k3)
or, after nondimensionalization,
U 2
— Yves _ (43)

’ vo  (2+3a)(2+6y)’

As Fig. 6 illustrates, the numerical solution agrees very
well with the analytical one for all values of @3 and s
considered.
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FIG. 6. The migration velocity dependence on a; with B3=1 (a) and on B
with a3=1 (b). The solid curves correspond to analytical solution (43) and
the symbols represent solutions found numerically.

IV. RESULTS AND DISCUSSION

Next we use the boundary collocation method described
previously to determine the velocity of thermocapillary mi-
gration for interfacial droplets and the flow fields, inside and
outside the droplet, arising in response to the applied tem-
perature gradient.

A. Temperature field

Although the temperature field is not of direct interest
here, it is important for describing the relative magnitudes of
thermocapillary stresses at the surfaces of the droplet and the
substrate. Qualitatively, the structure of the temperature field
is controlled by the thermal conductivity ratios 3; and ;.

In particular, B,=k,/k, controls the relative magnitude
(and uniformity) of the thermocapillary stresses at the drop-
let’s top and bottom surface. As Figs. 7(a) and 7(b) illustrate,
for B; <1 the temperature gradient at the top of the droplet is
smaller, while for B;>1 it is larger, than at the bottom. Cor-
respondingly, the thermocapillary stresses at the top domi-
nate for 8, >1 and those at the bottom dominate for 8;<1.
It should be mentioned that, although the overall temperature
drop across the top and the bottom cap is exactly the same
regardless of B, (T, =T,=T; everywhere on the contact line),
it is the regions near the top and the bottom of the droplet
that have the largest contribution to the surface force (30).

The second ratio B;=k3/k, controls the importance of
thermocapillary stresses at the droplet surface relative to
those at the substrate surface. Figures 7(c) and 7(d) show that
for B3<1 the thermal gradient at the droplet surface in-
creases above its value at the substrate surface away from the
droplet, while for 83> 1 the thermal gradient on the droplet
surface decreases below that value. In particular, for
B3—© the temperature becomes constant throughout the
droplet and the thermocapillary stress on the droplet surface
vanishes.

The remaining parameters that affect the temperature
field are those that define the droplet shape. We found that
varying these parameters always resulted in a temperature
field that resembled one of the four types shown in Fig. 7.
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(c)

FIG. 7. Temperature field in the y=0. The darker shading corresponding to
cooler fluid with 20 isotherms evenly spaced over the range of temperature
[~Tax> Tmax)- The parameters are y,,=0.5, y;3=1 and (a) 8,=0.09, B;=1,
Tmax:1-66’ (b) Blz 10, 33:15 Tmax: 1.78, (C) B3:0.09, :81:1’ Tmax: 1.84,
and (d) B3=10, B1=1, Ty, =1.60.

B. Thermocapillary migration velocity

In the classical problem of thermocapillary migration,
the droplet velocity (42) is essentially determined by the
thermocapillary effect at the droplet surface, with the sub-
strate fluid being essentially at rest far from the droplet. For
substrates with a free surface, the substrate itself comes in
motion due to the thermocapillary effect at its free surface.
The characteristic velocity due to the thermocapillary effect
at the substrate surface is V|~ v, (in the —X direction),
while that due to the thermocapillary effect at droplet surface
is vy (in the +X direction), smaller by a factor of y=H/r,.
Since for interfacial droplets the ratio y is typically quite
large, the dominant contribution to the thermocapillary mi-
gration speed U is given by the advection of the droplet by
the substrate flow (12b) rather than the thermocapillary effect
at the droplet surface. Moreover, an interfacial droplet would
move in the direction opposite to the applied temperature
gradient, while the classical thermocapillary migration is in
the direction of the gradient.

Since the contribution of the thermocapillary effect on
the droplet surface is much smaller than that on the substrate
surface, the variation in the thermocapillary migration veloc-
ity with parameters is the easiest to describe in terms of the
mobility function

M= M, (44)

Uyas
where V7 is the velocity of the asymptotic flow at the sub-
strate surface. The mobility function represents the magni-
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FIG. 8. The mobility function dependence on the bulk material parameters.
The symbols show the numerical results for the interfacial droplet and the
solid curve estimate (48).

tude of the thermocapillary migration speed of an interfacial
droplet, with the advection component subtracted off, rela-
tive to the classical thermocapillary migration velocity. De-
viations of M; from unity demonstrate the effects of confine-
ment at an interface, the droplet shape variation, and the
discontinuity in the physical properties of the surrounding
fluid on thermocapillary migration speed in a form indepen-
dent of the substrate depth H and the droplet size r.

There are too many nondimensional parameters to ex-
plore the migration velocity of an interfacial droplet compre-
hensively. Therefore, we chose to restrict our focus to the
dependence of the mobility function M; on each of the eight
O(1) nondimensional parameters, with the other seven held
fixed. All the fixed parameters were set to unity except vy,
the nondimensional surface tension at the interface 90),. A
value of y;,=0.5 was chosen to yield an interfacial droplet
with moderate, compared to a perfect sphere, deformation
(see Fig. 7).

We start by examining the dependence on the bulk prop-
erties of the fluids, the viscosity and thermal conductivity
ratios. As Fig. 8(a) illustrates, an increase in the viscosity
ratio a; =/ u, results in a decrease in M;. This trend is due
to the increased viscous drag at the top cap of the droplet for
large «;: as u; increases with all other parameters fixed,
Uy—- V7 decreases, while Uygg does not change.

A more quantitative description can be obtained by rep-
resenting the migration velocity as a sum of three compo-
nents

Phys. Fluids 21, 042105 (2009)

U(): ‘ff"_ Utc+ Ush’ (45)

where V7 describes the advection by the asymptotic flow, U,
is a correction due to the thermocapillary effect at the droplet
surface, and Uy, is a correction due to the shear in the sub-
strate fluid (which is itself a result of the thermocapillary
effect at the substrate interface d{);,). The component U,
can be estimated by using a modification of the classical
expression (42), where the material parameters describing
the fluid surrounding the droplet are replaced with the aver-
ages of the corresponding parameters for fluids 1 and 2:

ro® (o5 + 033) (ky + k)

20y + o+ 3pa) (kg + ey k)

Ue= (46)

The contribution Uy, can be estimated by adapting the ex-

pression for the sedimentation velocity of a liquid droplet;

the well-known Hadamard-Rybczynski problem32’33
ro®ay(p + po +243)

Ugy=-C , (47)
20 (g + o + 3 3)

where C is a geometric factor describing the degree of sub-
mersion of the droplet into the substrate fluid and the values
of material parameters for the surrounding fluid were re-
placed with the averages of those for fluids 1 and 2. Substi-
tuting these expressions into the definition of the mobility
function one obtains

M= (1+713)(2+3a3)(1 + ) (2 + B5)
P 41+ +3a3)(1+ B+ B)

7'12(1 + 3] + 2a3)(2 + 3&3)(2 + ﬁ3)
2(1 + 3] + 3a3)(l + al)

(48)

Comparing the numerical result with estimate (48) we find
rather good agreement, except for a small decrease in M, at
a;—0, which is likely due to a subtle flow rearrangement
around the droplet. Here and below we set C=1/3. This
value of C was chosen such that, when all parameters are set
to one, both terms in Eq. (48) are equal to unity. In effect,
this sets the nondimensionalized versions of Egs. (46) and
(47), the thermocapillary and shear corrections to the migra-
tion velocity, equal to each other when the material param-
eters of the substrate and covering fluid are equal.

The dependence of M; on the thermal conductivity ratio
Bi=k,/k, shown in Fig. 8(b) is also in reasonable agreement
with estimate (48). As k; is increased (decreased), with all
other parameters fixed, the thermocapillary effect at the top
of the droplet starts to dominate (lag) that at the bottom
(recall the discussion in Sec. IV A), leading to an increase
(decrease) in the thermocapillary migration speed of the
droplet relative to the substrate fluid(s). The dependence on
B is rather weak, reflecting the weak dependence of the
thermal gradients on B, (see Fig. 7).

The dependence of M; on the viscosity ratio az=us/
is shown in Fig. 8(c). We again find reasonable agreement
with Eq. (48) for all values of 3. For small az, M; ap-
proaches a constant. In the limit a;— o (or p;— % with all
other parameters fixed) both Uygg and U, vanish; the ther-
mocapillary migration speed of the droplet relative to the
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FIG. 9. The mobility function dependence on the interfacial material param-
eters. The symbols show the numerical results for the interfacial droplet and
the solid curve estimate (48).

substrate is dominated by the shear flow in the substrate and
approaches a constant. In this limit Eq. (48) yields M;~ as.
The dependence of M; on the thermal conductivity ratio
B3=k;/k, [see Fig. 8(d)] can be understood using the same
argument, which predicts M;=const for small B; and
M ;~ B; for large ;.

The same argument also explains the dependence of M;
on the surface tension temperature coefficient ratio
T1y=071,/ 05 shown in Fig. 9(c). Here Eq. (48) predicts
M,;=const for small 7, when the thermocapillary effect at
the interface d€},, is negligible. Note that the numerical com-
putation yields M;=1 for 7,—0 (just as it should be for a
nearly spherical droplet when U= Uygp>Ug,). For large
71, when the thermocapillary effect at the interface d{};, is
dominant, Eq. (48) yields M;~ 7,, in agreement with the
numerical result.

The dependence of the mobility function on the second
surface tension temperature coefficient ratio 713=075/ 0755 is
shown in Fig. 9(d). It is also accurately described by estimate
(48) for all values of 73 and can be understood using the
same arguments used previously to explain the dependence
on f3;.

We conclude this section by discussing the dependence
of the mobility function on the surface tension ratios
Y12=012/ 03 and y;3=03/0,;. These ratios determine the
droplet shape and position relative to the substrate surface
), (see Sec. II D). No simple analytical argument can be
used to predict this dependence quantitatively, so one has to
resort to qualitative arguments. In particular, as v;, increases
from zero, the droplet shape deviates progressively from a
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(b)

FIG. 10. The droplet shape and streamlines of the flow in the y=0 plane.
The value of the surface tension ratio 7y;,=0 corresponds to a spherical
droplet (a) and y,,=1 results in a slender droplet (b). All other parameters
are fixed at unity.

sphere to a slender symmetric (for y;3=1) liquid lens (see
Fig. 10). The resulting increase in the surface-to-volume ra-
tio leads to an increase in the viscous drag and a correspond-
ing decrease in the contribution of the thermocapillary effect
on the droplet surface to the migration speed, leading to a
decrease in U,, and hence M, [see Fig. 9(a)].

The value of 7,3 controls the position of the droplet rela-
tive to the substrate surface and hence the value of the geo-
metrical prefactor C in Eq. (47). For small 7,5 the droplet is
almost completely expelled by the substrate fluid into the
covering fluid [see Fig. 11(b)], C is small, so the shear flow
in the substrate fluid has almost no contribution to the ther-
mocapillary migration speed, Uy, < U,.=~ Uygg. In this limit
one should expect M;=~1, as the numerics confirm. As ;3
increases, so does the immersion into the substrate fluid, the
prefactor C, and hence Uy, explaining the trend observed in
Fig. 9(b). For large v,; [see Fig. 11(a)] the droplet is almost
completely encapsulated by the substrate, with M; achieving
near-maximal values.

C. Interior flow field

Next we turn to the description of the flow field inside
interfacial droplets. As we mentioned previously, the topo-
logical structure of this flow field is crucially important for
determining its mixing properties. It is the easiest to charac-
terize this topological structure by identifying the invariant

FIG. 11. The droplet shape and streamlines in the y=0 plane. The droplet is
almost completely encapsulated by the substrate for y;3=1.45 (a) and almost
completely expelled for y;3=0.55 (b). In both cases 7y;,=0.5 and all other
parameters are set to unity.
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sets of the flow such as separatrix surfaces, homo- and het-
eroclinic orbits, and fixed points of the flow. One question of
particular interest is whether the deviation of the droplet
shape from a sphere, and the associated discontinuity in the
surface curvature at the contact line, have a significant im-
pact on the flow topology, as compared with the flow in a
completely submerged spherical droplet under similar condi-
tions.

1. Comparison with the model

To gain a better understanding of the flow structure for
generic values of parameters we will compare the numeri-
cally computed solution for the interfacial droplet with the
analytical one produced by a simplified model of the flow
derived in Ref. 21. In the analytical model, a spherical drop-
let was assumed to be completely submerged (with its center
at a fixed distance d=r, below the interface) in the substrate
fluid, hence we will refer to this system as a submerged
droplet. In the model the interior velocity was assumed to be
given by a linear superposition of the n=1 and n=2 terms in
Lamb’s solution (35), the first one representing the dipolelike
field (Hill’s spherical vortex) arising due to the thermocapil-
lary effect on the droplet surface and the second—a recircu-
lation flow (referred to as the Taylor flow in Ref. 21) caused
by the shear flow (12¢) in the substrate fluid. In our notations
the nondimensionalized interior velocity field of the sub-
merged droplet is

rcos 6
T2
261(3 + 2

1
T Gay+2)(2+B;)

v,=3(1 —r2)<

)sin 0 cos ¢, (49a)

~ (r[(6 —10r%)cos? 0—-5(1 - r?) = 2a;]
v day+ 4 T

N 3(1=2r%)cos )C s
(Baz +2)(2+ B3) |

12

(49b)

r(1 = 5r* = 2a3)cos 0
Vgp=— T2

4a3+4

. M—M> s
(Baz+2)(2+ B5) '

The problem has the same symmetry in the presence of a
constant horizontal temperature gradient, regardless of
whether the droplet is fully submerged or is suspended at the
surface of the substrate. The flow is mirror symmetric with
respect to the y=0 plane, which is thus both an invariant
plane and a separatrix of the flow, with V=0 at y=0. An-
other separatrix surface is the droplet surface. The flow is
also invariant with respect to reflection about the x=0 plane
combined with time reversal (v—-v), so that v,=v,=0 at
x=0. Combined with the incompressibility condition (1), this
guarantees the existence of a line of fixed points of the flow,
where v=0, lying in the plane x=0. We will, therefore, con-
centrate on the velocity field in the planes x=0 and y=0
which contain the majority of invariant sets.

(49¢)
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FIG. 12. The polar angle of the fixed points on the surface of the submerged
(solid line) and the interfacial drop (circles) restricted to the x=0 plane.

In particular, flow (49) possesses a set of (saddle) fixed
points lying at the intersection of the y=0 plane with the
droplet surface, with the polar angle given by

3 cos 0
+ =
(Baz +2)(2+ B3)
Another set of (elliptic) fixed points lies at the intersection of

the droplet surface with the x=0 plane, with the polar angle
given by

(2 cos® 0+ a3)
2((13 + 1)

0. (50)

71(az +2)cos 6 3
+ =0
2(a'3+ 1) (3a3+2)(2+,33) '

(51

To calculate the locations of the fixed points for the in-
terfacial drop we chose the values of relative surface tensions
v1»=1 and vy3=1.888 for which the interfacial droplet is
almost completely submerged. (Choosing a larger value of
73 results in a solution with an unacceptably large residual.)
We also set ay=1 and a;=0 to reflect the fact that in practice
the covering fluid (e.g., air or even vacuum) would typically
have viscosity negligible compared to that of both the droplet
and the substrate. The thermal conductivity of a typical cov-
ering fluid would also be small. However, we chose to set
B1=B5=1 to make the temperature gradient at the droplet
surface uniform, in accordance with the assumption used in
deriving the model.

The numerical results for various relative temperature
coefficients of surface tension 7j,, with fixed 73=1, are
found to be in a good qualitative (and often even quantita-
tive) agreement with the simple model. For instance, Figs. 12
and 13 show the locations of the fixed points on the surface
of the droplet at x=0 and y=0, respectively. For the interfa-
cial drop, the fixed points are found numerically using a
bounded Newton’s method, while for the submerged droplet
they are obtained by solving Eq. (51). In each case, we
find a pair of bifurcations as 7y, is increased _from Zero.
These occur at 755=4/15~0.27 and 7}3=2/150~0.28 in
the model of the submerged droplet and at ﬂ;~0.31 and
715~=0.41 for the interfacial drop.

For the submerged droplet we find a symmetric pair of
fixed points in the y=0 plane below 7"11; A degenerate saddle-
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FIG. 13. The polar angle of the fixed points on the surface of the submerged
(solid line) and the interfacial droplet (circles) restricted to the y=0 plane.
The fixed points at the contact line, §=6,, are not shown.

node bifurcation at 7y leads to the creation of two additional
symmetric pairs of fixed points at f=m (one pair in the
x=0 plane and one in the y=0 plane). Another saddle-node
bifurcation at 773 corresponds to the two pairs of fixed points
in the y=0 plane colliding and disappearing. Above this
value only one pair of fixed points in the x=0 plane remains,
with the polar angle approaching /2 for large 7,.

For the interfacial drop we find exactly the same se-
quence of bifurcations, albeit occurring at slightly different
values of 7y,. In addition, the interfacial droplet also pos-
sesses a pair of fixed points at the intersection of the y=0
plane with the contact line, in this case at 6.~2/9. Addi-
tional fixed points might arise near the contact line as a result
of corner vortex formation at smaller values of ,+ 6,. The
resolution of our numerical scheme, however, does not allow
us to distinguish them.

Additional evidence for the qualitative similarity of the
flows is found by computing the interior streamlines in the
y=0 plane for the submerged and interfacial drop at different
values of 7y,. These are shown in Fig. 14. In both cases, we
find a pair of elliptic fixed points in the interior of the droplet
(on the z axis) for 7,,< 795, where the flow looks topologi-
cally similar to Hill’s spherical vortex. At 795 one of the
interior elliptic fixed points collides with the surface and
disappears. For 7,> 7-‘]13 only one fixed point is found on the
z axis and the flow becomes topologically similar to rigid
rotation. Similarly good qualitative agreement between the
fully submerged and the interfacial droplet is found in com-
paring the magnitude of the velocity in the x=0 plane shown
in Fig. 15 for different values of 7y,. In this and the following
figures ten evenly spaced level sets of |v,| in the interval
[0,V,.] are shown, with darker shades corresponding to
larger values.

Summarizing, we find the analytical model®! based on
assuming the droplet to be completely submerged in the sub-
strate fluid to also provide a reasonably accurate representa-
tion of the flow inside interfacial droplets almost entirely
submerged into the substrate fluid, with only a small cap
exposed to an inviscid fluid (such as air) above. Conse-
quently, we should expect the model to provide a reasonably

Phys. Fluids 21, 042105 (2009)

FIG. 14. Stream plots for a submerged [(a), (c), and (e)] and interfacial
[(b), (d), and (f)] drop in the y=0 plane. Panels (a) and (b) correspond to
71,=0.13, (¢) to 7,=0.27 and (d) to 7,,=0.35, and (e) and (f) correspond to
71,=0.50.

accurate description of mixing inside the interfacial droplets
as well, provided the assumptions on which it is based hold.

2. Comparison with experiment

Next we perform a more detailed analysis of the validity
of our numerical model and its predictions for the values of
parameters taken from the fluid mixing experiments reported
in Ref. 19. In the microfluidic device used in that study the
covering fluid (fluid 1) was air. Fluorinert FC-70 was used as
the substrate (fluid 2) and the droplet (fluid 3) was a water/
glycerin mixture. The values of most material parameters
were taken from the CRC Handbook.** Some parameters,
such as the temperature coefficients of surface tension and
the temperature gradient were estimated from indirect
measurements. Other parameters (substrate thickness, and
droplet radius) were measured directly. A typical setup is
described by the following basic scales: ry=6.2X 107 m,
®=100 K/m, and v,=3.0X 1075 m/s.
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()

FIG. 15. The absolute value of the velocity in the x=0 plane for the sub-
merged droplet [(a), (c), and (e)] and interfacial droplet [(b), (d), and (f)]. (a)
7,=0.13 and V,,,=0.30, (b) 7,=0.13 and V,,,,=0.29, (¢) 7,=0.5 and
Vimax=0.56, (d) 7,=0.5 and V,,,,=0.46, (¢) 7,=1 and V,,,,=0.94, and (f)
=1 and V., =0.71.

The values of the corresponding nondimensional param-
eters are summarized in Table III. We have not quoted the
values for Re;, Pe;, Bo;, and Ca, for the air layer due to its
small values of density, viscosity, and thermal conductivity.

TABLE III. Dimensionless parameters computed from Grigoriev et al.
(Ref. 19).

Viscosity a;=0.0008 a;=0.59
Thermal conductivity B:=0.036 B3=5.9
Surface tension ¥1,=0.33 yi3=1.2
Temperature coefficient 71,=0.59 T3=1.2
Bond number Bo,=0.004 Bo;=0.0008
Capillary number Ca,=1X1073 Ca;=5x1077
Thermal Péclet number Pe,=35 Pe;=0.02
Reynolds number Re,=0.096 Re;=2 X 107
Length A=4X%10* X=64

Phys. Fluids 21, 042105 (2009)

© (d)

FIG. 16. The interior flow field for the light glycerin/water mixture. Shown
are the streamlines for the submerged (a) and interfacial (b) droplet in the
y=0 plane and the magnitude of v, for the submerged (c) and interfacial (d)
droplet in the x=0 plane. V,,,,=0.58 and 0.33 in (c) and (d), respectively.
The parameters are as in Table III.

The heat and momentum fluxes in air are too small to sig-
nificantly affect the temperature and velocity fields inside the
droplet and the substrate fluid.

A quick inspection of Table III shows that most of the
nondimensional parameters have the order of magnitude as-
sumed in Sec. II. One notable exception is the large value of
the Péclet number Pe, in the substrate fluid. This means that
at large distances from the droplet heat transport is
advection—rather than diffusion—dominated and hence our
asymptotic solution (12) is inaccurate for such large tempera-
ture gradients. A more accurate analysis of the asymptotic
flow profile (to be presented in a subsequent publication)
shows that the temperature gradient acquires a vertical com-
ponent for larger values of Pe. As we discussed previously,
the validity of the present numerical model can be restored
by reducing the magnitude of the temperature gradient.

In the experiment, the easiest parameter to modify was
a;, the ratio of the droplet viscosity to that of the substrate.
With this in mind, we have computed and compared the ve-
locity field for different values of as. For intermediate values
of aj, the streamlines of the flow in the y=0 plane and the
absolute value of v, at x=0 are shown in Fig. 16. A quick
comparison of the numerical solution and the simplified
model flow (49) shows that the two are quite similar. In
particular, the topological structure of both flows is domi-
nated by a continuous set of elliptic fixed points in the x=0
plane (see Fig. 17), anchored at the z axis near the top of the
droplet and extending all the way to the droplet surface (the
bulk of the fluid circulates around the curved line represent-
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(b)

FIG. 17. Invariant sets of the flow inside (a) the interfacial droplet and (b)
the fully submerged droplet. The open squares represent the set of elliptic
fixed points in the x=0 plane. The solid lines are sample 3D steamlines and
the dashed line is a heteroclinic orbit connecting the stable and unstable
spiral fixed points. The surface of the droplet (light gray), the y=0 plane
(dark gray), and the contact line are also invariant sets.

ing this set). One should, therefore, expect the model to pro-
vide a qualitatively accurate description of the flow (and
hence its mixing properties) almost everywhere inside the
interfacial droplet.

On the other hand, one finds that the simplified model,
for the same values of parameters, does not capture some
finer details of the flow near the droplet surface, such as the
pairs of spiral and saddle fixed points [see Fig. 18(a)] and the
heteroclinic orbits connecting the spiral fixed points (see
Fig. 17). The emergence of such invariant structures can, in
principle, radically alter the mixing properties of the flow,
either enhance or impede mixing, near the surface (and pos-
sibly near the y=0 plane). In practice, however, the regions
where the predictions of the model disagree with the numer-
ics are characterized by small values of the velocity, so in
either case the flow will have poor mixing properties there.
To be fair, we should also mention that, for slightly different
values of parameters, similar spiral flow structures arise near
the droplet surface in the simplified model, as Fig. 18(b)
illustrates.

The corresponding numerical solution for the flow out-
side the droplet is shown in Fig. 19(a). Two features of this
flow are worth pointing out. First of all, for the values of
parameters in Table III there are two stagnation points of the
flow at the front of the droplet and two at the back (more
typically one finds one stagnation point at the front and one

L

FIG. 18. Streamlines of the flow in the y=0 plane. (a) The blowup of Fig.
16(b) near a spiral fixed point. (b) A spiral fixed point of the flow produced
by the model for a;=0.59 and 7,3=0.125.

Phys. Fluids 21, 042105 (2009)
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FIG. 19. The exterior flow field for the interfacial droplet with the param-
eters taken from Table III. Shown are 2D streamlines in the y=0 plane (a)
and sample 3D streamlines near the droplet surface (b).

at the back). The top pair corresponds to the triple contact
line, while the bottom pair corresponds to a saddle located in
the vicinity of the spiral fixed point shown in Fig. 18(a) and
its mirror image on the other side of the droplet. Second, the
disturbance in the exterior field due to the presence of the
droplet is seen to decay very quickly with the distance to the
droplet, such that even near the droplet the outside flow is
quite close to the asymptotic shear flow V*. It, therefore,
should not be very surprising to find that the thermocapillary
driven flow shown in Fig. 19(a) is qualitatively similar to the
flow inside and around an interfacial droplet driven by exter-
nal shear (compare with Fig. 6 of Ref. 24).

For a small value of the relative viscosity, a3=0.043,
corresponding to a pure water droplet, the numerical solution
and the flow predicted by model (49) are shown in Fig. 20.
Again we find reasonable qualitative agreement over most of
the droplet interior.

For a heavy glycerine/water mixture used in Ref. 19 the
droplet is substantially more viscous than the substrate fluid,
a3=4.9. The corresponding solutions are shown in Fig. 21.
In this limit too, we find reasonable qualitative agreement
between the numerical and the approximate analytical solu-
tion over most of the droplet interior. However, while the
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(d)

FIG. 20. The interior flow field for a pure water droplet. Shown are the
streamlines for the submerged (a) and interfacial (b) droplet in the y=0
plane and the magnitude of v, for the submerged (c) and interfacial (d)
droplet in the x=0 plane. V,,,,=0.75 and 2.55 in (c) and (d), respectively.
The parameters are as in Table III, except for a;=0.043.

(d)

FIG. 21. The interior flow field for the heavy glycerine/water mixture.
Shown are the streamlines for the submerged (a) and interfacial (b) droplet
in the y=0 plane and the magnitude of v, for the submerged (c) and inter-
facial (d) droplet in the x=0 plane. V,,,,=0.37 and 0.15 in (c¢) and (d),
respectively. The parameters are as in Table III, except for a;=4.9.

Phys. Fluids 21, 042105 (2009)

FIG. 22. Interior flow with complex topology. Shown are streamlines in the
y=0 plane. The parameters are as in Table III, except for 73=6X 1073

model predicts the flow to be almost identical to solid rota-
tion around the y axis (i.e., quasi-2D), the boundary condi-
tions at the triple contact line force the numerical solution
inside the interfacial droplet to retain a distinctly three-
dimensional (3D) structure, as the level sets of v, shown in
Fig. 21(d) illustrate.

To conclude this section, we would like to point out that
the parameter space of the problem is too large to fully ex-
plore. However, changing even just one of the parameters
relative to the experimental values can produce interior flows
with substantially more complex structure. One such flow is
presented in Fig. 22. In contrast to the other cases considered
in this section, we now find that the flow is organized around
two sets of fixed points in the x=0 plane extending from the
z axis to the surface of the droplet [see Fig. 23(a)]. While the
bottom set is again composed of elliptic fixed points, the top

(b)

FIG. 23. Invariant structures of the flow are shown for the interfacial (a) and
the submerged droplet (b). The open squares and crosses represent the sets
of elliptic and saddle fixed points, respectively, in the x=0 plane. The solid
lines are sample 3D streamlines and the dashed line is a heteroclinic orbit
connecting the stable and unstable spiral points. The invariant sets contained
inside the y=0 plane are not shown. The parameters are as in Table. III,
except for 7,3=6X 1073,
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set is made up of saddles near the z axis and elliptic fixed
points near the surface. The important new feature of the
flow is that the spirals now affect the flow globally, so model
(49) provides an adequate description of the flow nowhere
inside the droplet.

V. CONCLUSION

To summarize, we have numerically solved the problem
of thermocapillary migration of a droplet (or liquid lens)
suspended at a free interface of two immiscible fluids (the
substrate and the covering fluid) in response to an imposed
weak horizontal temperature gradient. The numerical method
used a boundary collocation scheme to compute the velocity
and temperature fields in the three fluids in terms of Lamb’s
general solution and spherical harmonic expansions, respec-
tively. The method was found to produce accurate (in terms
of the residual) solutions for generic choices of parameters.
However, the numerical solutions were found to become in-
accurate, at large values of the truncation order, when the
droplet was either (i) strongly stretched due to a large surface
tension at the substrate’s free surface or (ii) almost com-
pletely expelled by, or immersed in, the substrate. This was
found to be a result of the condition number of the system of
equations representing the boundary conditions on the collo-
cation rings becoming very large, illustrating the limitations
of Lamb’s/spherical harmonic expansions in geometries de-
viating strongly from spherical.

We have computed the velocity of thermocapillary mi-
gration for interfacial droplets as a function of the eight non-
dimensional parameters and found the results to differ dra-
matically from the classical problem of thermocapillary
migration in the bulk.! Most important, for typical values of
parameters, interfacial droplets were found to migrate in the
direction opposite to the temperature gradient, while in the
classical problem migration is always in the direction of the
gradient. For interfacial droplets, the migration speed is de-
termined primarily by the motion of the substrate fluid
caused by the thermocapillary effect at its free surface and
hence is strongly dependent on the boundary conditions for
the substrate layer. The thermocapillary effect on the droplet
surface responsible for the motion of the droplet relative to
the substrate’s free surface (see Sec. IV B) provides only a
relatively small correction.

This study was largely motivated by the problem of mix-
ing inside thermocapillary driven droplets. Although qualita-
tive agreement was found between the experimental
observations'® and the predictions of a simplified analytical
model,21 it was unclear whether the model, which assumed
the droplet to be completely submerged and hence spherical,
was sufficiently accurate. The results reported here confirm
that, for relatively small deformations of the droplet shape
from a sphere, the analytical solution provides a qualitatively
accurate description of the flow in most of the droplet vol-
ume. For strongly deformed droplets numerical solutions,
such as those presented in this paper, become necessary.

Finally, we should mention that in the limit of vanishing
Péclet numbers the velocity field is symmetric with respect
to the x=0 plane, so that all streamlines are closed and the

Phys. Fluids 21, 042105 (2009)

flow is integrable. Mixing via chaotic advection requires this
symmetry to be broken. In the analysis of Ref. 21, symmetry
breaking resulted from assuming the temperature gradient to
be nonuniform. In fact, for temperature boundary conditions
relevant to experiments, no such assumption is necessary.
For finite Péclet numbers the temperature gradient acquires a
vertical component due to the advection of heat in the sub-
strate, breaking the symmetry and making the flow
nonintergrable,35 even in the simplified model. Incorporating
the effect of a vertical temperature gradient into the numeri-
cal model is currently underway; the results will be reported
in a subsequent publication.
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