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Abstract

In a recent paper [Phys. Rev. E 57 (1998) 1550] it was demonstrated that the symmetries of the evolution equation and
the target state have a profound effect on controlling the chaotic behavior. In the present paper we extend these results to
the cases of time-periodic target trajectories and inexact symmetries, and apply the developed formalism to the problem of
controlling spatiotemporal chaos. We use the example of a lattice dynamical system in arbitrary spatial dimension to show
that there exists an intimate relationship between the geometry of an extended system and the geometry of feedback control.
© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The desire to improve performance of many practically important systems and devices often calls for shifting
their operating range into a highly nonlinear area, which after a series of bifurcations usually leads to irregular
chaotic behavior. This kind of behavior, however, is rarely desired, while substantial benefits could be obtained by
making the dynamics regular. This goal can typically be achieved by applying small preprogrammed perturbations
to steer the system towards a periodic orbit with desired properties, which is broadly referred to as chaos control.

The present paper is devoted to a special, but very interesting, class of systems which possess some kind of
symmetry. In fact, many practically important dynamical systems, for instance spatially extended dynamical systems,
are intrinsically symmetric and cannot be successfully treated using the formalism developed for the generic case.
Indeed, such phenomena as fluid flows, convection or chemical reactions often take place inside symmetric containers
— cylinders, spheres, pipes and annuli. As a result, the dynamical equations also show rotational and translational
symmetries. Even the dynamics of unbounded systems is often significantly influenced by the symmetries of the
physical space. Although the presence of symmetries usually simplifies the analysis of the dynamics, it also makes
control more complicated due to the inherent degeneracies of the evolution operators. In particular, the presence
of symmetries, explicit or implicit, makes a number of single-control-parameter methods fail [1–3], calling for
multi-parameter control [4–8].
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For example, it was found experimentally that in order to successfully suppress the helical traveling wave in a
liquid bridge (a drop of fluid suspended between two coaxial cylinders kept at different temperatures) convection
experiment [9], at least two sensors and two heating elements were needed. The one-sensor, one-heating element
arrangement failed to stabilize the unstable axially symmetric state. In fact, the authors recognized that this was due
to the symmetry between the left-and right-going waves which produced the degeneracy.

The difficulties experienced in attempts to control instabilities in several other practically important nonlinear
systems and devices with various sorts of symmetries could be traced to the lack of adequate analytical analysis
of the control problem. Examples include rotating stall and surge instabilities in turbine engines [10], rough idling
of internal combustion engines operating on lean fuel mixture [11], surface roughening during epitaxial growth
of thin films [12], random beam steering in high-power wide-aperture semiconductor lasers [13], and even such
unlikely phenomenon as brain epilepsy [14]. In what follows we present a theoretical framework for treating the
symmetric control problem. It turns out that the symmetry analysis of lattice dynamical systems, which often serve
as a prototypical example of spatially extended systems – continuous or discrete – can provide us with valuable
insights on controlling spatiotemporally chaotic dynamics.

In order to see how the control problem is affected by symmetries, consider a continuous-time system described
by the dynamical equation

ẋ(τ ) = 8(x(τ ),u(τ )), (1)

wherex ∈ R is thenx-dimensional state of the system andu is thenu-dimensional vector of system parameters. It
is convenient for our purposes to discretize this equation using a sequence of sampling timestT, so thatxt = x(tT)
andut = u(τ ) for tT < τ < (t + 1)T . Integrating (1) fromkT to (k + 1)T one obtains a discrete-time system,
whose evolution is described by the mapF : R× Rnu → R such that

xt+1 = F(xt ,ut ). (2)

The objective of control is to make the system follow the (possibly unstable) periodic target trajectoryx̄t . Let us
linearize Eq. (2) about this target trajectory to obtain

1xt+1 = At1xt + Bt1ut , (3)

where1xt ∈ T is the deviation from the target trajectory,T the space tangent to the phase spaceR at x̄t ,
At = DxF(x̄t , ū) the Jacobian matrix which determines the stability properties of the target trajectory, andBt =
DuF(x̄t , ū) is the control matrix, which defines the linear response of the system to perturbation of system parameters.

According to linear systems theory [15], if the target trajectoryx̄t is unstable, it can be stabilized by an appropriate
feedback through the time-dependent control perturbation1ut = ut − ū, provided the matricesAt andBt satisfy
certain conditions. In the present study we concentrate on selecting from the complete set of availablesystem
parameters a minimal set ofcontrol parameters, whose perturbation allows the stabilization of the target state,
i.e., on making an appropriate choice of the control matrixBt , given the JacobianAt . We will see below that the
constraints affecting the choice of control parameters can be easily obtained from the symmetry properties of the
system and the controlled state. What is more interesting, symmetry allows one to determine the minimal number
of control parameters without requiring the knowledge of the JacobianAt .

The outline of the paper is as follows. Section 2 contains the symmetry analysis of the linear feedback control
problem and discusses the effects of weak symmetry violation. Section 3 illustrates applications of the theory
using the canonical example of an inverted pendulum in three dimensions, followed by a thorough analysis of lattice
dynamical systems. Finally, we present our conclusions as they relate to control of general spatially extended chaotic
systems, using the liquid bridge experiment as our final example, in Section 4.
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2. Symmetry and control

2.1. Stabilizability and controllability

Although our analysis is applicable to time-varying systems, for simplicity we assume here that the target state
is time-invariant,̄xt = x̄. Then the matricesAt andBt become constant, and we can drop the time index in (3) to
obtain

1xt+1 = A1xt + B1ut . (4)

It is useful to introduce and compare two characterizations of the linearized evolution equation (4), which extremely
simplify the analysis of feedback control algorithms:stabilizabilityandcontrollability.

The dynamical system (4) or the pair(A,B) is said to bestabilizable, if there exists astate feedback

1ut = −K1xt , (5)

making the system (4) stable, i.e., it is possible to find afeedback gain matrixK such that all eigenvaluesλ′
k of the

matrixA′ = A − BK lie within a unit circle of the complex plane,|λ′
k| < 1∀k. Otherwise the system or the pair

(A,B) is calledunstabilizable. Indeed, substituting the feedback (5) into (4) one obtains the linearized evolution
equation for theclosed-loopsystem:

1xt+1 = (A− BK)1xt (6)

with 1x = 0 becoming the stable fixed point of the map (6) if and only ifA− BK is stable.
Alternatively, thenx-dimensional linear system (4) or the pair(A,B) is said to becontrollable if, for any

initial state1xti = 1xi , timestf − ti ≥ nx , and final state1xf , there exists a sequence of control perturbations
1uti , . . . , 1utf −1 such that the solution of Eq. (4) satisfies1xtf = 1xf . Otherwise, the system or the pair(A,B)
is calleduncontrollable.

At first sight Eq. (5) seems to impose strict limitations on the allowed form of the feedback law (the feedback
gainK is assumed to depend explicitly on system parameters, but not on time). However, this is precisely the form
demanded by a number of widely used control algorithms [1,2,16]. Besides, even if the control perturbation1ut is
chosen as a smooth nonlinear function of the system statext , for small deviations we recover (5), which makes the
linear analysis presented below equally relevant for nonlinear control.

Stabilizability is a property, which usually sensitively depends on the values of system parameters. In the majority
of practical applications, however, it is preferable to have an adaptive control that would stabilize a given steady
statex̄(ū) for arbitrary values of system parameters. This is especially important, if one is to track the trajectoryx̄
as parameters slowly vary, which might be advantageous in many applications, e.g., for moving the operating point
of a nonlinear device across a bifurcation, from the stable region to the chaotic region. In this case, similarly to
matricesA andB,K acquires implicit dependence on time through the parameters. Such an adaptive control scheme
can be obtained, if the more restrictive condition of controllability, which is essentially parameter-independent, is
imposed on the matricesA andB. It can be demonstrated [15] that, if the feedback is chosen in the form (5), the
controllability condition guarantees that the eigenvalues of the matrixA−BK can be freely assigned (with complex
ones in conjugate pairs) by an appropriate choice of the matrixK. Therefore, if the system is controllable, it is
stabilizable as well, and by requiring controllability we satisfy both conditions at once.

The controllability condition can be represented in a number of different equivalent forms. To obtain one par-
ticularly convenient form, we make the trivial observation that, if it is possible to drive the linear system from an
arbitrary initial state1xi to an arbitrary final state1xf in nx steps, it is possible to do the same in any number of
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stepsn exceedingnx . Suppose we let the system evolve under control fornx steps from the initial state1xt . The
final state will be given by1

1xt+nx = (A)nx1xt +
nx∑
k=1

(A)nx−kB1ut+k−1. (7)

Denotebm themth column of the matrixB

B = [ b1 b2 . . . bnu ]. (8)

Regarding the terms(A)nx−kbm as vectors in thenx-dimensional tangent spaceT ,

hkm = (A)nx−kbm, k = 1, . . . , nx, m = 1, . . . , nu, (9)

and the control perturbations1ut+k−1
m as coordinates, we immediately conclude that Eq. (7) rewritten as

1xf − (A)nx1xi =
nx∑
k=1

nu∑
m=1

1ut+k−1
m hkm, (10)

can only be satisfied, if and only if there arenx linearly independent vectors in the set (9), i.e., the set{hkm} spans
the tangent spaceT . (In contrast, the stabilizability condition requires that this set spans only the unstable subspace
Lu ⊆ T of the JacobianA, instead of the whole tangent spaceT .) This is equivalent to requiring that

rank(C) = nx, (11)

where the matrix

C ≡ [ B AB (A)2B . . . (A)nx−1B ] (12)

is called thecontrollability matrix. Condition (11) was introduced into the physics literature from linear systems
theory by Romeiras et al. [2] as a simple, but practical test of the controllability.

In order to better understand the restrictions imposed on the control scheme by symmetries, it is beneficial to look
at the controllability condition from the geometrical point of view, assumingnu = 1 and, consequently,B = b. The
controllability in this context is equivalent to the vectorsh1,h2, . . . ,hnx spanning the tangent spaceT . Generically,
the matrixA is nondegenerate (has a nondegenerate spectrum), so one can always find a vectorb, such that the
resulting set (9) forms a basis. However, ifA is degenerate, which is a usual consequence of symmetry, there will
exist an eigenspace of the Jacobian,Lr ⊂ T , such thatx†A = λrx† ∀x ∈ Lr with the dimensiondr = dim(Lr) > 1,
where † denotes the (complex conjugate) transpose of a matrix or vector. The dynamics of the system in such an
eigenspace cannot be controlled with just one control parameter (see [2] for an example of such a situation), because
the vectorshk only span a one-dimensional subspace ofLr . Indeed, sincedr > 1 there will existdr − 1 adjoint
eigenvectorsfj ∈ Lr orthogonal tob and each other. Then

(fj · hk) = f †
j (A)

nx−kb = λnx−kr f †
j bλnx−kr (fj · b) = 0, (13)

so every basis vectorhk is orthogonal to every eigenvectorfj , j = 1, . . . , dr − 1.
It is often convenient to define the notion of controllability for individual eigenvectors. We will say that the

adjoint eigenvectorf of the JacobianA is controllable, if there existsm, 1 ≤ m ≤ nu, such that(f · bm) 6= 0.

1 Here and in the text we use the notation(A)n to indicate thatA is taken to the power ofn to differentiate it from the notationAt , where index
t defines the time dependence.



R.O. Grigoriev / Physica D 140 (2000) 171–192 175

Respectively, the eigenvector that is orthogonal to every column of the control matrixB is called uncontrollable.
Using these definitions we can, therefore, conclude that the controllability of the linearized system is equivalent
to the controllability of each and every adjoint eigenvector of the Jacobian matrix (also see [17]). Similarly, the
stabilizability is equivalent to the controllability of each and everyunstableadjoint eigenvector. Identifying the
adjoint eigenvectors with normal modes of the system, we can say that the control does not affect the amplitude of
the uncontrollable normal modes, so they cannot be suppressed.

If the system dynamics inLr happens to be stable (e.g., when the system is stabilizable, but uncontrollable), the
system can still be stabilized similarly to the nondegenerate case, but we have to ensure the controllability in case
the dynamics in this eigenspace is unstable. This can be achieved by increasing the number of control parameters
nu, which extends the set (9), until it spans every eigenspace ofT . This would lead one to assume that the minimal
value ofnu should be defined by the highest degeneracy of the Jacobian matrixA. We will see, however, that various
kinds of degeneracy have a somewhat different effect on the controllability of the system.

2.2. Symmetries of the system

Symmetries usually significantly simplify the analysis of system dynamics, and the control problem is no ex-
ception. In particular, even when the exact form of the Jacobian matrix is unknown, the structure of the symmetry
group describing the symmetries of the system allows one to reduce the controllability condition (11) to a set of
much simpler conditions, which provide a number of system-independent results. The discussion below is based on
bifurcation theory [19] and closely parallels the treatment of degeneracy in quantum mechanics and spontaneous
symmetry breaking in quantum field theory and phase transitions.

In general we call the system symmetric, if the nonlinear evolution equation preserves its form under a set of
linear transformationsg : x → x′ = g(x) of the phase space. More formally, we say that the evolution equation (2)
possesses astructuralsymmetry described by a symmetry groupG, if the mapF defined in (2) commutes with all
group actions

F(g(x),u) = g(F(x,u)) ∀g ∈ G, x ∈ R, (14)

or, in other words, if the functionF(x,u) is G-equivariant with respect to its first argument. The groupG is usually
a byproduct of symmetries of the underlying physical space, such as rotational and translational symmetry (domain
symmetry), and symmetries of the phase space, such as phase symmetryφ → φ + 2π (range symmetry). Since
all interesting physical symmetries are unitary (such rare exceptions as the Lorentz group are hardly relevant in the
context of control problems), we will assume thatG is a unitary group.

Usually, the symmetry demonstrates itself in more than just one way: often steady (as well as time-periodic) states
x̄ of symmetric systems will too be symmetric with respect to transformationsg ∈ Hx̄, whereHx̄ ⊆ G is called an
isotropysubgroup of̄x. In general, the target statex̄ might also be symmetric with respect to transformations which
do not belong toG. However, considering those does not provide any additional information, so we will assume just
that

g(x̄) = x̄ ∀g ∈ Hx̄. (15)

The states with high isotropy symmetry are most interesting from the control point of view: such states tend to have
a very regular structure making them ideal candidates for a target state.

For the purpose of control it is important to observe that upon linearization about the target statex̄ the structural
symmetry of the evolution equation (2) does not disappear, but is replaced with a relateddynamicalsymmetry

g(A1x) = Ag(1x) ∀g ∈ L, ∀1x ∈ T . (16)
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Using the definitions (14) and (15) and the fact that symmetry transformations are linear, one concludes that the group
L describing the dynamical symmetry of the system in the vicinity of the target statex̄ includes all transformations
g ∈ Hx̄, and therefore

Hx̄ ⊆ L. (17)

One can speculate that typicallyL will coincide withHx̄. As a consequence, if the target statex̄ has low symmetry,
the symmetry of the evolution equation will be reduced upon linearization to a subgroup ofG. However, as we will
see in Section 3,L might be equal toG, or even includeG as a subgroup for highly symmetric target states, with
the apparent symmetry increased by linearization.

2.3. Conditions for control

As we have argued in the previous sections, the increase in the number of control parameters is due to the
degeneracies of the JacobianA, which in turn are due to dynamical symmetries. The information that is most easily
accessible concerns the isotropy symmetry of the target state. In practice, however, it is usually not known whether
the isotropy groupHx̄ exhausts the dynamical symmetries of the system or the groupL contains some hidden
symmetries as well. It is, therefore, important to show that a number of restrictions on the set of control parameters
can be obtained using an arbitrary unitary subgroupL′ of L. It is entirely possible that the spectrum of the Jacobian
will contain degeneracies resulting from such hidden symmetries, in addition to those produced byL′. We will call
these degeneracies accidental with respect to the groupL′.

Let us consider the matrix representationT generated in the tangent spaceT by the action of transformationsg
from the groupL′

(g(x))i = (T (g)x)i =
nx∑
j=1

Tij (g)xj ∀x ∈ T , (18)

where, according to (16), all matricesT (g) commute with the Jacobian

T (g)A = AT(g) ∀g ∈ L′ ⊆ L. (19)

The knowledge of the representationT is sufficient to derive a very simple criterion for the admissibility of the
control matrix. Observe that, ifT (g)B = B for an arbitrary transformationg ∈ L′, then

C = [T (g)B AT(g)B · · · (A)nx−1T (g)B] = [T (g)B T (g)AB · · · T (g)(A)nx−1B] = T (g)C.

(20)

As a result, sinceTij (g) 6= δi,j for anyg 6= e (where we definede as the identity transformation:e(x) = x), the
rows c̃j of the controllability matrix become linearly dependent,

nx∑
j=1

(Tij (g)− δi,j )c̃j = 0, (21)

and the controllability condition (11) is violated. Therefore, we obtain a necessary condition on the control matrix

T (g)B 6= B ∀g ∈ L′ \ {e}. (22)

In other words, the control parameters should be chosen such that the symmetry of the linearized evolution equation
(4) is completely broken for (almost all) nonzero control perturbations1u 6= 0.
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Though simple and general, criterion (22) is not very helpful for finding the minimal set of control parameters
satisfying the controllability condition. A more general and practically useful criterion can be derived using group
representation theory.

Decomposing the representationT into a sum of irreducible representationsT r of the groupL′ with respective
dimensionalitiesdr , we obtain

T = p1T
1 ⊕ p2T

2 ⊕ · · · ⊕ pqT
q, (23)

with

nx = p1d1 + p2d2 + · · · + pqdq, (24)

wherepr denotes the number of equivalent representationsT r present in the decomposition (23), andq is the total
number of nonequivalent irreducible representations. SinceL′ is unitary, all irreducible representationsT r in (23)
can be chosen as unitary [20].

The tangent spaceT is similarly decomposed into a sum of invariant subspacesLrαL′ such thatT (g)x ∈ LrαL′ ∀x ∈
LrαL′ and∀g ∈ L′

T = L1
L′ ⊕ L2

L′ ⊕ · · · ⊕ L
q

L′ , (25)

where

LrL′ = Lr1L′ ⊕ Lr2L′ ⊕ · · · ⊕ L
rpr
L′ , (26)

andα = 1, . . . , pr indexes different invariant subspaces, which correspond to the same group of equivalent irre-
ducible representationsT r . It should be noted that even though the decomposition (25) is unique, the decomposition
(26) is not, unlesspr = 1.

It is useful to define the projection operatorP̂ r onto the invariant subspaceLrL′ ⊂ T . This operator can be
obtained directly from the matrix representationT for most symmetry groups of interest. For finite discrete groups
it is given by

P̂ r = dr

ng

∑
g∈L′

χr(g)T (g), (27)

whereng is the number of elements of the groupL′ andχr(g) is the character of the group elementg in the
representationT r . Similarly, for compact continuous groups we have

P̂ r = dr

∫
L′
χr(g)T (g)dµ(g), (28)

where dµ(g) is the group measure [20].
Now we are finally ready to formulate the restrictions imposed by symmetries on the controllability condition.

(We will not present all details of the analysis here — interested readers can find them in [18].) First of all one
concludes that as long as the decomposition (23) contains nontrivial irreducible representations, there exists a lower
bound on the minimal number of control parameters necessary to satisfy the controllability condition

n̄u ≥ maxr=1,... ,qdr . (29)

In addition, symmetry imposes a number of restrictions on the control matrixB,

rank(P̂ rB) ≥ dr , r = 1, . . . , q, (30)
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which can be interpreted as the requirement of the mutual independence of control parameters. In other words, an
arbitrary (unitary) subgroupL′ of the full dynamical symmetry groupL does not completely define the minimal set
of control parameters. It does, however, define a set of necessary conditions required for controllability. In general,
the knowledge of all dynamical symmetries, both unitary and nonunitary, described by the groupL is required in
order to completely resolve the structure of the Jacobian matrix and obtain the necessary and sufficient condition
for controllability.

Nevertheless, even without knowing the full symmetry groupL one can obtain the necessary and sufficient
conditions by assuming that there are no accidental degeneracies. It is usually safe to do so if, e.g.,L′ is taken
to coincide withHx̄: we ensure that all physical symmetries are taken into account, and accidental degeneracies
should only appear for certain special values of system parameters. Then inequalities (29) and (30) are replaced by
the equalities

n̄u = maxr=1,... ,qdr . (31)

rank(P̂ rB) = dr , r = 1, . . . , q, (32)

respectively.
It should be noted that (30) trivially reduces to (32), if no irreducible representationT r of L′ enters the decompo-

sition (23) more than once, such thatpr = 1 for all r. Although situations in which this is not true are not uncommon
(inverted pendulum discussed in Section 3.1 is a typical example), this condition can be easily verified, while it
might be impossible to prove that there are no hidden symmetries resulting in accidental degeneracies.

Summing up, we conclude that in the absence of accidental degeneracies the system is controllable, if and only
if the two conditions are met. The first one requires the numbernu of control parameters to be greater or equal
to the dimensionalitydr of the largest irreducible representationT r present in the decomposition of the matrix
representationT of the subgroupL′ ⊆ L in the tangent spaceT . The second one requires the control parameters
to be independent: the columnsbm of the control matrixB have to be chosen such thatdr of the projections
P̂ rbm, m = 1, . . . , nu are linearly independent (and, therefore, span the eigenspaceLrL′ ) for everyr = 1, . . . , q.
The last condition represents the restrictions imposed on the admissible form of the linear response of the system
to perturbations of control parameters and might require additional information about the specific system for
verification (Section 3 contains a more detailed discussion).

Of course, symmetry does not always make the Jacobian degenerate, and the nondegenerate case can be handled
in the same way as the one with no symmetries. Neither does the degeneracy by itself imply that multi-parameter
control is required: if the degeneracy is produced by a nonunitary symmetry (in which case the Jacobian matrix is
not diagonalizable), one control parameter is sufficient to ensure the controllability [18]. In both cases, however,
the dynamical symmetry should be rather low. Specifically, the decomposition (23) of the matrix representationT

should not contain any multi-dimensional irreducible representations.
In principle, all of these results could have been derived by directly linearizing the continuous-time evolution

equation (1). Indeed, the definitions of symmetries, respective symmetry groups, and the notions of stabilizability
and controllability in thecontinuous-timecase are completely analogous to the ones given in Section 2.1 for the
discrete-timecase (see, e.g., [17]). As a consequence, all steps in the above analysis of time-invariant target states
are equally applicable to continuous-time systems. This is a rather valuable asset of the developed theory, since
continuous-time control is, in general, a much more flexible and powerful technique than discrete-time control. In
the presence of an adequate mathematical model continuous-time control can often achieve far superior results. It
is, however, a much more complicated technique as well, so we will not discuss it in any detail.

The reason for choosing the discrete-time approach in the present paper is that, on the one hand it is more
transparent, and on the other hand it affords a natural generalization to thetime-periodiccase. In particular, if the
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control matrix does not depend on time,Bt = B (otherwise the results become too complicated to be useful, and
as such will not be cited here), one obtains the following independence condition:

rank(P̂ rB) ≥
⌈

max

(
dr

pr
,
dr

τ

)⌉
, r = 1, . . . , q. (33)

Heredde denotes the smallest integer larger than or equal tod, andτ ≥ 1 is the period of the trajectory. Instead of
(29) one respectively obtains the restriction on the minimal number of control parameters

n̄u ≥
⌈

maxr=1,... ,q max

(
dr

pr
,
dr

τ

)⌉
. (34)

It is interesting to note that a periodic trajectory can be made controllable using the number of control parameters
nu that could be smaller than the number required for a steady state with the same symmetry.

2.4. Symmetry violation

In reality symmetries of physical systems displaying dynamical instabilities are almost never exact. Indeed,
the cylinders in a Taylor–Couette experiment are never perfectly cylindrical, the temperature inside a chemical
reactor is never absolutely uniform, neither are the rotor blades of a turbocompressor exactly identical. The above
analysis, on the other hand, has been conducted in the assumption of exact symmetry. Therefore, it is essential to
understand how the obtained results change, if the symmetry is not exact or, in other words, what the effect of a
weak symmetry violation is. Such an analysis is also crucial in the vicinity of points in the parameter space where
symmetry increasing bifurcations or accidental degeneracies occur.

For simplicity let us again consider the time-invariant case. The JacobianA of a weakly perturbed symmetric
system takes the form2

A = A0 + εA1 + O(ε2), (35)

whereε denotes the magnitude of the perturbation and the unperturbed JacobianA0 is exactly symmetric with
respect to all transformationsg of the groupL. For the group representationT we thus have

T (g)A0 − A0T (g) = 0 ∀g ∈ L. (36)

In general, the perturbationεA1 will not be symmetric with respect to any element of the groupL, except the identity
transformatione

T (g)A1 − A1T (g) 6= 0 ∀g ∈ L \ {e}. (37)

Therefore, since (up to the second-order inε)

T (g)A− AT(g) = ε(T (g)A1 − A1T (g)), (38)

the perturbation (35) completely destroys the symmetry of the linearized evolution equation (4) for anyε 6= 0.
As a result, the perturbed system can be made controllable using a single control parameter, irrespectively of the

2 As pointed out by one of the referees, it is known that there are special cases in which weakly breaking the symmetry of a system can introduce
nonperturbative, i.e., O(1) terms into the equations of motion. This occurs, e.g., if one considers an unbounded fluid undergoing an oscillatory
bifurcation and the translational invariance of the system is weakly broken by introducing distant endwalls into the problem. We are, however,
interested in the generic case and will not discuss such rather pathological examples here.
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properties of the original symmetry groupL. For instance, calculating the controllability matrix of the perturbed
system withnu = 1 andB = b one obtains

C = C0 + εC1 + O(ε2), (39)

where we defined

C0 = [ b A0b · · · (A0)
nx−1b ], C1 = [ 0 A1b · · · ∑

n=0
nx−2

(A0)
nx−2−n(A1)

nb ]. (40)

C0 is clearly the controllability matrix of the unperturbed system with full symmetry, which does not have a full
rank, if the decomposition (23) contains at least one irreducible representationT r with the dimensionalitydr > 1.
Indeed, in the absence of accidental degeneracies that would mean

n0 ≡ rank(C0) ≤
q∑
r=1

pr < nx. (41)

The controllability matrixC of the perturbed system, on the other hand, has full rank for anyε 6= 0 because the
symmetry is completely destroyed by the perturbation. Therefore, the perturbedlinear system becomes controllable
(in the sense of the definition given in Section 2.1) even though the unperturbed system is not, forarbitrarily small
perturbations.

The controllability ensures that for any initial and final states of the linear system (4) a sequence of control
perturbations1Ut ≡ [1ut+nx−1, . . . , 1ut ] can be found mapping the initial state to the final state innx iterations.
This sequence can be obtained explicitly from (7)

1Ut = (C)−1(1xt+nx − (A)nx1xt ). (42)

Formally, if the system is controllable, the controllability matrix is invertible, and the solution (42) is well defined
for any1xt and1xt+nx . However, when the matrixC is close to being singular its inverse is not well defined. It is
convenient to use the singular value decomposition of the controllability matrix

C = Q6R†, (43)

whereQ = [ q1 · · · qnx ] andR = [ r1 · · · rnx ] are some orthogonalnx × nx matrices, and

6 =



σ1(ε)

. . .

σnx (ε)


 . (44)

The singular values are ordered such thatσ1(ε) ≥ σ2(ε) ≥ · · · ≥ σnx (ε)∀ε. Additionally, Eq. (41) requires

limε→0 σi(ε) = 0, i = n0 + 1, . . . , nx. (45)

In terms of the matricesQ,6, andR we can write the inverse ofC as

(C)−1 = R(6)−1Q† =
nx∑
i=1

σ−1
i (ε)r iq

†
i , (46)

and therefore, for smallε Eq. (42) gives

1Ut ≈
nx∑

i=n0+1

(qi ·1xt+nx )− (qi · (A)nx1xt )
σi(ε)

r i . (47)
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As a consequence, we obtain

limε→0|1Ut | = ∞. (48)

This result means that at least one control perturbation of the feedback sequence1ut , . . . ,1ut+nx−1 diverges as
the symmetry breaking perturbationεA1 of the Jacobian vanishes. Since no specific relation between the initial and
the final state of the system was implied, the obtained result is general, and does not depend on the control method
used to calculate the feedback.

In fact, a more general statement holds. Suppose the symmetry is violated only partially, such that the perturbed
Jacobian (35) remains exactly symmetric with respect to a subgroupL′ of the full symmetry groupL. Denoten̄u
and n̄′

u the minimal number of control parameters required (assuming exact symmetry) by the groupsL andL′,
respectively. Then it can be shown that, similarly to the single-parameter case, at least one control perturbation of
the feedback sequence1ut , . . . , 1ut+nx−1 diverges asε goes to 0 whenever̄n′

u ≤ nu < n̄u. The same result is
obtained if the independent with respect to the groupL′ control parameters become dependent with respect to the
groupL, as indicated by the violation of the general independence condition (30). The time-periodic generalization
is also straightforward. We will call this situationparametric deficiency.

In other words, although it might be possible to control alinearsystem with approximate symmetry using a number
of control parameters which is smaller than that required in the assumption of exact symmetry, the stabilization
requires feedback of very large magnitude. Such systems are calledweakly controllablein the language of control
theory. However, the linear system is only an abstraction. The linear approximation (3) of the evolution equation (2) is
only valid for small perturbations1ut of the control parameters and small deviations1xt from the target trajectory.
Besides, additional restrictions on the magnitude of the feedback are usually imposed by practical limitations, size
and energy constraints, etc., at the implementation stage. One can, therefore, conclude that, since the magnitude of
feedback scales linearly with the deviation from the target trajectory, a nonlinear system with parametric deficiency
can be stabilized using linear control only in an asymptotically contracting neighborhood of the target trajectory.

As an example, consider the vicinity of the pointū0 in the parameter spaceRnu at which two eigenvalues belonging
to different invariant subspaces cross (i.e., accidental degeneracy occurs). Then the full dynamical symmetry is
described by the groupL′ for ū 6= ū0 and is increased toL (of whichL′ is a subgroup) for̄u = ū0. In this case
L can be considered approximate symmetry in the vicinity ofū0, and the distance to that point plays the role of
the parameterε. Suppose the control scheme is such that there is a parametric deficiency. Then the system will
remain controllable for̄u 6= ū0. However, the strength of feedback required to control the system will diverge asū
approaches̄u0, at which point the system will become uncontrollable.

3. Applications

3.1. Inverted pendulum in three dimensions

Now that the formal theory is constructed, we can illustrate it by applying to a few simple symmetric systems.
As our first example we consider the problem of balancing an inverted pendulum (such as a rigid rod) about its
unstable equilibrium by moving the support point in the horizontal plane. Although the two-dimensional version
of the problem is literally a textbook example, the three-dimensional version is much richer and less trivial. The
question we would like to answer is whether the pendulum can be stabilized by moving the support point in just
one direction, or using the whole plane is necessary. Intuitively one would assume that the whole plane is necessary
regardless of the symmetry. Symmetry however plays a crucial role in the problem, so the answer should depend
on whether the pendulum is symmetric or not. A related, although as we shall see below not equivalent, question
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is what the minimal number of control parameters is for this system. This problem is of particular interest to us
because it not only serves as a nontrivial example of the relation between the structural symmetry groupG and the
dynamical symmetry groupL, but also highlights the role played by the structure of the tangent spaceT . Besides,
the equations of motion of many systems of practical interest, such as a charged particle in an electromagnetic trap,
a space booster on takeoff, or a satellite in orbit, can be cast in a similar form.

At first let us assume that the pendulum is axially symmetric, so that the dynamical equations are invariant with
respect to rotation about the vertical axis (which we denotez). The equilibrium state is also rotationally invariant,
so thatH0 = G = O(2). For a thin cylindrical rod of massm and lengthl the principal moments of inertia are
Jx = Jy = ml2/3 andJz = 0, so that in polar coordinates the Lagrangian of the system is given by

L = ml2

6
(θ̇2 + sin2θφ̇2)− mgl

2
cosθ. (49)

The equations of motion in Cartesian coordinates are found by expanding the Lagrangian near the equilibrium
stateθ = θ̇ = 0 and substitutingx = ux + l sinθ cosφ, y = uy + l sinθ sinφ. After performing the algebra one
obtains (up to a constant)

L = m

6
(ẋ2 + ẏ2)+ mg

4l
((x − ux)

2 + (y − uy)
2), (50)

whereux anduy are the coordinates of the support point, playing the role of control parameters. From (50) we
immediately obtain a system of equations

m

3
ẍ = mg

2l
(x − ux),

m

3
ÿ = mg

2l
(y − uy), (51)

which can be trivially reduced to a system of first-order differential equations by introducing velocitiesvx andvy

ẋ = vx, ẏ = vy, v̇x = ω2
0(x − ux), v̇y = ω2

0(y − uy), (52)

where we denotedω2
0 = 3g/2l. The respective Jacobian and control matrix are given by

Ac =
[
O I

ω2
0I O

]
, Bc = −ω2

0

[
O

I

]
, (53)

whereO andI are 2×2 zero and unit blocks, respectively. Since the eigenvaluesλ = ±ω0 of the Jacobian are doubly
degenerate, we immediately conclude that both control parameters are required to make the system controllable. In
fact, it can be easily verified that the pair(Ac, Bc) is controllable.

We could arrive at the same conclusion without calculating the Jacobian. Let us takeL′ = H0 = O(2). Consider
the representationT (ψ) of the rotation by an angleψ about thez-axis in the tangent spaceT = R4

T (ψ) =
[
R(ψ) O

O R(ψ)

]
, R(ψ) =

[
cosψ sinψ

− sinφ cosψ

]
. (54)

From the form of the matrixT (ψ) it is clear that the representation of the rotation group in the four-dimensional
tangent space can be decomposed into the sum of two equivalent two-dimensional irreducible representations (vector
representations) of O(2)

T = 2T 1, d1 = 2. (55)

According to the results of Section 2, this indicates that in order to control the unstable steady stater̄ = v̄ = 0 one
needs at least two independent control parameters,n̄u = 2. Furthermore, it is trivial to check that the action ofux
anduy is indeed independent.
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To see that it is sufficient to have two control parameters, notice that the dynamical symmetry group of the linear
system of Eq. (52) isL = GL(2), so thatL′ ⊂ L. This means thatG ⊂ L, i.e., the symmetry of the linearized
equations is higher than the symmetry of the original nonlinear evolution equations. However, the representation
of the group GL(2) is decomposed into a sum of two equivalent two-dimensional irreducible representations,
identically to the group O(2), so this higher symmetry does not lead to the increase in the minimal number of
control parameters. Neither is the independence condition affected.

Now let us repeat the analysis using the polar coordinates. The equation of motion obtained from (49) reads

θ̈ =
(
ω2
φ + 3g

2l

)
(θ − uθ ), (56)

whereuθ denotes the change in the angleθ resulting from moving the support point byu = l sinuθ (cosφ ex +
sinφ ey), andωφ = φ̇ = const. Denotingω2

1 = ω2
φ + ω2

0 (56) can be written as a first-order system

θ̇ = ωθ , ω̇θ = ω2
1(θ − uθ ). (57)

If we consideruθ as our new control parameter, the Jacobian and control matrix can be written in the form

Ap =
[

0 1

ω2
1 0

]
, Bp = ω2

1

[
0

1

]
. (58)

The eigenvalues of the Jacobian are distinct,λ = ±ω1, so a single control parameter should be sufficient. The
pair (Ap, Bp) is controllable, souθ is definitely suitable for this role. This is not surprising. Indeed, the degrees of
freedom affected by the rotational symmetry (i.e.,φ andωφ) have been factored out, so the dynamical equations
for the remaining degrees of freedom are not affected by the symmetry and can be considered generic in the sense
that the evolution operators are nondegenerate.

This result seems to contradict the one obtained previously for the Cartesian space. In fact, there is no contradic-
tion: since the feedback is applied quite differently in the two cases, it is not unreasonable to expect the minimal
number of control parameters to be different as well. In the case of the Cartesian coordinates the displacement of
the support point,u = uxex + uyey , uniquely determines the magnitude and the direction of the restoring force, so
that the latter is always proportional to−u. In the case of the polar coordinatesuθ determines only the magnitude
of the restoring force, while the direction of that force depends on the deviationr = l sinθ(cosφ ex + sinφ ey)
of the rod from the equilibrium point. As a consequence, the restoring force is proportional to−uθ r . This dif-
ference shows that the minimal numbern̄u of control parameters depends not only on the symmetry properties
of the system, but also on the choice of variables used to describe the dynamics, in other words on the structure
of the tangent spaceT . In particular, sinceT is a linear space,̄nu is invariant with respect to any linear trans-
formation of variables, but there is no reason for it to be invariant with respect to a nonlinear transformation of
variables.

In contrast, we can conclude that independently of a particular description it is not sufficient to move the support
point in any one direction to keep the symmetric rod from falling. Both directions should be used for control, which
seems to be an intuitive result. Indeed, we know that using bothux anduy corresponds to moving the support point in
both thex-andy-direction. Similarly, in order to apply the feedback by changing the angleθ in the polar coordinate
formulation one should be able to move the support point in the direction of the deviation from equilibrium, defined
by the angleφ, which is arbitrary.

We conclude this section with probably the least intuitive result that follows from the developed theory: if the
axial symmetry of the rod is broken, it can be kept in the unstable equilibrium by moving the support point in just
one direction, which of course implies that a single control parameter is sufficient. To see this let us again assume
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that the rod is thin, such that the unstable equilibrium is achieved at the pointr = 0, but allow the principal moments
of inertia to be different,Jx 6= Jy 6= Jz = 0. The Lagrangian (50) then has to be changed to

L = 1

2l2

(
Jyẋ

2 + Jxẏ
2
)

+ mg

4l

(
(x − ux)

2 + (y − uy)
2
)
. (59)

Respectively, (52) has to be replaced with

ẋ = vx, ẏ = vy, v̇x = ω2
x(x − ux), v̇y = ω2

y(y − uy), (60)

where nowωx 6= ωy . The corresponding Jacobian

A′
c =




0 0 1 0

0 0 0 1

ω2
x 0 0 0

0 ω2
y 0 0


 (61)

is no longer degenerate, so there is no need to use two control parameters. Let us choose as our new control parameter
an arbitrary linear combinationu of ux anduy , such thatux = u cosψ anduy = u sinψ , which corresponds to
moving the support point along the line which makes an angleψ with the x-axis. It is easy to check that the
JacobianA′

c and the respective control matrixB ′
c = [ 0 0 ω2

x cosψ ω2
y sinψ ]T form a controllable pair for

anyψ 6= nπ/2, with n-integer.

3.2. Coupled map lattice in one dimension

As our next example we consider a coupled map lattice (CML). On the one hand CMLs are used quite successfully
to model the dynamics of many spatially discrete as well as spatially continuous extended systems describing such
spatiotemporally chaotic phenomena as surface growth, population dynamics, and turbulence. It is thus reasonable
to expect that the results obtained for lattice systems should be representative of a much wider class of systems.
On the other hand CMLs are simple enough, so that many interesting results can be easily obtained analytically in
an arbitrary number of dimensions. As we shall see, the symmetry of the lattice plays a very important role in the
control problem. In fact, the geometry of control turns out to be closely related to the geometry of the system itself.

The one-dimensional deterministic coupled map lattice with nearest neighbor diffusive coupling [21] is described
by the following evolution equation:

xt+1
i = εf (xti−1, a)+ (1 − 2ε)f (xti , a)+ εf (xti+1, a). (62)

Here the indexi = 1,2, . . . , nx labels the lattice sites, and the periodic boundary condition is imposed. The choice
of the map functionf (x, a) is usually motivated by the local dynamics of the physical system under consideration.
In principlef (x, a) can be chosen as an arbitrary (nonlinear) function with parametera, which typically represents
the process of generation and growth of local fluctuations, while diffusive coupling typically plays the opposite
role of dissipating these fluctuations. Therefore, the parametersa andε specify the degree of instability and the
strength of dissipation in the system, respectively. For the purpose of control, however, details of the local map are
not important. The only aspect of the control problem affected by any particular choice is the set of existing unstable
periodic trajectories.

The coupled map lattice is by construction highly symmetric. The symmetry is that of the spatial lattice: the
evolution equation (62) is invariant with respect to translations by an integer number of lattice sites (periodic
boundary condition makes the group finite) and reflections about any site (or midplane between any adjacent
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sites), which map the lattice back onto itself without destroying the adjacency relationship between neighboring
sites. The corresponding point group Cnxv (we assumenx even) has a total ofnx/2 + 3 nonequivalent irreducible
representations. The first four are one-dimensional,d1 = d2 = d3 = d4 = 1, while the restnx/2 − 1 are
two-dimensional,dr = 2, r ≥ 5. In comparison, breaking the reflection symmetry reduces the group to Cnx , which
only has one-dimensional irreducible representations.

The dynamical symmetry groupL can be trivially obtained using the observation that the Jacobian matrix in the
linearization (3) constructed for the CML (62) can always be represented as a product of two matrices,At = MNt ,
where

Mij = (1 − 2ε)δi,j + ε(δi,j−1 + δi,j+1) (63)

describes diffusive coupling, and

Nt
ij = ∂xf (x̄

t
i , a)δi,j (64)

defines the strength of local instability, with symbolsδi,j±1 extended to comply with periodic boundary condition.
This partition of the Jacobian explicitly shows how the symmetry groupL depends on the symmetry properties of
the nonlinear evolution equation (62) and those of the controlled statex̄t . The matrixM contains the symmetries
imposed by the chosen coupling of the nonlinear model

T (g)M = MT(g) ∀g ∈ G, (65)

while the matricesNt reflect the symmetry of the target statex̄t

T (g)Nt = NtT (g) ∀g ∈ Hx̄. (66)

Since the JacobianAt commutes with all matrices that commute with bothM andNt , we conclude that generically
L = Hx̄ ⊆ G, in agreement with our assumption (17).

Let us takeL′ = L and construct its representationT in T = Rnx . DecomposingT into a sum of the irreducible
representations of Cnxv we can easily determine the restrictions imposed by the symmetry on the minimal number
of control parametersnu and the structure of the control matrixB. For instance, a zigzag state givesL = Cnv
with n = nx/2 and, according to (31),̄nu = 2; a nonreflection-invariant state with spatial periods corresponds to
L = Cn with n = nx/s andn̄u = 1, etc.

Let us consider the spatially uniform target state, which has the highest symmetry possible,L = Cnxv, in more
detail. The decomposition (23) gives

T = T 1 ⊕ T 4 ⊕ T 5 ⊕ · · · ⊕ T nx/2+3, (67)

and the corresponding basis of normal modes which transform according to these irreducible representations is
given by the eigenvectors of the operators of translation and reflection, i.e., Fourier modesh(k)

hj (k) = eikj . (68)

To satisfy the periodic boundary condition, the wavevectork should belong to the discrete set±2πm/nx , m =
0, . . . , nx/2. Fourier modes with the wavevectors of the same magnitude define invariant subspacesLk ⊂ T . The
subspacesLk with 0 < k < π correspond to the representationsT r with r ≥ 5,L0 corresponds toT 1, andLπ to
T 4. The eigenvalues ofA corresponding to subspaces with 0< k < π should be doubly degenerate, which can be
easily verified by calculating the spectrum

λ(k) = α{1 − 4ε sin2(k/2)}, (69)
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Fig. 1. Minimal local cluster of control sites for a 1D lattice. The feedback is applied at the lattice sitesi1 andi2 (white) placed next to each
other and propagates to the rest of the sites (gray) via the inter-site coupling.

whereα = ∂xf (x̄, a). Since the two-dimensional irreducible representations are present in the decomposition (67),
n̄u = 2. Therefore, in order to control an unstable uniform steady state of the coupled map lattice we need at
least two control parameters. This is a reflection of the symmetry of coupling in the model (62). Note that, since
every two-dimensional irreducible representation occurs in the decomposition (67) once,p5 = · · · = pnx/2+3 = 1,
according to the results of Section 2, the minimal number of control parameters remains the same for a spatially
uniform target trajectory of arbitrary time periodτ .

Furthermore, since for any lengthnx of the lattice the groupG = Cnxv only has one-and two-dimensional
irreducible representations andL is a subgroup ofG, it is sufficient to have just two control parameters to make the
dynamics of the coupled map lattice controllable in the vicinity of a target state with arbitrary symmetry properties
and temporal period. Choosing the minimal number of control parameters,nu = 2, we can determine the conditions
making them independent with respect to a particular target state: the linear response of the CML to perturbation of
the two parameters, given by the columns of the control matrixB = [ b1 b2 ], has to satisfy conditions (22) and
(32).

Failure to satisfy the necessary condition (22) rules out the possibility of using global parameters, such as the
couplingε or parametera of the local mapf (x, a) for control of symmetric steady states. Takingu = (a, ε), so
that

b1 = ∂aF(x̄, ū) = M



∂af (x̄1, ā)

...

∂af (x̄nx , ā)


 , (70)

b2 = ∂εF(x̄, ū) = (ε̄)−1(M − I )



f (x̄1, ā)

...

f (x̄nx , ā)


 , (71)

we observe that condition (22) is only satisfied, if the groupL is trivial,L = {e}. This result holds for time-periodic
symmetric target states as well.

Alternatively, one can make the system controllable by directly perturbing the system at the sitesi1 andi2 (which
can be thought of as a simpler version of the method suggested by Hu and Qu [22]). The positions of the control
sites cannot be chosen arbitrarily, again due to symmetry. In particular, if the target state is spatially uniform, it is
trivial to show that choosing, e.g.,i2 = i1 + 1 satisfies the controllability condition for an arbitrary lengthnx of the
lattice (see Fig. 1). The control matrix corresponding to this choice of control parameters can be written in the form
Bij = δj,1δi,l + δj,2δi,l+1, where 1≤ l ≤ nx .

Such localized control also has its downside. In the weak coupling limit,ε → 0, the coupled map lattice with
local feedback becomes a weakly controllable system. The symmetry of the lattice of uncoupled maps is described
by the permutation groupG = Snx , while the linearization about a uniform target state increases the symmetry to
L = GL(nx): since the respective Jacobian is a multiple of the unit matrix,Aij = αδi,j , the linearized system is
symmetric with respect to all (complex) nonsingular coordinate transformations. When coupling is restored,ε > 0,
the symmetry of both the nonlinear evolution equation (62) and its linearization (3) reduces toG′ = L′ = Cnxv.
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The matrix representationT of the group GL(nx) in Rnx is already irreducible. Consequently,nu = nx indepen-
dent control parameters are required to control the steady uniform state of the uncoupled lattice. This result is rather
intuitive. Obviously, one can no longer control the system applying control perturbations at just two lattice sites,i1

andi2. Since the control perturbation does not propagate to adjacent sites of the lattice, feedback has to be applied
directly at each site.

If the coupling is nonzero, but very small, the controllability property is restored fornu = 2, but, according to
Section 2.4, feedback of very large magnitude is required to control the system due to parametric deficiency. Indeed,
in order to affect the dynamics at sitei away fromi1 andi2 the control has to propagate a certain distance decaying
by roughly a factor ofε per iteration. As a result, the magnitude of the perturbation required to control an arbitrary
site of the lattice diverges approximately asε−nx/2 for ε → 0, resulting in the loss of control [7].

3.3. Coupled map lattice in higher dimensions

It turns out that local dynamics of the coupled maps defined on higher-dimensional lattices can differ quite
substantially from the local dynamics of the one-dimensional CMLs. As a consequence, one should not expect
that the higher-dimensional control problem could be solved by a simple generalization of the one-dimensional
case. In particular, it would be interesting to find out if and when the spatiotemporally chaotic dynamics on a
higher-dimensional lattice can be stabilized using a local cluster of control sites, similarly to the one-dimensional
lattice. The answer to this question depends on whether there are accidental degeneracies, which can only appear,
if the dimension of the lattice is greater than one.

Let us begin with the simplest of the higher-dimensional cases, that of the lattice inD = 2 spatial dimensions.
The generalization of the one-dimensional CML (62) to two dimensions reads

xt+1
i,j = f (xti,j , a)+ ε1f (xti,j , a), (72)

where we have defined a discrete Laplacian

1χ(xi,j ) = χ(xi−1,j )+ χ(xi,j−1)− 4χ(xi,j )+ χ(xi+1,j )+ χ(xi,j+1). (73)

The double index(i, j) labels the lattice sites and we assume that the lattice is square:i = 1,2, . . . , nx , j =
1,2, . . . , nx . We will also assume the periodic boundary conditions.

The symmetry of the CML is again determined by the symmetry of the spatial lattice. It is easy to see that besides
retaining the one-dimensional translational and reflectional invariance along each of the two lattice directions, the
system (72) is in addition invariant with respect to the reflection along the diagonal direction, i.e., the permutation
operation which exchanges the indicesi and j . This latter invariance is the product of the discrete rotational
symmetry, which arises due to the isotropy of the coupling in the two lattice directions. The corresponding structural
symmetry group is then defined asG = S2 × Cnxv × Cnxv. Respectively, for the hypercubic lattice with sidenx in
D dimensions one obtains

G = SD × Cnxv × · · · × Cnxv︸ ︷︷ ︸
D

. (74)

The analysis of the controllability condition follows that of the previous section quite closely. In particular, for
the uniform target state,Hx̄ = G andT = Rn with n = nDx . Let us takeL′ = Hx̄. The normal modes are just the
tensor products of the Fourier modes (68), so forD = 2 one has

hj1,j2(k1, k2) = eik1j1+ik2j2. (75)
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The eigenmodes withk1 = k2 = 0, π transform according to the one-dimensional representations of the group
(74) in T , the eigenmodes withk1 = 0, k2 = π — two-dimensional, the eigenmodes withk1 = 0, π , k2 6= 0, π
andk1 = k2 6= 0, π — four-dimensional, and finally the eigenmodes withk1 6= k2 6= 0, π — eight-dimensional
representations. In the absence of accidental degeneracies this leads one to believe that the minimal number of
control parameters should ben̄u = 8.

The obtained value, however only gives a lower bound on the minimal number of control parameters, since the
actual degeneracy is higher than what is suggested by our previous analysis. This can be shown by examining the
respective eigenvalues

λ(k1, k2) = α

{
1 − 4ε

[
sin2

(
k1

2

)
+ sin2

(
k2

2

)]}
, (76)

obtained by linearizing (72). Indeed, note thatλ(k, π − k) = 1− 4ε, irrespectively of the value ofk, i.e., there is an
accidental degeneracy (for evennx). The reason is that our choice ofL′ does not completely specify the dynamical
symmetry groupL. (Recall that according to Section 2 the accidental degeneracies are defined with respect to the
groupL′, notL.) As a result, the subspacesLk1,k2

L of T invariant with respect toL have dimensions higher than

the subspacesLk1,k2
L′ invariant with respect toL′. Using combinatorial arguments it can be trivially verified that the

invariant subspaceLk1,k2
L corresponding tok1 + k2 = π has the highest dimensionality, and thus determines the

minimal number of control parameters (and hence the number of control sites)

n̄u = dim
(
L
k,π−k
L

)
= 0 × 1 + 1 × 2 +m4(nx)× 4 +m8(nx)× 8 = 2(nx − 1). (77)

This result is quite interesting. In order to control a dynamical system with symmetric nearest neighbor interactions
defined on a squarenx ×nx lattice one needs a cluster of control sites, the size of which grows linearly with the side
of the lattice. To determine whether some particular arrangement of control sites is suitable one has to ensure that
the set of independence conditions (32) is satisfied. This can be achieved, for instance, by choosing the arrangement
shown in Fig. 2a.

The effect of accidental degeneracy is amplified for higher-dimensional lattices. Combinatorial arguments show
that the minimal sizēnu of the control cluster becomes a function of the lattice size and can grow as fast asn

bD/2c
x

(for nx being a multiple of 2D!), wherebdc denotes the integer part ofd. It should be noted however, that contrary
to the symmetry-related degeneracy, the accidental degeneracy depends sensitively on the size of the lattice. For
instance, there is no accidental degeneracy for oddnx , while the symmetry-related degeneracy is always present.
Nevertheless, the former does not just disappear fornx large, but is rather replaced with a near-degeneracy, which,
according to Section 2.4 leads to weak controllability, if the size of the control cluster is too small. We therefore
expect the scaling of̄nu obtained above to hold for all sufficiently large lattices.

Fortunately, the evolution equation (72) usually represents nothing more than the leading order approximation of
the actual dynamics, where one ignores the interaction with neighbors further away than one lattice spacing. Using
this approximation might be advantageous for calculating the values of dynamical averages, but it is undesirable
in the control problem. Let us see how the latter is affected by the sub-leading terms in the dynamical equations,
adding the next nearest neighbor interaction as an example. Eq. (72) is then replaced with

xt+1
i,j = f (xti,j , a)+ ε1f (xti,j , a)+ γ12f (xti,j , a). (78)

Since we added the next nearest neighbor interaction in a way that does not break the spatial symmetry of the
original equation, the eigenvectors and the invariant subspaces do not change either. The eigenvalues however do
change and are now given by
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Fig. 2. Clusters of control sites for a 2D lattice. For a lattice with accidental degeneracy (a) the size of the minimal control cluster (white) grows
linearly with the size of the lattice. If there is no accidental degeneracy, (b) the lattice can be controlled using a local cluster of control sites. Two
examples of allowed minimal local clusters (white and black) are shown.

λ(k1, k2) = α

{
1 − 4(ε − 4γ )

[
sin2

(
k1

2

)
+ sin2

(
k2

2

)]
− 4γ [ sin2(k1)+ sin2(k2)]

}
, (79)

so the accidental degeneracy disappears, as long asγ 6= 0. As a consequence, we retrieve the resultn̄u = 8 for
D = 2. Similarly, one concludes that the minimal number of control parameters is given byn̄u = D!2D and is
thus independent of the size of the lattice in arbitrary dimensionD. Moreover, it can be verified, that the coupled
map lattice, whose evolution is governed by Eq. (78) can always be controlled with a local cluster of control sites.
The choice of the cluster is not unique, and a couple of examples forD = 2 are presented in Fig. 2b. Extending
the range of coupling further has the same effect, so we expect the obtained results to remain valid for a generic
extended system defined on a hypercubic lattice in an arbitrary dimension.

Choosing a different kind of lattice, such as an h.c.p., f.c.c. or b.c.c. lattice, is always possible and will change
the symmetry of the system and, with it, the shape and size of the control cluster. However, we again expect that it
will be possible to control the dynamics of such lattices using a local cluster of control sites, irrespectively of the
size of the system.

4. Conclusions

Summarizing, we have determined that if the system under consideration is symmetric, it cannot be considered
generic with respect to conventional chaos control techniques, and its symmetry properties should be understood
prior to constructing a control scheme, even if the symmetry is only approximate. The failure to observe the
restrictions imposed by the symmetry on the choice of control parameters will result in weak controllability and, as
a result, extreme sensitivity to noise, or even worse, complete loss of control.

From the practical point of view, the main result of the symmetry analysis is that the minimal number of indepen-
dent control parameters required for control can typically be determined without any knowledge of the evolution
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equations governing the dynamics of the system. One however needs to know the properties, such as spatial sym-
metry and temporal periodicity, of the target state, and the structural symmetry of the dynamical equations, which
in the case of extended chaotic systems is typically defined by the geometry of the underlying physical space. One
also needs to determine the structure of the tangent space, or the choice of variables used to describe the state of
the system. Of course, the structural symmetry is not always uniquely defined by the geometry. The dynamical
equations might, in principle, be symmetric with respect to transformations unrelated to “geometrical” symmetries,
such as those describing rotational, reflectional, or translational invariance. Additional “nonphysical” dynamical
symmetries can also be introduced as a result of the linearization procedure.

We also showed that the control problem is not fully solved when the sufficient number of control parameters is
determined. The action and/or placement of the controllers must also be considered carefully, as certain conditions
must be satisfied in order to achieve controllability. In particular, perturbation of the control parameters should
completely break the dynamical symmetry. The more restrictive independence condition is specific to each target
trajectory and, on the one hand, requires the knowledge of the system’s response to variation of different control
parameters (which can be obtained experimentally, if necessary), but, on the other hand, allows one to choose the
minimal set of control parameters systematically, avoiding trial and error search.

Another area relevant to control, where the above symmetry analysis can be applied equally successfully is phase
space reconstruction (or system identification, in engineering terms). Building on the results of [23] one can show
[18] that symmetry imposes restrictions, essentially identical to those we obtained for the control parameters, on
the number of independent measurements (or number of sensors) one needs to employ to reconstruct the state
and the dynamics of the system. If there is a “parametric deficiency” in the measurements, the projected attrac-
tors will generically remain “folded” near highly symmetric steady and periodic states, thus preventing the local
reconstruction.

A number of more specific conclusions can be made concerning extended chaotic systems. The analysis of
the simplified model system containing the defining features of a general spatially extended dynamical sys-
tem suggests that spatiotemporal chaos generically cannot be controlled using asingle control parameter,
globally or locally (and neither can its state be reconstructed using the measurements from a single sensor).
However instabilities can be tamed quite effectively by perturbing the system at a number of distinct spatial
locations (control sites). In fact, it can be argued that in experimental setting it is usually much easier to ap-
ply feedback locally, which is crucial for practical implementation of control methods based on the presented
approach.

We determined that in order to make the target state controllable, the control sites should be arranged properly.
Choosing this arrangement in accordance with the underlying symmetries of the system affords a significant re-
duction of the complexity (smaller density of control sites per unit length, area, or volume of the system) with
simultaneous increase in the flexibility of the control algorithm, allowing it to track target trajectories as system pa-
rameters change, or switch between different trajectories by changing feedbackwithoutchanging either the density
or the location of control sites. Generally speaking, the control sites should be arranged to get rid of uncontrollable
normal modes. In particular, in case of systems with both translational and reflectional invariance, the control sites
should notbe arranged in a periodic array.

Perhaps surprisingly, although there is a minimalnumberof control sites (as well as sensors), their minimaldensity
is not bounded from below — in the absence of noise an extended system of arbitrary size can, in principle, be
controlled using the number of control sites equal to the minimal number of control parameters, which is determined
by the symmetry properties alone. (In practice certain restrictions appear due to the fact that the volume of the basin
of attraction shrinks exponentially with increasing size of the system.) However, when noise appears, the minimal
density of control sites depends on the strength of noise as well as parameters of the system and the choice of
feedback gain [7].
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Finally, we should comment that the conditions on the set of control parameters derived in Section 2 are im-
posed by thecontrollability condition and guarantee that control can be achieved. However, in general, only the
weakerstabilizability condition has to be satisfied, which requires that everyunstablenormal mode of the sys-
tem is controllable, so that only unstable invariant subspaces have to be considered in the conditions (29)–(32).
As a consequence, it might be possible to stabilize highly symmetric states of compact extended systems with
strong spatial correlations using a single control parameter — if only a small number of normal modes is ex-
cited, there is a chance that allunstablemodes will correspond to one-dimensional irreducible representations. In
strongly chaotic systems a large number of modes will be unstable and many of them will inevitably be degener-
ate, calling for multi-parameter control. Similar considerations apply to weakly chaotic systems with large spatial
extent.

For example, in the liquid bridge convection experiment it was found [9] that the one-sensor, one-heating element
arrangement failed to stabilize the unstable axially symmetric state and produced a standing wave with the node
at the location of the heating element, which we can immediately identify with an uncontrollable normal mode.
The symmetry analysis shows that the dynamical symmetry group is O(2), so that a minimum of two independent
control parameters (currents through the two heating elements) are required. The independence condition defines
the values of the allowed angular offsetφ between the heating elements. The controllability condition applicable for
both strongly and weakly unstable regimes requires the ratio 2π/φ to be irrational. However, since the experimental
system was weakly unstable (only the normal modes withm = 1 andm = 2 were unstable), control could be
achieved by satisfying the stabilizability condition, i.e., for all values ofφ except multiples ofπ/2. Similarly,
the angle between the two sensors should not be a multiple ofπ/2 to allow state reconstruction. Indeed, in the
experiment both angles were chosen close to an optimal value of 3π/4.
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